
An Improved Construction of Progression-Free Sets

Michael Elkin ∗

August 9, 2009

Abstract

The problem of constructing dense subsets S of {1, 2, . . . , n} that contain no three-term arith-
metic progression was introduced by Erdős and Turán in 1936. They have presented a construction
with |S| = Ω(nlog

3
2) elements. Their construction was improved by Salem and Spencer, and further

improved by Behrend in 1946. The lower bound of Behrend is

|S| = Ω

(

n

22
√

2
√

log
2

n · log1/4 n

)

.

Since then the problem became one of the most central, most fundamental, and most intensively
studied problems in additive number theory. Nevertheless, no improvement of the lower bound of
Behrend has been reported since 1946.

In this paper we present a construction that improves the result of Behrend by a factor of Θ(
√

log n),
and shows that

|S| = Ω

(

n

22
√

2
√

log
2

n
· log1/4 n

)

.

In particular, our result implies that the construction of Behrend is not optimal.
Our construction and proof are elementary and self-contained. We also present an application of

our proof technique in Discrete Geometry.

1 Introduction

A subset S ⊆ {1, 2, . . . , n} is called progression-free if it contains no three distinct elements i, j, ℓ ∈ S
such that i is the arithmetic average of j and ℓ, i.e., i = j+ℓ

2 . For a positive integer n, let ν(n) denote the
largest size of a progression-free subset S of {1, 2, . . . , n}.

Providing asymptotic estimates on ν(n) is a central, fundamental, and very well-studied inverse
problem in additive number theory. This problem was introduced1 by Erdős and Turan [15], and they
showed that ν(n) = Ω(nlog3 2). This estimate was improved by Salem and Spencer [30], and further
improved by Behrend [9] in 1946. Behrend has shown that

ν(n) = Ω

(

n

22
√

2
√

log2 n · log1/4 n

)

, (1)

and this bound has remained state-of-the-art for more than sixty years. A slightly weaker lower bound
that does not rely on the Pigeonhole Principle was shown by Moser [25]. (Moser [25] cites [9] for the
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1A closely related problem was studied by van der Waerden [34].
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lower bound ν(n) ≥ n

2(2
√

2+ǫ)
√

log2 n
, for every ǫ > 0. This lower bound is slightly weaker than (1). The

lower bound (1) can, however, also be derived by the argument of Behrend.) We refer the reader to [16]
for a thorough general discussion of inverse problems in Additive Number Theory.

The first non-trivial upper bound ν(n) = O( n
log log n) was proved in a seminal paper by Roth [28].

This bound was improved by Bourgain [11, 12], and the current state-of-the-art upper bound is ν(n) =

O(n · (log log n)2

log2/3 n
) [12]. The problem is also closely related to Szemerédi’s theorem [33], which in particular,

implies that ν(n) = o(n). It is also related to the problem of finding arbitrarily long arithmetic progres-
sions of prime numbers (see, e.g., Green and Tao [19]), and to other central problems in the additive
number theory.

In this paper we improve the lower bound of Behrend by a factor of Θ(
√

log n), and show that

ν(n) = Ω

(

n

22
√

2
√

log2 n
· log1/4 n

)

.

Though the improvement is not large, our result demonstrates that the bound of Behrend is not optimal.
Also, it is the first lower bound that shows that ν(n) is asymptotically greater than n

22
√

2
√

log2 n
.

Like the proof of Behrend, our proof relies on the Pigeonhole Principle. Consequently, the result of
Moser [25] remains the best known lower bound achieved without relying on the Pigeonhole Principle.
However, we hope that our argument can be made independent of the Pigeonhole Principle. (See also
Section 6.)

Related work: The proof of Behrend was generalized by Rankin [27] to provide large subsets of
{1, 2, . . . , n} that contain no arithmetic progression of length k, for any fixed k. (See also [24] the
more recent variant of the proof of [27].) Ruzsa [29] and Shapira [31] extended the proofs of Behrend [9]
and Rankin [27] further, and constructed large subsets of {1, 2, . . . , n} that exclude solutions of certain
linear Diophantine equations. Abbott [1, 2, 3] and Bosznay [10] generalized the proof of Behrend [9]
in another direction, and devised constructions of large non-averaging subsets of S of {1, 2, . . . , n}. (A
subset S is said to be non-averaging if no element x ∈ S is an average of two or more other elements of
S.) Gasarch et al. [18] studied the problem empirically, and constructed large progression-free subsets of
{1, 2, . . . , n} for n ≤ 250.

Consequent work: The preliminary version of this paper was published in the electronic archive [14]
in January 2008. Since then several authors continued our line of research. Specifically, Green and Wolf
[20] found a simpler proof of our result. They point out, however, that “the only advantage of our
approach is brevity: it is based on ideas morally close to those of Elkin, and moreover, his argument
is more constructive than ours.” In an even more recent development O’Bryant [26] has combined our
techniques with those of Rankin [27] and Green and Wolf [20], and improved Rankin’s lower bound by a
factor logǫ n, for some small positive ǫ = ǫ(k). (In the preliminary version of our paper [14] we anticipated
that our techniques could be useful to improve Rankin’s bound.) We believe that similar ideas may help
improving some of the results of [29, 31, 1, 2, 3, 10].

Overview of the proof: Our proof is elementary, and self-contained. The proof of Behrend is based
on the observation that a sphere in any dimension is convexly independent, and thus cannot contain three
vectors such that one of them is the arithmetic average of the two other. We replace the sphere by a thin
annulus. Intuitively, we are able to produce larger progression-free sets because an annulus of non-zero
width contains more integer lattice points than a sphere of the same radius does. However, unlike in a
sphere, the set of integer lattice points in an annulus is not necessarily convexly independent. To counter
this difficulty we show that as long as the annulus A is sufficiently thin, the set U of its integer lattice
points contains a convexly independent subset W ⊆ U whose size is at least a constant fraction of the
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size of U , i.e., |W | = Ω(|U |). The subset W is, in fact, the exterior set Ext(U) of the set U . (By “exterior
set of U” we mean the boundary of the convex hull of U .)

In our analysis we actually have to consider the intersection S of the annulus A with a certain
hypercube C, and to show that |Ext(U)| = Ω(|U |) for the corresponding set U of integer lattice points
of S. To prove a lower bound on the cardinality of Ext(U), we consider a set F of hyperplanes, and
demonstrate that each point x ∈ U \ Ext(U) belongs to one of the hyperplanes Hx from F . We then
argue that F contains only a small number of hyperplanes, and that each of these hyperplanes H contains
only a relatively small number of points of U .

