ASSIGNMENT 3 - DISTRIBUTED ALGORITHMS

Due Date - 14/01/07
(1) (a) Prove that the analysis of the message complexity of Dijkstra algorithm that was studied in class is tight in the following sense: for arbitrary integers n and $D, 1 \leq D \leq n 1$, there exists an n-vertex graph $G=(V, E)$ of diameter D, for which there is an execution of Dijkstra algorithm that requires $\Omega(n \cdot D+|E|)$ messages.
(b) Repeat the previous section with the additional requirement that the graph G has $|E|=O(n)$ edges.
(2) Give an example for an execution of the Bellman - Ford algorithm requiring $\Omega\left(n^{3}\right)$ messages.
(3)

Definition 0.1. Given a graph $G=(V, E)$ and a set of trees $\mathcal{T}=\left\{T_{1}, T_{2}, \ldots T_{n}\right\}$, where $\forall i \in\{1,2, \ldots, n\}: T_{i}=\left(V\left(T_{i}\right), E\left(T_{i}\right)\right), V\left(T_{i}\right) \subseteq V$ and $E\left(T_{i}\right) \subseteq E$, \mathcal{T} is a called a Cover of G if the following conditions hold:
(a) $\bigcup_{i=1}^{n} E\left(T_{i}\right)=E$ and $\bigcup_{i=1}^{n} V\left(T_{i}\right)=V$.
(b) For each $e=(u, v) \in E$, there exists a tree $T_{i} \in \mathcal{T}$ so that $u, v \in V\left(T_{i}\right)$.

Definition 0.2. The Overlap of a Cover \mathcal{T} in a vertex $v \in V$ is the number of trees $T \in \mathcal{T}$ that contain v :
$\operatorname{Overlap}_{v}(\mathcal{T})=|\{T \mid T \in \mathcal{T}, v \in V(T)\}|$.
Definition 0.3. The Overlap of a Cover \mathcal{T} is the maximal Overlap of \mathcal{T} in some vertex $v \in V$:
$\operatorname{Overlap}(\mathcal{T})=\max _{v \in V}\left\{\operatorname{Overlap}_{v}(\mathcal{T})\right\}$.
Definition 0.4. The Diameter of a Cover \mathcal{T} is the maximal Diameter of a tree within this Coverage:
$\operatorname{Diam}(\mathcal{T})=\max _{T \in \mathcal{T}}\{\operatorname{Diam}(T)\}$.
Given a graph G and a Cover \mathcal{T} of G. Forthermore, each vertex $v \in V(G)$ knows to which trees $T \in \mathcal{T}$ it belongs, and the identity of his neighbours in each of these trees. Let $d=\operatorname{Diam}(\mathcal{T})$ and $l=\operatorname{Overlap}(\mathcal{T})$.

Describe a synchronizer that uses the Cover \mathcal{T}, and analyze its complexity. (Your analysis can rely on d and l). Of course, your synchronizer should be as effective as possible.
(4)

Definition 0.5. Given a graph $G=(V, E)$, a sub-graph $G^{\prime}=(V, H)$, $H \subseteq E$, is considered a k-spanning graph of G if for each edge $e=(u, v) \in E$ there exist a path p in G^{\prime} for which $|p| \leq k .(k \geq 1)$

Given a graph $G=(V, E)$ and a k-spanning sub-graph G^{\prime}, where $k \geq 1$. Each vertex $v \in V$ knows the identity of its neighbours in G^{\prime}, and it also knows that value of the constant k. Let $h=\left|E\left(G^{\prime}\right)\right|$.

Describe a synchronizer that uses G^{\prime} and analyze its complexity. (Your analysis can rely on h). Of course, your synchronizer should be as effective as possible.
(5) Consider a 15 -processor asyncronous network with the processors $\left\{P_{0}, P_{1}, \cdots, P_{1} 4\right\}$. The processors constantly run a synchronizer. Let v and v^{\prime} be two processors in the network, and suppose that at a certain moment, the pulse counter at v shows $p=27$. What is the range of possible pulse numbers in at v^{\prime} in each of the following cases:
(a) The network is a ring (with the processors arranged according to their numbers), v is processor number $11, v^{\prime}$ is processor number 2 and the synchronizer used is α.
(b) The network is a full balanced binary tree (4 levels), v is the root, v^{\prime} is one of the leaves and the synchronizer used is β.
(c) The same as in (b), except both v and v^{\prime} are leaves.

