ASSIGNMENT 2 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) Taken from pages 43-44 of ’Distributed Computing, A Locality Sensitive
Approach’, written by David Peleg.
(2) (a) Denote the identity mapping by Id. For any given rooted tree, (T, rt),
and any given set W, define Setrw := {f | f is a bijection from W
to itself, such that f? = Id} — Id. For a bijection f, from W to W,
define Sump(f) := Y, cw Puw(f). Let fmin satisfy: Sump(fmin) =
min{Sumy | f € Setr,w}.

Lemma 0.1. For each pair of distinct vertices w,w' € W, such that
w' # fmin(w), the paths Py(fmin) and Py (fmin) are edge-disjoint.

Proof.

Assume for contradiction that there exist wl,w2 € W, such that

wl # fmin(w2), and there exists an edge e = (u,v), such that

| Pwt (fmin) [Pw2(fmin)| > 1. It is easy to verify that Py (fmin) U Pw2(fmin)—
Pu1(fmin)) Pw2(fmin) is decomposed from the two following disjoint

paths: Either from wl to w2 and from f(wl) to f(w2), or from w1 to

f(w?2) and from w2 to f(wl). Without loss of generality the former

decomposition is chosen. Define f].. as follows:
w2, x=wl
wl, X = w2

Trin(@) = 8 fmin(W2), x = fmin(wl)
fmz'n(wny X = fmm(’wQ)
fmin(2), otherwise.

Obviously, f! .. € Setr.w. Sump(fl.;n) = Sump(fmin)—|Puwt (fmin) N Pw2(Ffmin)| <
Sump(fmin) := min{Sumy | f € Setr,w}, contradiction.
O

The lemma implies that a mapping that satisfies that conditions of the
question exists.

(b) We will describe a distributed algorithm that finds such a bijection.
The algorithm starts with the leaves, in a manner similar to ConvergeCast.
Eachleaf v € W sends a M AT C H (v) message, and each leaf v € V\W
sends a NOM AT C H message to its parent.

Each vertex v € V collects the M ATCH and NOM AT C H messages

from its children, and keeps a set of vertices T' which is the set of

vertices that have sent a M ATCH message. After all the children

messages have arrived, v start to match vertices.

If |T| is even, v chooses random arbitrary pairs of vertices wy,wy € T

and replies the messages M ATCHED (w1, ws) towy and M ATCH ED (ws,w)
1

ASSIGNMENT 2 SOLUTIONS - DISTRIBUTED ALGORITHMS

to we. Afterwards, if v € W, it sends a M ATCH (v) message to its
parent.

If |T| is odd, v chooses random arbitrary pairs of vertices wy,ws € T
and sends the reply messages M ATCHED(w;,w2) to w; and M ATCHED (w2, w)
to wy. There will be one vertex w € T that haven’t been paired, since
|T| is odd. If v € W, it will send a MATCHED (w,v) message to w
and mark w as its paired vertex. Otherwise it’ll send a M ATCH (w)
message to its parent and memoize the unmatched vertex w.

When a node v € V receives a M ATCHED (w;,ws) message from
its parent, it checks whether ID(v) = ID(w;). If so, it sets wo as its
match. Otherwise it sends the M ATCHED (w;,w>) message to its
unmatched child.

In the worst case, M ATCH messages will go from a leaf to the tree
root, and the M ATCHED replies will go down back to the leaves.
Since this communication is done concurrently, Time(FindMatch) =
Depth(T) + Depth(T) = O(Depth(T)).

We can observe that each edges passes one MATCH or NOMATCH
message and at most one M AT C HED message, hence
Comm(FindMatch) = O(|E|) = O(n).

(3) Denote the Maximum Weight Spanning Tree of a graph G by Mx ST (G).

Lemma 0.2. Given the graphs G = (V,E,w) and G' = (V,E,—w), it
holds that MST(G) = MxST(G'). In other words, the Minimum Weight
Spanning Tree of a graph G is the Mazimum Weight Spanning Tree of the
same graph with the negative weights function.

Proof. Assume towards contradiction that there exist some graphs G =
(V,E,w) and G' = (V,E,—w) for which T = MST(G) # MxST(G');
Hence there exists a spanning tree 7' = (V,E') for which Wg/(T') >
W (T).

Y ew @(€) = Do —wl€) = War(T') > ---
ST T) = Yoo —0(€) = = e wle), s0:

Wa(T') = Y e w(e) < X .cpw(e) = Wg(T), in contradiction to T'
being M ST (G). O

Using this lemma, we can take any existing distributed algorithm for M ST
construction, such as Prim, GHS or Pipelined MST, and let it operate on
the negative weights graph G' = (V, E, —w).

(4) Since the graph G = (V,E,w) is a cycle, we can use the Red Rule and
exclude the heaviest edge to create M ST(G).
Here is a simple distributed algorithm:
e Choose an arbitrary vertex vy € V as the initiator, which will also act
as the tree’s root.

ASSIGNMENT 2 SOLUTIONS - DISTRIBUTED ALGORITHMS 3

o vy discovers the weight of the heaviest edge. It sends a M AXgpDGE(x)
message to one of its neighbours w, where £ = w((vg,w)). Each
vertex v, once received a MAXgpDGE(x) message from its neigh-
bour, sends a M AXpDGE(z') message to its other neighbour, where
z' = maz{z,w((w,v))}. When vy receives a M AXpDGE message
from its other neighbour, it knows the weight of the heaviest edge in
the graph.

e g now issues a REM OV E(x) message to one of its neighbours. When
a vertex v receieves a REM OV E(x) message from its neighbour w, it
checks whether w((w,v)) = z; if so, it removes it from the resulting
tree. Otherwise it sends this message to its other neighbour.

Remark: This is a schematic description. You were supposed to describe

the tree construction process, in which each vertex knows its children and
parent.

The naive approach to perform MST on a clique is to use one of the existing
MST distributed algorithms. This takes Q(n-logn) time units. Here we will
take advantage of the clique’s connectivity to perform an MST construction
in O(logn) time units.

We will use a variant of the GHS algorithm, that (similarly to the stan-
dard GHS) works in O(logn) phases, each consisting of three parts:

e Finding the MWOE(F) of each fragment F. This may take up to
O(Diam(F)) = O(n) time units on the standard GHS, but since each
fragment F is a clique, we can send direct messages to the fragment’s
representative in O(1) time units.

e Connecting the fragments. This is done in O(1) time units and there
is no need to modify it.

e Broadcasting the new identity of the fragment’s representative over
each fragment. This may take up to O(Diam(F)) = O(n) on the
standard GHS, but since each fragment F is a clique, we can send
direct messages to each vertex v € F in O(1) time units.

Hence: Time(CliqueGHS) = O(logn) - O(1) = O(logn).

Note that at the end of each phase, each vertex should send its frag-
ment identity to each of its neighbours (required for the MWOE finding
phase). This action alone takes O(|E|) messages for each phase, hence:
Comm(CliqueGHS) = O(logn) - O(|E|) = O(|E|logn) = O(n?logn).

