## ASSIGNMENT 1 SOLUTIONS - DISTRIBUTED ALGORITHMS

(1) We will only concentrate on connected graphs (Note that for an unconnected graph $G$ and for every vertex $v$ in $G, \operatorname{Diam}(G)=\operatorname{Rad}(G, v)=\infty)$.
(a) $\forall v \in V, \operatorname{Rad}(G, v)=\max \left\{\operatorname{dist}_{G}(v, u) \mid u \in V\right\} \leq \max \left\{\operatorname{dist}_{G}(u, w) \mid\right.$ $u, w \in V\}=\operatorname{Diam}(G) \leq{ }^{1} \max \left\{\operatorname{dist}_{G}(u, v)+\operatorname{dist}_{G}(v, w) \mid u, w \in\right.$ $V\}=\max \left\{\operatorname{dist}_{G}(u, v) \mid u \in V\right\}+\max \left\{\operatorname{dist}_{G}(v, w) \mid w \in V\right\}=$ $2 \cdot \operatorname{Rad}(G, v)$.
(b) As an example, let us observe the complete graph, $K_{n}$. Obviously, $\operatorname{Diam}\left(K_{n}\right)=1$, and $\forall v \in K_{n}, \operatorname{Rad}\left(K_{n}, v\right)=1$. Hence, $\forall v \in K_{n}$, $\operatorname{Diam}\left(K_{n}\right)<2 \cdot \operatorname{Rad}(K, v)$.
(2) (a) We'll prove it by induction on the number of vertices in the graph $n=|V|$.

Proof. Basis: Each graph $G=(E, V)$ in which $|V|=n=1$ is connected, regardless of the number of edges. Hence: $|E| \geq n-1$.
Induction Step: Assume that for each connected graph $G=(E, V)$ in which $|V|<n,|E| \geq|V|-1$.
Given a connected graph $G=(E, V)$ in which $|V|=n$. By removing a vertex $v \in V$ and $\operatorname{deg}(v)$ edges: $\{(v, u): u \in V,(u, v) \in E\}$ a set of graphs $G_{1}, G_{2}, \ldots G_{k}$ is created, where $k=\operatorname{deg}(v)$. For each $i$, $G_{i}=\left(E_{i}, V_{i}\right)$ is connected and $\left|V_{i}\right|<n$, so the induction claim holds: $\left|E_{i}\right| \geq\left|V_{i}\right|-1$.
Hence: $|E|=\operatorname{deg}(v)+\sum_{i=1}^{\operatorname{deg}(v)}\left|E_{i}\right| \geq \operatorname{deg}(v)+\sum_{i=1}^{\operatorname{deg}(v)}\left(\left|V_{i}\right|-1\right)=$ $\operatorname{deg}(v)+\sum_{i=1}^{\operatorname{deg}(v)}\left|V_{i}\right|-\operatorname{deg}(v)=\sum_{i=1}^{\operatorname{deg}(v)}\left|V_{i}\right|=|V-1|=n-1$
(b) We'll prove by induction on the number of vertices in the graph. (A reminder: a tree is a connected, acyclic graph).
Proof. Basis: A graph in which $|V|=1$ and $|E|=0$ is connected and contains no cycles.
Induction Step: Assume that every connected graph $G=(E, V)$ in which $|V|<n$ and $|E|=|V|-1$ is a tree.
Given a connected graph $G=(E, V)$ in which $|E|=|V|-1=n-1$.
Claim: There exists a vertex $v \in V$ for which $\operatorname{deg}(v)=1$.
Proof. Assume towards contradiction that $\forall v \in V: \operatorname{deg}(v) \geq 2$. Hence: $|E|=\frac{1}{2} \sum_{v \in V} \operatorname{deg}(v) \geq|V|$, in contradiction to $|E|=|V|-$ 1.

By choosing a vertex $v \in V$ for which $\operatorname{deg}(v)=1$, we can create the graph $G^{\prime}=\left(E^{\prime}, V^{\prime}\right)$, where $E^{\prime}=\{E-\{(v, w):(v, w) \in E\}$ and $V^{\prime}=V-\{v\}$.

[^0]This graph is connected and holds $\left|E^{\prime}\right|=\left|V^{\prime}\right|-1$, so the induction claim holds - $G^{\prime}$ is a tree (therefore contains no cycles). The graph $G$ is composed of the graph $G^{\prime}$ plus the vertex $v$ and the edge $\{(v, w)$ : $(v, w) \in E\}$, hence is contains no cycles either.
(3) We will prove by a complete induction on $\operatorname{Depth}\left(T_{v}\right)$, that $\breve{L}(v)=\min \left\{\operatorname{dist}\left(v, l_{v}\right)\right.$ : $\left.l_{v} \in \operatorname{Leaves}\left(T_{v}\right)\right\}$, as required.