Our analysis of the number of integer lattice points in H ∩ U boils down to estimating the (k − 1)-
dimensional volume of the corresponding high-dimensional body Ũ = H ∩ S = H ∩A ∩ C, and showing
that the discrepancy between the volume of Ũ and the number of integer lattice points in it is quite small.
A naive upper bound on the volume of Ũ is the volume of the (k− 1)-dimensional annulus H∩A, where
k is the dimension of the annulus A. The latter volume is much easier to compute, but unfortunately,
this upper bound turns out to be far too crude. Instead we show that after an appropriate rotation of
the space, the body Ũ = H ∩ A ∩ C becomes contained in the intersection of the annulus H ∩A with a
relatively small number of octants, and use the volume of this intersection as our upper bound for the
volume of Ũ .

In addition, estimating the discrepancy between the volume and the number of integer lattice points
of Ũ is not easy either. One technical difficulty is that the dimension k of this body is not fixed, but rather
tends to infinity logarithmically with the radius of the annulus A. On the other hand, most estimates
for the discrepancy between the volume and the number of integer lattice points of high-dimensional
bodies assume that the dimension is fixed, and consequently, these estimates are inapplicable for our
purposes. To overcome this technical difficulty we explicated the dependency on the dimension in the
relevant estimates. Another technical difficulty is that the annulus A is very thin. Intuitively, thin bodies
may have a large volume but contain no (or a very small number of) integer lattice points. From the
technical perspective, this makes the analysis more elaborate.

However, even though the part of our proof that shows that Ext(U) has large cardinality is technically
challenging, we believe that our main contribution is in devising a new scheme for producing large
progression-free sets. This scheme builds upon Behrend’s construction, but it employs a different strategy
for constructing a convexly independent set of integer lattice points. While Behrend’s construction uses
a set of integer lattice points that lie on a sphere, our scheme constructs a large convexly independent
subset of the set of integer lattice points of an annulus. As was mentioned above, this annulus has to be
sufficiently thin so that Ext(U) will be of size which is at least a constant fraction of |U |. In our proof we
set the width of the annulus to be the maximum (up to a constant factor) value for which this condition
holds. (Note that the size of the resulting progression-free set is proportional to the width of the annulus
that we use.)

Applications of our technique: Given a large positive real R, and an integer k ≥ 2, let Ck(R) denote
the maximum size of a convexly independent set (henceforth, CIS) of k-dimensional integer vectors with
norm at most R. Equivalently, Ck(R) is the number of extreme points of the convex hull of the set
of extreme points of the k-dimensional ball B(R) of radius R centered at the origin. In 1925 Jarnik
[22] proved that C2(R) = Θ(R2/3). His proof is constructive, and it gives rise to an algorithm with
running time O(R2/3 logR) for computing a CIS with an optimal (up to constant factors) size. More
precise estimates on C2(R) were derived by Arnold [6] and Balog and Barany [7]. In 1963 Andrews [5]
published a simple argument that extends the upper bound of Jarnik to larger dimensions, and shows

that Ck(R) = O(Rk−2+ 2
k+1 ) for all k ≥ 3. Establishing the corresponding lower bound turned out to be

more difficult, and only in the end of nineties Barany and Larman [8] proved that Ck(R) = Ω(Rk−2+ 2
k+1 )

for all k ≥ 3. The proof of [8] is quite elaborate, and in particular, it relies on the Flatness Theorem
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of Khintchine [23]. In addition, the result of [8] is not constructive in the sense that, to the best of our
knowledge, it does not give rise to an efficient algorithm for constructing a CIS of size Ck(R).

By applying the technique that we developed for constructing large progression-free sets we provide

an alternative (to the one of [8]), simple and constructive proof of the lower bound Ck(R) = Ω(Rk−2+ 2
k+1 )

for k ≥ 5. For k = 4 and k = 3 our proof provides slightly suboptimal estimates. Specifically, for k = 4 it

yields C4(R) = Ω
(

R12/5

(log log R)2/5

)

, which is suboptimal by a factor of O((log logR)2/5). For k = 3 we show

C3(R) = Ω(R3/2−ǫ), for an arbitrarily small ǫ > 0, which is suboptimal by a factor of Rǫ. Our proof relies
on standard estimates for the discrepancy between the volume and the number of integer lattice points
in large k-dimensional balls, and is otherwise self-contained. In addition, our proof gives rise to a very
efficient algorithm for computing a CIS of nearly optimal size.

The Structure of the Paper: In Section 2 we provide definitions and notation that are used through-
out the paper. In Section 3 we overview Behrend’s construction [9]. Section 4 contains our construction
and its analysis. The analysis uses an estimate (inequality (21)) of the discrepancy between the number
of integer lattice points and the volume of a certain high-dimensional body. This estimate is closely
related to known ones. For the sake of completeness, we provide a self-contained proof of this estimate
in Section 5. In Section 6 we provide a short summary and discuss some directions for future research.
Finally, in Appendix A we provide an alternative proof for the result of Barany and Larman [8].

2 Preliminaries

For a pair a, b of real numbers, a ≤ b, we denote by [a, b] (respectively, (a, b)) the closed (resp., open)
segment containing all numbers x, a ≤ x ≤ b (resp., a < x < b). We also use the notation (a, b]
(respectively, [a, b)) for denoting the segment containing all numbers x, a < x ≤ b (resp., a ≤ x < b). For
integer numbers n and m, n ≤ m, we denote by [{n,m}] the set of integer numbers {n, n+ 1, . . . ,m}. If
n = 1 then we use the notation [{m}] as a shortcut for [{1,m}]. For a real number x, we denote by ⌊x⌋
(respectively, ⌈x⌉) the largest (resp., smallest) integer that is no greater (resp., no smaller) than x. For
a k-vector δ, we denote by gcd(δ) the greatest common divisor of non-zero coordinates of δ.

A triple i, j, ℓ of distinct integers is called an arithmetic triple if one of these numbers is the average
of two other numbers, i.e., i = j+ℓ

2 . A set S of integer numbers is called progression-free if it contains no
arithmetic triple. For a positive integer number n, let ν(n) denote the largest size of a progression-free
subset S of [{n}].

Unless specified explicitly, log (respectively, ln) stands for the logarithm on base 2 (resp., e).

For a positive integer k and a vector v = (v1, v2, . . . , vk), let ||v|| =
√

∑k
i=1 v

2
i denote the norm of the

vector v. The expression ||v||2 =
∑k

i=1 v
2
i will be referred to as the squared norm of the vector v.

