ASSIGNMENT 4 - DISTRIBUTED ALGORITHMS

Due Date - 29/1/2007
(1) Given a rooted tree $(T, r t)$, in which each vertex knows the identities of its parent, its children and itself. Describe a distributed algorithm for minimal coloring of this tree that requires exactly 7 time steps. Analyze its time and communication complexity and prove its correctness.
(2)

Definition 0.1. Given a graph $G=(V, E)$, a group $U \subseteq V$ is a Maximal Independent Set (MIS) if:

- for each pair of vertices $u, w \in U:(u, w) \notin E$
- for each vertex $v \notin U$ there exist a vertex $u \in U$ so that $(u, v) \in E$

Given a distributed 3-coloring algorithm Π that works on rooted trees $(T, r t)$ and a MIS U of T; each vertex $v \in V(T)$ knows whether $v \in U$ or not. The algorithm Π might use U.

Let $\operatorname{Time}_{n}(\Pi)$ be the worst case runtime of Π on a tree T in which $|V(T)|=n$. Describe a most efficient (in terms on time) distributed algorithm Π^{\prime} that finds a 3-coloring of a path $p,|p|=n$. Π^{\prime} can use the given algorithm Π, but note that Π needs a $M I S$ as an input. Prove your algorithm correctness, and analyze its runtime and communication complexity (you can use $\operatorname{Time}_{n} \Pi$ for this purpose).
(3) Given a circular road with n gas pumps. Each pump holds a given amount of gas, so that the total amount of gas in all pumps is the exact amount required for a car to complete a lap on the road.
(a) Prove or disprove:

Lemma 0.2. For each such road, there exist a gas pump in which a car can be placed so it would be able to complete a lap on the road without getting out of gas. The car starts with no gas at all.
(b) If the lemma is correct, describe a synchronous distributed algorithm that finds that gas pump. Assume that each gas pump is a processor, and two neighbour pumps can communicate by sending messages. Prove its correctness and analyze its runtime and communication complexity.
(4) Suggest a most efficient distributed algorithm that finds a 3-coloring on a ring. Prove its correctness and analyze its runtime and communication compexity.
(5) Let η be a synchronizer, and $G=(V, E)$ a graph.

Definition 0.3. $t_{\text {max }}(x)=\max \left\{p_{v}(x) \mid v \in V\right\}$, where x is a time step and $p_{v}(x)$ is the value of the pulse variable of the vertex v.
Definition 0.4. $t_{\text {min }}(x)=\min \left\{p_{v}(x) \mid v \in V\right\}$
Let $s_{\text {max }}=\sup \left\{t_{\text {max }}(x)-t_{\text {min }}(x) \mid x \in \Re^{+1}\right\}\left(s_{\text {max }} \in \Re^{+}\right)^{2}$.
Prove that: $\operatorname{Time}_{\text {gap }}(\eta) \leq\left(s_{\max }+1\right) \cdot$ Time $_{\text {pulse }}(\eta)$.

[^0]
[^0]: ${ }^{1} \Re^{+}$is the group of non-negative real numbers
 ${ }^{2} t_{\max }$ and $t_{\min }$ are taken on all the possible runs of η for each distributed algorithm Π