Proof. Basis: $\operatorname{Depth}\left(T_{v}\right)=0: v$ is a leaf $\left(\operatorname{Leaves}\left(T_{v}\right)=v\right)$ and thus, $\breve{L}(v):=0=\min \left\{\operatorname{dist}\left(v, l_{v}\right): l_{v} \in \operatorname{Leaves}\left(T_{v}\right)\right\}$.

Induction Step: By induction hypothesis, the claim holds for all $u \in$ $C h(v)$.
$\breve{L}(v)=1+\min \{\breve{L}(u): u \in C h(v)\}=($ By induction hypothesis $) 1+$ $\min \left\{\operatorname{dist}\left(u, l_{u}\right): u \in C h(v), l_{u} \in \operatorname{Leaves}\left(T_{u}\right)\right\}=\min \{\operatorname{dist}(v, l): u \in$ $\left.C h(v), l \in \operatorname{Leaves}\left(T_{u}\right)\right\}=\min \left\{\operatorname{dist}\left(v, l_{v}\right): l_{v} \in \operatorname{Leaves}\left(T_{v}\right)\right\}$.
(4) Recall that $v \in T^{\prime}$, i.e that $v$ was never deleted.
(a) The statement $L_{T^{\prime}}(v) \leq L_{T}(v)$ is correct. In fact, it can be strengthened as $L_{T^{\prime}}(v)=L_{T}(v)$.

Proof. Indeed, $L_{T}(v)=\operatorname{dist}(r t, v)=L_{T^{\prime}}(v)$, as the (unique) path along which the distance is evaluated remains unchanged after the procedure applications (since $v$ was not deleted).
(b) The statement $\hat{L}_{T^{\prime}}(v) \leq \hat{L}_{T}(v)$ is correct.

Proof. $\hat{L}_{T^{\prime}}(v):=\max \left\{\operatorname{dist}_{T^{\prime}}\left(v, l_{v}\right): l_{v} \in \operatorname{Leaves}\left(T_{v}^{\prime}\right)\right\}={ }^{2} \max \left\{\operatorname{dist}_{T}\left(v, l_{v}^{\prime}\right):\right.$ $\left.l_{v}^{\prime} \in \operatorname{Leaves}\left(T_{v}^{\prime}\right)\right\} \leq \max \left\{\operatorname{dist}_{T}\left(v, l_{v}\right): l_{v} \in \operatorname{Leaves}\left(T_{v}\right)\right\}$.
(c) The statement $\breve{L}_{T^{\prime}}(v) \leq \breve{L}_{T}(v)$ is incorrect, by the following counter example : Let $T=(V, E), V=\left\{v, v_{1}, . ., v_{k}, v_{k+1}\right\}, E=\left(v, v_{1}\right) \cup$ $\left(v, v_{k+1}\right) \cup \bigcup_{i=1}^{k-1}\left(v_{i}, v_{i+1}\right)$, where $k>2$. Define $r t:=v$, and let $T^{\prime}$ be the rooted tree $T$ after removing $v_{k+1}$. Obviously, $\breve{L}_{T}(v)=1$, and $\breve{L}_{T^{\prime}}(v)=k$.
(5) (a) First, a spanning tree rooted at $x$, denoted by $T_{x}$, is constructed using the flooding algorithm taught in class. Time $($ Flood $)=\Theta(\operatorname{Diam}(G))^{3}$, $\operatorname{Message}($ Flood $)=\Theta(|E|)$.
Next, a convergecast on $T_{x}$ is performed, during which a summing operation is performed, as follows: If $v$ is a leaf in $T_{x}$, it immediately responds by sending Ack message to its parent with the content 1. If $v$ is a non-leaf (intermediete) vertex in $T_{x}$, then it collects Ack's from all of its children and only then it sends an Ack message to its parent,

[^1]which is the sum of all Ack's of its children. We denote this process by Converge $(+)$. Time $($ Converge $(+))=\operatorname{Depth}\left(T_{x}\right)=\Theta(\operatorname{Diam}(G))$, $\operatorname{Message}(\operatorname{Converge}(+))=n-1$
Hence, the total message complexity is $\Theta(|E|)$, and the total time complexity is $\Theta(\operatorname{Diam}(G))$.
(b) After performing the algorithm described in section (a), $x$ knows the total number of vertices in the graph. Then, it broadcasts this number to all vertices in the graph using the constructed tree, $T_{x}$. Both message and time complexities of this stage exceeds the complexities of the algorithm described in section (a) only by a constant factor. Therefore, the total message complexity of the extended algorithm is $\Theta(|E|)$, and the time complexity is $\Theta(\operatorname{Diam}(G))$.


[^0]:    ${ }^{1}$ By triangle inequality

[^1]:    ${ }^{2}$ Note that $\operatorname{Leaves}\left(T_{v}^{\prime}\right) \subseteq V\left(T_{v}\right)$
    ${ }^{3}$ Note that $\Theta(\operatorname{Diam}(G))=\Theta(|V|)$ unless otherwise specified