For a set v(1), v(2), . . . , v(t) ∈ IRk of vectors, a vector v is a convex combination of v(1), v(2), . . . , v(t) if
there exist non-negative numbers p1, p2, . . . , pt that sum up to 1 (i.e.,

∑t
i=1 pi = 1), and v =

∑t
i=1 piv

(i).
A convex combination is called trivial if for some i ∈ [{t}], pi = 1. Otherwise, it is called non-trivial. For
a set U ⊆ IRk of vectors, we say that U is a convexly independent set if for every vector u ∈ U , there is
no non-trivial convex combination of vectors from U that is equal to u. For a set X ⊆ IRk of vectors, the
exterior set of X, denoted Ext(X), is the subset of X that contains all vectors v ∈ X such that v cannot
be expressed as a non-trivial convex combination of vectors from X. (This is the set of the extreme points
of the convex hull of X.)

For a positive integer ℓ, let βℓ denote the volume of an ℓ-dimensional ball of unit radius. It is
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well-known (see, e.g, [17], p.3) that

βℓ =
πℓ/2

Γ( ℓ
2 + 1)

, (2)

where Γ(·) is the (Euler) Gamma-function. We use the Gamma-function either with a positive integer
parameter n or with a parameter n + 1

2 for a positive integer n. In these cases the Gamma-function is
given by Γ(n+ 1) = n! and

Γ

(

n+
1

2

)

=
(2n)!

√
π

22nn!
. (3)

(See [17], p.178.) Observe also that

Γ

(

n+
1

2

)

=

(

n− 1

2

)(

n− 3

2

)

· . . . · 1

2
·
√
π ≥ (n− 1)!

√
π

2
. (4)

By definition, it is easy to verify that for an integer ℓ, ℓ ≥ 2, βℓ = Θ(
βℓ−1√

ℓ
).

3 Behrend’s Proof

The state-of-the-art lower bound for ν(n) due to Behrend [9] states that for every positive integer n,

ν(n) = Ω

(

n

22
√

2
√

log n · log1/4 n

)

. (5)

In this paper we improve this bound by a factor of Θ(
√

log n), and show that for every positive integer n,

ν(n) = Ω

(

n

22
√

2
√

log n
· log1/4 n

)

. (6)

Note that it is sufficient to prove this bound only for all sufficiently large values of n. The result for small
values of n follows by using a sufficiently small universal constant c in the definition of Ω-notation.

We start with a short overview of the original construction of Behrend [9].
Fix a sufficiently large positive integer n. The construction involves a positive integer parameter k

that will be determined later. Set y = n1/k/2. In what follows we assume that y is an integer. The case
that y is not an integer is analyzed later in this section.

Consider independent identically distributed random variables Y1, Y2, . . . , Yk, with each Yi distributed
uniformly over the set [{0, y − 1}], for all i ∈ [{k}]. Set Zi = Y 2

i , for all i ∈ [{k}], and Z =
∑k

i=1 Zi. It
follows that for all i ∈ [{k}],

IE(Zi) =

y−1
∑

j=0

1

y
· j2 =

y2

3
+ Θ(y) .

Let µZ = IE(Z) denote the expectation of the random variable Z. It follows that

µZ =
k

3
y2 + Θ(k · y) . (7)

Also, for all i ∈ [{k}], Var(Zi) = IE(Z2
i ) − IE(Zi)

2 = IE(Y 4
i ) − 1

9y
4 + Θ(y3). Hence

Var (Zi) =
y4

5
+ Θ(y3) − y4

9
+ Θ(y3) =

4

45
· y4 +O(y3) .
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Hence

Var(Z) = k · y4 · 4

45
+O(ky3) = k · y4 · 4

45
· (1 +O(1/y)) ,

and the standard deviation of Z, σZ , satisfies

σZ =
√
k · y2 · 2

3 ·
√

5
· (1 +O(1/y)) . (8)

By Chebyshev inequality, for any a > 0,

IP(|Z − µZ | > a · σZ) ≤ 1

a2
.

Hence, for a fixed value of a, a > 0, at least (1 − 1
a2 )-fraction of all vectors v from the set [{0, y − 1}]k

have squared norm ||v||2 that satisfies

µZ − a · σZ ≤ ||v||2 ≤ µZ + a · σZ .

These vectors are now going to be used as numbers in the (2y)-ary representation. Since all their
coordinates are at most y − 1, no base-2y carries are needed to add two such numbers.

Note that each vector v ∈ [{0, y − 1}]k has an integer squared norm. By the Pigeonhole Principle,
there exists a value T such that µZ − a · σZ ≤ T ≤ µZ + a · σZ such that at least (1 − 1

a2 ) · 1
2a·σZ+1 · yk

vectors from the discrete cube C = [{0, y − 1}]k have squared norm T . Let S̃ denote the set of these
vectors. See Figure 1 for an illustration. By (8),

|S̃| ≥ (1 − 1

a2
) · 1

2a
√
k · y2 + 1

· 3
√

5

2
· (1 −O(

1

y
)) · yk ≥ yk−2

√
k

· c ,

for a fixed positive constant c = c(a). Set a = 2. Now c = c(2) is a universal constant, and consequently,

C

R

S
~

Figure 1: The intersection S̃ of the discrete cube C with the sphere of radius R is depicted by the bold line.

|S̃| = Ω
(

n1−2/k

2k
√

k

)

. To maximize the right-hand-side, we set k = ⌈
√

2 · log n⌉. It follows that

|S̃| = Ω

(

n

22
√

2
√

log n · log1/4 n

)

.

Observe that all vectors in S̃ have the same norm
√
T , and thus, for every three vectors v, u,w ∈ S̃,

v 6= u+w
2 . To obtain a progression-free set S ⊆ [{n}] we consider coordinates of vectors from S̃ as digits
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of (2y)-ary representation. Specifically, for every vector v = (v1, v2, . . . , vk) ∈ S̃, let v̂ =
∑k−1

i=0 vi+1 · (2y)i.
The set S is now given by S = {v̂ | v ∈ S̃}. Let f(·) : S̃ → S denote this mapping.

Note that for every v ∈ S̃,
0 < v̂ ≤ (2y)k − 1 = n− 1 .

Observe also that since S̃ ⊆ [{0, y − 1}]k, the mapping f is one-to-one, i.e., if v 6= u, for v, u ∈ S̃, then
v̂ 6= û. Consequently,

|S| = |S̃| = Ω

(

n

22
√

2
√

log n · log1/4 n

)

.

