ASSIGNMENT 3 - DISTRIBUTED ALGORITHMS

Due Date - 14/01/07

- (a) Prove that the analysis of the message complexity of Dijkstra algorithm that was studied in class is tight in the following sense: for arbitrary integers n and D, 1 ≤ D ≤ n1, there exists an n-vertex graph G = (V, E) of diameter D, for which there is an execution of Dijkstra algorithm that requires Ω(n · D + |E|) messages.
 - (b) Repeat the previous section with the additional requirement that the graph G has |E| = O(n) edges.
- (2) Give an example for an execution of the Bellman Ford algorithm requiring $\Omega(n^3)$ messages.
- (3)

Definition 0.1. Given a graph G = (V, E) and a set of trees $\mathcal{T} = \{T_1, T_2, \ldots, T_n\}$, where $\forall i \in \{1, 2, \ldots, n\} : T_i = (V(T_i), E(T_i)), V(T_i) \subseteq V$ and $E(T_i) \subseteq E$, \mathcal{T} is a called a *Cover* of G if the following conditions hold:

(a) $\bigcup_{i=1}^{n} E(T_i) = E$ and $\bigcup_{i=1}^{n} V(T_i) = V$.

(b) For each $e = (u, v) \in E$, there exists a tree $T_i \in \mathcal{T}$ so that $u, v \in V(T_i)$.

Definition 0.2. The *Overlap* of a Cover \mathcal{T} in a vertex $v \in V$ is the number of trees $T \in \mathcal{T}$ that contain v:

 $Overlap_v(\mathcal{T}) = |\{T | T \in \mathcal{T}, v \in V(T)\}|.$

Definition 0.3. The Overlap of a Cover \mathcal{T} is the maximal Overlap of \mathcal{T} in some vertex $v \in V$:

 $Overlap(\mathcal{T}) = max_{v \in V} \{ Overlap_v(\mathcal{T}) \}.$

Definition 0.4. The *Diameter* of a *Cover* \mathcal{T} is the maximal Diameter of a tree within this Coverage: $Diam(\mathcal{T}) = max_{T \in \mathcal{T}} \{Diam(T)\}.$

Given a graph G and a Cover \mathcal{T} of G. Forthermore, each vertex $v \in V(G)$ knows to which trees $T \in \mathcal{T}$ it belongs, and the identity of his neighbours in each of these trees. Let $d = Diam(\mathcal{T})$ and $l = Overlap(\mathcal{T})$.

Describe a synchronizer that uses the Cover \mathcal{T} , and analyze its complexity. (Your analysis can rely on d and l). Of course, your synchronizer should be as effective as possible.

Definition 0.5. Given a graph G = (V, E), a sub-graph G' = (V, H), $H \subseteq E$, is considered a *k*-spanning graph of G if for each edge $e = (u, v) \in E$ there exist a path p in G' for which $|p| \leq k$. $(k \geq 1)$

Given a graph G = (V, E) and a k-spanning sub-graph G', where $k \ge 1$. Each vertex $v \in V$ knows the identity of its neighbours in G', and it also knows that value of the constant k. Let h = |E(G')|.

Describe a synchronizer that uses G' and analyze its complexity. (Your analysis can rely on h). Of course, your synchronizer should be as effective as possible.

- (5) Consider a 15-processor asyncronous network with the processors $\{P_0, P_1, \dots, P_14\}$. The processors constantly run a synchronizer. Let v and v' be two processors in the network, and suppose that at a certain moment, the pulse counter at v shows p = 27. What is the range of possible pulse numbers in at v' in each of the following cases:
 - (a) The network is a ring (with the processors arranged according to their numbers), v is processor number 11, v' is processor number 2 and the synchronizer used is α .
 - (b) The network is a full balanced binary tree (4 levels), v is the root, v' is one of the leaves and the synchronizer used is β .
 - (c) The same as in (b), except both v and v' are leaves.

(4)

 $\mathbf{2}$