Finally, we argue that S is a progression-free set. Suppose for contradiction that for three distinct
numbers v̂, û, ŵ ∈ S, v̂ = û+ŵ

2 . Let u, v,w be the corresponding vectors in S̃, v = (v1, v2, . . . , vk),
u = (u1, u2, . . . , uk), w = (w1, w2, . . . , wk). Then

v̂ =

k−1
∑

i=0

ui+1 + wi+1

2
· (2y)i =

k−1
∑

i=0

vi+1 · (2y)i .

However, since all the coordinates v1, v2, . . . , vk, u1, u2, . . . , uk, w1, w2, . . . , wk are in [{0, y− 1}], it follows
that vi = ui+wi

2 , for every index i ∈ [{k}]. Consequently, v = u+w
2 , a contradiction to the assumption

that ||v|| = ||u|| = ||w||. Hence S is a progression-free set of size Ω( n
22

√
2
√

log n·log1/4 n
).

Consider now the case that y = n1/k

2 is not an integer number. In this case the same construction is
built with ⌊y⌋ instead of y. Set n′ = (2⌊y⌋)k . By the previous argument, we obtain a progression-free set
S that satisfies

|S| = Ω

(

n′

22
√

2
√

log n′ · log1/4 n′

)

= Ω

(

n′

22
√

2
√

log n · log1/4 n

)

.

Observe that n
n′ ≤

(

y
y−1

)k
= 1 + Θ(k

y ) = 1 + Θ
( √

log n

2(1/
√

2)·
√

log n

)

.

Hence |S| = Ω
(

n

22
√

2
√

log n·log1/4 n

)

, and we are done.

4 Our Proof

In this section we present our construction of progression-free sets S ⊆ [{n}] with at least Ω
(

n

22
√

2
√

log n
· log1/4 n

)

elements. Fix k = ⌈√2 log n⌉, and y = n1/k/2. Observe that

2k/2

4
≤ 1

2
√

2
· 2

√
log n√

2 ≤ y ≤ 1

2
· 2

√
log n√

2 ≤ 2k/2

2
. (9)

For convenience we assume that y is an integer. If this is not the case, the same analysis applies with
minor adjustments. (Specifically, we set y = ⌊n1/k/2⌋. By the same argument as we used in Section 3,
the resulting lower bound will be at most by a constant factor smaller than in the case when n1/k/2 is
an integer.)

Consider the k-dimensional ball centered at the origin that has radius R′ given by

R′2 = µZ =
k

3
y2 + Θ(ky) . (10)

(See (7).) By Chebyshev inequality, the annulus Ŝ of all vectors with squared norm in [R′2 − 2 ·σZ , R
′2 +

2 · σZ ] contains at least 3
4 · yk integer lattice points of the discrete cube C = [{0, y − 1}]k.
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The annulus Ŝ is far too thick for our needs, and next we “slice” it into many very thin annuli. One
of these annuli will be later used to construct the convexly independent set W that was mentioned in the
introduction.

Fix a parameter g = ǫ · k, for a universal constant ǫ > 0 that will be determined later. Partition
the (thick) annulus Ŝ into ⌈4σZ

g ⌉ = ℓ annuli Ŝ1, Ŝ2, . . . , Ŝℓ, with the annulus Ŝi containing all vectors

with squared norms in the range [R′2 − 2σZ + (i − 1) · g,R′2 − 2σZ + i · g), for i ∈ [{ℓ − 1}], and
[R′2 − 2σZ + (ℓ− 1)σZ , R

′2 + 2σZ ] for i = ℓ. See Figure 2 for an illustration.

S1
^

Ŝ

Figure 2: The annulus Ŝ is sliced into thin annuli Ŝ1, Ŝ2, . . ..

Observe that for distinct indices i, j ∈ [{ℓ}], the sets of integer lattice points in Ŝi and Ŝj are disjoint.
Thus, by the Pigeonhole Principle, there exists an index i ∈ [{ℓ}] such that the annulus Ŝi contains at
least

3

4ℓ
· yk = Ω(g · y

k−2

√
k

) = Ω(ǫ
√
k · yk−2) (11)

integer lattice points of C ∩ Ŝ. (The first inequality is by (8).) In other words, there exists a radius
R =

√

R′2 − 2σZ + i · g for some i, that satisfies R2 ∈ [R′2−2σZ , R
′2 +2σZ ], and such that the annulus S

containing all vectors with squared norm in the range [R2 − g,R2] contains at least Ω(
√
k · yk−2) integer

lattice points of C ∩ Ŝ. (The annulus S is defined by S = {b ∈ IRk : ||b||2 ∈ [R2 − g,R2]}.)
By (7), (8), and (10),

R2 ≤ R′2 + 2σZ ≤ k

3
· y2 +O(k · y) +O(

√
k · y2) ≤ k

3
· y2

(

1 +O

(

1√
k

))

. (12)

Let S̃ be the set of integer lattice points of C ∩ S. We will show that that S̃ contains a convexly

independent subset Š with at least |Š| ≥ |S̃|
2 integer lattice points. Consequently,

|Š| ≥ |S̃|
2

= Ω(
√
k · yk−2) = Ω

(

log1/4 n · n

22
√

2
√

log n

)

. (13)

Consider the set Š = f(Š) constructed from Š by the mapping f described in Section 3. Since S is
a convexly independent set, by the same argument as in Section 3, |Š| = |Š|, and moreover, Š is a

progression-free set. Hence |Š| = Ω
(

log1/4 n · n
22

√
2
√

log n

)

, and our result follows.

The following lemma is useful for showing an upper bound on the number of integer lattice points in
S that do not belong to the exterior set of S̃, Ext(S̃). This lemma is due to Coppersmith [13]. Intuitively,
this lemma states that for every non-exterior integer lattice point b in our annulus, there necessarily exists
a small non-zero integer vector δ which is almost orthogonal to b. See Figure 3 for an illustration.
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b

δ

T−g

T

Figure 3: The annulus is depicted by bold curves. The integer vectors b and δ are almost orthogonal, and δ
has a very small norm.

Let Bk(R
2) denote the k-dimensional ball of radius R centered at the origin, and B denote the set of

integer points contained in this ball. Denote T = R2.

Lemma 4.1 [13] Let b ∈ B \ Ext(B) be an integer lattice point that satisfies T − g ≤ ||b||2 ≤ T . Then
there exists a non-zero integer vector δ that satisfies 0 ≤ 〈b, δ〉 ≤ g and 0 < ||δ||2 ≤ g.

Proof: Since b ∈ B \Ext(B), there exist integer lattice points a1, a2, . . . , aℓ ∈ B, for some positive integer
ℓ ≥ 2, and constants p1, p2, . . . , pl, 0 < p1, p2, . . . , pℓ < 1, such that

∑ℓ
i=1 pi = 1 and b =

∑ℓ
i=1 pi ·ai. Since

a1, a2, . . . , aℓ ∈ B, it follows that ||a1||2, ||a2||2, . . . , ||aℓ||2 ≤ T . Observe that there exists an index i ∈ [ℓ]
such that 〈ai, b〉 is greater than or equal to ||b||2. (Otherwise, ||b||2 = 〈∑ℓ

i=1 pi · ai, b〉 =
∑ℓ

i=1 pi · 〈ai, b〉 <
||b||2, contradiction.)

Suppose without loss of generality that 〈a1, b〉 ≥ ||b||2. Then 〈a1 − b, b〉 ≥ 0. Set δ = a1 − b. Since
a1, b ∈ B are integer lattice points, it follows that δ is an integer lattice point as well. Moreover, since
0 < p1, p2, . . . , pℓ < 1, we have δ 6= 0. Moreover,

T ≥ ||a1||2 = ||b+ δ||2 = ||b||2 + 2〈b, δ〉 + ||δ||2 .

Recall that ||b||2 ≥ T − g. Hence 2〈b, δ〉 + ||δ||2 ≤ g. As 〈b, δ〉 = 〈a1 − b, b〉 ≥ 0, it follows that
〈b, δ〉, ||δ||2 ≤ g, as required.

Since ||δ||2 ≤ g = ǫ · k, and since δ is an integer vector, we conclude that δ may may contain at most
ǫ · k non-zero entries. This property will be helpful for our argument.

Denote the number of integer vectors δ that have squared norm at most g by D̂(g). The next lemma
provides an upper bound on D̂(g).

Lemma 4.2 For any ǫ > 0 and g as above, there exists η = η(ǫ) > 0 such that limǫ→0 η(ǫ) = 0, and
D̂(g) = O(2η·k).

Proof: Fix an integer h, 1 ≤ h ≤ g. First, we count the number N(h) of k-tuples (q1, q2, . . . , qk) of
non-negative integer numbers that sum up to h.
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Consider permutations of (k−1+h) elements of two types, with h elements of the first type and k−1
elements of the second type. Elements of the first type are called “balls”, and elements of the second type
are called “boundaries”. Two permutations σ and σ′ are said to be equivalent if they can be obtained
one from another by permuting balls among themselves, and permuting boundaries among themselves.

Let Π be the induced equivalence relation. Observe that there is a one-to-one mapping between k-
tuples (q1, q2, . . . , qk) of non-negative integer numbers that sum up to h and the equivalence classes of
the relation Π. Hence N(h) is equal to the number of equivalence classes of Π, i.e.,

N(h) =
(k − 1 + h)!

(k − 1)! · h! =

(

k − 1 + h

h

)

.

In a k-tuple (δ1, δ2, . . . , δk) of integer numbers such that
∑k

i=1 δ
2
i = h, there can be at most h non-zero

entries. Hence, for a fixed k-tuple of integers (q1, q2, . . . , qk) such that
∑k

i=1 qi = h, there may be at
most 2h k-tuples (δ1, δ2, . . . , δk) of integers such that δ2i = qi for every index i ∈ [{k}]. Thus, the overall

number D(h) of integer k-tuples (δ1, δ2, . . . , δk) such that
∑k

i=1 δ
2
i = h satisfies

D(h) ≤ 2h ·N(h) = 2h

(

k − 1 + h

h

)

.

Note that
(k−1+h

h

)

≤
(k−1+g

g

)

, for every integer h, 1 ≤ h ≤ g. Hence the number D̂(g) of integer k-tuples

(δ1, δ2, . . . , δk) with 1 ≤∑k
i=1 δ

2
i ≤ g satisfies

D̂(g) =

g
∑

h=1

D(h) ≤
g
∑

h=1

2h ·N(h) ≤ N(g) · 2g+1 ≤ 2g+1 ·
(

k + g

g

)

≤ 2g+1

(

e(k + g)

g

)g

= 2 · (2e)g
(

1 +
1

ǫ

)ǫ·k
= 2 · 2(log 2e+log(1+ 1

ǫ
))ǫ·k .

Denote η = η(ǫ) = ǫ(log 2e+ log(1 + 1
ǫ )). Then D̂(g) ≤ 2 · 2η(ǫ)·k. Finally,

lim
ǫ→0

η(ǫ) = lim
ǫ→0

log(1 + 1
ǫ )

1
ǫ

=
1

ln 2
· lim

y→∞
ln(1 + y)

y
= 0 ,

completing the proof.

Consider again the annulus S = {b ∈ IRk : T − g ≤ ||b||2 ≤ T}, T = R2, and the set S̃ of integer
lattice points of S. For an integer vector δ that satisfies 0 < ||δ||2 ≤ g, let Ẑ(δ) denote the set of integer
lattice points b ∈ S̃ that satisfy 0 ≤ 〈b, δ〉 ≤ g. Let Ŵ (δ) = Ẑ(δ)∩C denote the intersection of Ẑ(δ) with
the discrete cube C = [{0, y − 1}]k, and let W (δ) = |Ŵ (δ)|. Also, let Ŵ =

⋃

{Ŵ (δ) : 0 < ||δ||2 ≤ g}, and
W = |Ŵ |.

Let N̂ denote the set of integer lattice points of C ∩ S that do not belong to Ext(B), and N = |N̂ |.

Lemma 4.3 N̂ ⊆ Ŵ .

Proof: Consider a point b ∈ N̂ ⊆ C ∩ S. By definition of N̂ , b 6∈ Ext(B). Note that the ball B
has radius R =

√
T , which is equal to the external radius of the annulus S, and both B and S are

centered at the origin. Also, b ∈ B \ Ext(B) is an integer lattice point. Moreover, since b ∈ S, it follows
that T − g ≤ ||b||2 ≤ T . Consequently, by Lemma 4.1, there exists a non-zero vector δ that satisfies
0 ≤ 〈b, δ〉 ≤ g and 0 < ||δ||2 ≤ g. Hence b ∈ Ẑ(δ). Furthermore, b ∈ C implies b ∈ Ẑ(δ) ∩ C = Ŵ (δ).
Since Ŵ =

⋃{Ŵ (δ) : 0 < ||δ||2 ≤ g}, it follows that b ∈ Ŵ .

10



Consequently,

N ≤ W ≤
∑

0<||δ||2≤g

W (δ) . (14)

Fix a vector δ, 0 < ||δ||2 ≤ g. In the sequel we provide an upper bound for W (δ).
Observe that since Ŵ (δ) is a set of integer lattice points, it follows that for every b ∈ Ŵ (δ), 〈b, δ〉 ∈

[{0, g}].
For an integer number h ∈ [{0, g}], let Ŵ (δ, h) denote the subset of Ŵ (δ) of integer lattice points b

that satisfy 〈b, δ〉 = h. Let W (δ, h) = |Ŵ (δ, h)|. Observe that for distinct values h 6= h′, h, h′ ∈ [{0, g}],
the sets Ŵ (δ, h) and Ŵ (δ, h′) are disjoint. Consequently,

W (δ) =

g
∑

h=0

W (δ, h) . (15)

Next, we provide an upper bound for W (δ, h).
Consider the hyperplane H = H(δ, h) = {α ∈ IRk | 〈α, δ〉 = h}. Observe that Ŵ (δ, h) = H ∩ S ∩ C is

the intersection of the hyperplane H with the annulus S and with the discrete cube C.
Let S denote the k-dimensional sphere with squared radius T centered at the origin, i.e., S = {α ∈

IRk : ||α||2 = T}. Consider the intersection S′ of S with the hyperplane H.

Lemma 4.4 S′ ⊆ H is a (k − 1)-dimensional sphere with squared radius (T − h2

||δ||2 ) centered at h
||δ||2 · δ.

Proof: For a vector α ∈ S ∩H,

||α− h

||δ||2 · δ||2 =

k
∑

i=1

(αi −
h

||δ||2 · δi)2 = ||α||2 +
h2

||δ||2 − 2
h

||δ||2 〈α, δ〉 = ||α||2 − h2

||δ||2 .

(For the last equality, note that since α ∈ H, we have 〈α, δ〉 = h.)

Recall that for a vector α ∈ S, T − g ≤ ||α||2 ≤ T . Hence the intersection of the hyperplane H with
the annulus S is the (k − 1)-dimensional annulus S ′ ⊆ H, centered at h

||δ||2 · δ, containing vectors α such

that

T − g − h2

||δ||2 ≤ ||α− h

||δ||2 · δ||2 ≤ T − h2

||δ||2 .

Let T ′ = T − h2

||δ||2 . Then S ′ is given by

S ′ = {α ∈ H : T ′ − g ≤ ||α− h

||δ||2 · δ||2 ≤ T ′} . (16)

Note that since h ≥ 0, it follows that T ′ ≤ T for all h and δ. (By definition, it also holds that S ′ = H∩S.)
Recall that our goal at this stage is to provide an upper bound for the number W (δ, h) of integer

lattice points in Ŵ (δ, h) = H ∩ S ∩ C = S ′ ∩ C. Let C = [0, y − 1]k be the (continuous) cube. (The
discrete cube C = [{0, y− 1}]k is the set of integer lattice points of C.) Let W̃ = S ′ ∩C be the continuous
version of Ŵ (δ, h). Since Ŵ (δ, h) is the set of integer lattice points in W̃ , we are interested in providing
an upper bound for the number of integer lattice points in W̃ . Our strategy is to show an upper bound
for the (k − 1)-dimensional volume Vol(W̃ ) of W̃ , and to estimate the discrepancy between Vol(W̃ ) and
the number of integer lattice points in W̃ .

Note that since W̃ ⊆ S ′, it follows that Vol(W̃ ) ≤ Vol(S ′). However, this upper bound is too crude.
(In particular, it is greater than our lower bound (13) on the volume and on the number of integer
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lattice points in Š.) Instead we will show that if the axes are rotated appropriately, then W̃ becomes
contained in the intersection of the annulus S ′ with a relatively small number q of octants. Therefore, its
volume is at most Vol(S ′) · q

2k−1 . (Because 2k−1 is the overall number of octants.) Our estimate for q is

q ≤ 2g = 2ǫk, and thus this upper bound is smaller than the trivial one by a factor of 2ǫk

2k−1 = 2−(1−ǫ)k+1.

Since y = Θ(2k/2), this is very significant.
Let H′ = {α ∈ IRk | 〈α, δ〉 = 0} be the parallel hyperplane to H that passes through the origin. Next,

we will construct below an orthonormal basis Υ = {γ1, γ2, . . . , γk−1} for H′. The axes will be rotated so
that the vectors of Υ will become the new unit vectors of H′.

Recall that δ satisfies 0 < ||δ||2 ≤ g = ǫ·k, and it is an integer vector. Consequently, δ = (δ1, δ2, . . . , δk)
contains at most g = ǫ · k non-zero entries. Let I ⊆ [{k}] be the subset of indices such that δi 6= 0. Let
m = |I|. It follows that m ≤ g = ǫ · k.

For every vector α = (a1, a2, . . . , ak) ∈ H′, it holds that

∑

i∈I

aiδi = 0 . (17)

Let γ(1), γ(2), . . . , γ(m−1) be an arbitrary orthonormal basis for the solution space of the equation (17).

These vectors are in IRm. For each index j ∈ [{m − 1}], we view the vector γ(j) as γ(j) = (γ
(j)
i | i ∈ I).

(In other words, γ
(j)
i is the ith coordinate of the vector γ(j).)

We form orthonormal vectors γ̂(1), γ̂(2), . . . , γ̂(m−1) ∈ IRk in the following way. For each index j ∈
[{m − 1}], and each index i ∈ I, the ith entry γ̂

(j)
i of γ̂(j) is set as γ

(j)
i , and for each index i ∈ [{k}] \ I,

the entry γ̂
(j)
i is set as zero. (The vectors γ̂(1), γ̂(2), . . . , γ̂(m−1) agree with vectors γ(1), γ(2), . . . , γ(m−1)

on all entries with indices from I, and have zeros in all other entries.) In addition, for each index
j ∈ [{k}] \ I, we insert the vector ξj = (0, 0, . . . , 0, 1, 0, . . . , 0), ξj ∈ IRk, with 1 at the jth entry and zeros
in all other entries into the basis Υ. Observe that ξj ∈ H′, i.e., 〈ξj , δ〉 = 0. The resulting basis Υ is
{γ̂(1), γ̂(2), . . . , γ̂(m−1)} ∪ {ξj : j ∈ [{k}] \ I}. It is easy to verify that Υ is an orthonormal basis for H′.

Order the vectors of Υ so that γ̂(j) = γj for all j ∈ [{0,m−1}], and so that the vectors {ξj : j ∈ [{k}]\I}
appear in an arbitrary order among γm, γm+1, . . . , γk−1.

Move the origin to the center h
||δ||2 · δ of the annulus S ′, and rotate the annulus so that new axes

become the colinear with vectors γ1, γ2, . . . , γk−1 of the orthonormal basis Υ. Obviously, this mapping is
volume-preserving.

For a vector ζ ∈ H′, let ζ1[Υ], ζ2[Υ], . . . , ζk−1[Υ] denote the coordinates of ζ with respect to the basis
Υ, i.e., ζi[Υ] = 〈ζ − h

||δ||2 · δ, γi〉. Observe that since 〈δ, γi〉 = 0 for all i ∈ [{k − 1}], it follows that

ζi[Υ] = 〈ζ, γi〉, for all i ∈ [{k − 1}].

Lemma 4.5 For a vector ζ ∈ W̃ = S ′ ∩ C, and an index i ∈ [{m, . . . , k − 1}], we have ζi[Υ] ≥ 0. In
particular, ζ has at least (1 − ǫ) · k non-negative coordinates with respect to the basis Υ.

Proof: Note that for every index i ∈ [{m,k − 1}], all entries of γi are non-negative. (Because these are
the vectors ξj, j ∈ [{k}] \ I of the standard Kronecker basis.) Since ζ ∈ C = [0, y − 1]k, it follows that
for all indices i ∈ [{m,k − 1}], the ith coordinate of ζ with respect to the basis Υ is non-negative, that
is, ζi[Υ] = 〈ζ, γi〉 ≥ 0. Hence ζ has at least (k − 1) − (m− 1) ≥ (1 − ǫ) · k non-negative coordinates with
respect to the basis Υ.

Recall that W̃ ⊆ S ′, and the annulus S ′ is given by (with respect to the basis Υ)

S ′ = {α ∈ IRk−1 : T ′ − g ≤ ||α||2 ≤ T ′} .
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Let
Q̃ = {α ∈ IRk−1 : T ′ − g ≤ ||α||2 ≤ T ′, ∀i ∈ [{m,k − 1}], αi[Υ] ≥ 0}

be the intersection of S ′ with the (k −m) half-spaces αi[Υ] ≥ 0, for all i ∈ [{m,k − 1}]. Let S ′′ be the
intersection of the annulus S ′ with the positive octant (with respect to Υ), i.e.,

S ′′ = {α ∈ (IR+)k−1 : T ′ − g ≤ ||α||2 ≤ T ′} .

It follows that W̃ ⊆ Q̃. Hence Vol(W̃ ) ≤ Vol(Q̃) = 2m−1 · Vol(S ′′) ≤ 2ǫ·k−1 · Vol(S ′′).
Next, we provide an upper bound for Vol(S ′′).

Lemma 4.6 For a sufficiently large integer k,

Vol(S ′′) ≤ g ·
(πe

6

)k/2
· yk−3 · 2O(

√
k) .

Proof: Let R′ =
√
T ′. Observe that R′ ≤ R =

√
T . Let βk−1 be the volume of the (k − 1)-dimensional

ball of unit radius. Then Vol(S ′′) = 1
2k−1βk−1((T

′)
k−1
2 − (T ′ − g)

k−1
2 ). Note that

(R′2 − g)
k−1

2 =
(

1 − g

R′2

)
k−1
2 · R′k−1 ≥ R′k−1

(

1 − g(k − 1)

2R′2

)

≥ R′k−1 −R′k−3g · k . (18)

Hence by (2),

Vol(S ′′) ≤ 1

2k−1
· k · g · βk−1 · R′k−3 ≤ 1

2k−1
· k · g · π

k−1
2

Γ
(

k+1
2

) · Rk−3 . (19)

By (12), T = R2 ≤ k
3 · y2

(

1 +O
(

1√
k

))

, and so R ≤
√

k
3 · y

(

1 +O
(

1√
k

))

. Hence

Vol(S ′′) ≤ 1

2k−1
· k · g · π

k−1
2

Γ
(

k+1
2

) ·
(

k

3

)
k−3
2

· yk−3 · 2O(
√

k) .

By Stirling formula, if k + 1 is even then for a sufficiently large k,

Γ

(

k + 1

2

)

=

(

k − 1

2

)

! ≥
√

k − 1

2
·
(

k−1
2

)
k−1
2

e
k−1
2

= e1/2

(

k
2

)
k
2
(

1 − 1
k

)
k
2

ek/2
≥ 1

2
· k

k
2

(2e)
k
2

.

By (4), if k + 1 is odd then for a sufficiently large k,

Γ

(

k + 1

2

)

= Γ

(

k

2
+

1

2

)

≥
√
π

2

(

k

2
− 1

)

! ≥ π√
2
·
√

k

2
− 1 ·

(

k
2 − 1

)
k
2
−1

e
k
2
−1

=
πe√

2
· 1
√

k
2 − 1

· (k
2 − 1)k/2

e
k
2

≥ πe√
k
·
(

k
2

)
k
2 ·
(

1 − 2
k

)
k
2

e
k
2

≥ 1√
k
· kk/2

(2e)k/2
.

Hence in both cases, for a sufficiently large k,

Γ

(

k + 1

2

)

≥ 1√
k
· k

k
2

(2e)
k
2

.
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Consequently,

Vol(S ′′) ≤ (k · g) · 1

2k−1
· π

k
2

√
k · (2e)k

2

√
π · k k

2

· k
k−3
2

3
k−3

2

· yk−3 · 2O(
√

k)

= O(1) · (k · g) · k−3
2

√
k ·
(πe

6

)k
2 · yk−3 · 2O(

√
k) ≤ g ·

(πe

6

)k
2 · yk−3 · 2O(

√
k) .

We conclude that

Vol(W̃ ) ≤ Vol(Q̃) ≤ 2ǫk−1 · Vol(S ′′) ≤ 1

2
· g · 2ǫk ·

(πe

6

)k
2 · yk−3 · 2O(

√
k) . (20)

Since W̃ ⊆ Q̃, the number W (δ, h) of integer lattice points in W̃ is at most the number Q of integer
lattice points in Q̃. In Section 5 we will show that Q is not much larger than Vol(Q̃). Specifically,

Q ≤ kO(1) · 2ǫk ·
(πe

6

)
k
2 · yk−3 · 2O(

√
k) . (21)

We remark that this estimate is quite crude, as it says that the number Q of integer lattice points in Q̃
cannot be larger than by a factor of kO(1) than Vol(Q̃). However, it is sufficient for our argument.

Next, we put all parts together and complete the proof. By (21),

W (δ, h) ≤ Q ≤ kO(1) · 2ǫk ·
(πe

6

)
k
2 · yk−3 · 2O(

√
k) . (22)

By (15),

W (δ) =

g
∑

h=0

W (δ, h) ≤ (g + 1) · kO(1) · 2ǫk ·
(πe

6

)
k
2 · yk−3 · 2O(

√
k) .

Hence by (14), the overall number N of integer lattice points in C ∩ S that do not belong to Ext(B)
(and thus, do not belong to Ext(C ∩ S), because S ⊆ B) satisfies

N ≤
∑

0<||δ||2≤g

W (δ) ≤ kO(1) · 2ǫk ·
(πe

6

)
k
2 · yk−3 · 2O(

√
k) · D̂(g) .

Recall that g ≤ k. By Lemma 4.2, and since for a sufficiently large k, kO(1) ≤ 2O(
√

k), it follows that

N ≤ kO(1) · 2ǫk ·
(πe

6

) k
2 · yk−3 · 2O(

√
k) ·O(2η·k) = 2((ǫ+η(ǫ)+O(1/

√
k))+ 1

2
log πe

6
)·k · yk−3 .

By (11), the set S̃ of integer lattice points of C ∩ S contains

|S̃| = Ω(ǫ
√
k · yk−2)

integer lattice points. Let c′ > 0 be a universal constant such that |S̃| ≥ c′ · ǫ
√
k · yk−2. By (9), y ≥ 2k/2

4 .
Hence the inequality

y ≥ 2k/2

4
> 2 · 1

c′ · ǫ ·
√
k
· 2((ǫ+η(ǫ)+O(1/

√
k))+ 1

2
log πe

6
)·k (23)

holds whenever ǫ > 0, k is sufficiently large, and ǫ and k satisfy

1 > log
πe

6
+ 2 · (ǫ+ η(ǫ)) +O

(

1√
k

)

.
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By Lemma 4.2, limǫ→0 η(ǫ) = 0. Thus, for a sufficiently small universal constant ǫ > 0, and sufficiently
large k, the inequality (23) holds, and thus |S̃| ≥ 2N . (More specifically, one needs to set ǫ so that
0 < 2 · (ǫ+ η(ǫ)) < 1 − log πe

6 .) Hence the set S̃ contains a subset Š of integer lattice points that belong
to Ext(B), and moreover, by (13),

|Š | ≥ |S̃| −N ≥ 1

2
|S̃| = Ω(ǫ ·

√
k · yk−2) = Ω(log1/4 n · n

22
√

2
√

log n
) . (24)

Finally, we argue that our construction can be implemented by a deterministic algorithm that requires
time n · 2O(

√
log n). The algorithm starts with computing the values R′2 − 2 · σZ + i · g, for i = [{0, ℓ− 1}],

and R′2 + 2 · σZ . (See the beginning of Section 4.) These values determine the minimum and maximum
values of vector norms in the ℓ annuli Ŝ1, Ŝ2, . . . , Ŝℓ. This computation requires O(ℓ) = O(σZ/g) =
O(y) = O(n1/k) = 2O(

√
log n) time. Next, for every integer number a between 1 and n, the algorithm

computes the corresponding k-dimensional vector α, and tests whether this vector belongs to one of the
annuli. If it does, it adds the pair (a, α) into the set of elements of the respective annulus, and increments
a size counter that corresponds to this annulus. In the end of this computation (which requires O(n)
time), for each annulus Ŝi the algorithm knows its size si. The algorithm selects the annulus Ŝi with the
greatest size. Then for each point b ∈ Ŝi, and for every vector δ such that 0 < ||δ||2 ≤ g, the algorithm
tests whether 0 ≤ 〈b, δ〉 ≤ g. If this is the case, the algorithm removes the point b and its corresponding
number from Ŝi. (By Lemma 4.1, the resulting set is convexly independent.) By Lemma 4.2, the number
of vectors δ as above is 2O(

√
log n), and thus this computation requires at most n · 2O(

√
log n) time. Finally,

the algorithm outputs the numbers that are associated with the vectors that are left in Ŝi. By (24), there
are Ω(log1/4 n · n

22
√

2
√

log n
) numbers in this set. Hence the overall running time is at most n · 2O(

√
log n).

5 Discrepancy between Volume and Number of Integer Lattice Points

Consider the annulus S ′ = {α = (α1, α2, . . . , αk−1) ∈ IRk−1 | T ′ − g ≤ ||α||2 ≤ T ′}, and its intersection Q̃
with the half-spaces αi ≥ 0 for all i ∈ [{m,k − 1}]. In this section we argue that the number Q (denoted
also by A(Q̃)) of integer lattice points in Q̃ is not much larger than Vol(Q̃). Specifically, we show that

Q = 2O(
√

k) · 2ǫk ·
(πe

6

)k/2
· yk−3 . (25)

This proves (21), and hence completes the proof of our result.
Consider the (k−1)-dimensional ball B of squared radius t centered at the origin, for some sufficiently

large t > 0. Let A(B) denote the number of integer lattice points in B. For a positive integer j, let Vj(t)
denote the volume of the j-dimensional ball of squared radius t centered at the origin. It is well-known
(see, e.g., the survey of Adhikari [4]) that for a constant dimension k − 1, |A(B) − V (B)| = O(Vk−3(t)).
However, in our case the dimension k−1 grows logarithmically with t. Fortunately, the following analogous
inequality holds in this case:

|A(B) − V (B)| = kO(1) · Vk−3(t) . (26)

We prove (26) in the sequel. It is worth mentioning that Vk−3(t) is almost as large as the volume of
the annulus S ′, and consequently, one has to provide quite precise estimates for the discrepancy between
A(B) and V (B). In particular, a crude estimate of 2O(k) ·Vk−3(t) would not be sufficient for our argument,
but rather a polynomial dependence in k is needed, i.e., kO(1) ·Vk−3(t). Providing such a precise estimate
in a (k − 1)-dimensional space with the dimension growing to infinity logarithmically in the radius of B
is technically somewhat involved.

Another subtle point is that we have rotated the vector space to move from the standard Kronecker
basis to the orthonormal basis Υ. (In fact, Υ is an orthonormal basis for the hyperplane H′, but it can

15



be completed to an orthonormal basis for IRk by inserting the unit vector δ
||δ|| into it.) Consequently,

the integer lattice was rotated as well, and so in our context A(B) and A(Q̃) are actually the numbers
of points of the rotated integer lattice that are contained in B and in Q̃, respectively. It is easy to see
that the set of points of the integer lattice that lie in B is in one-to-one correspondence to the set of
points of the rotated integer lattice that lie in B. On the other hand, this is not necessarily the case for
Q̃. However, we argue below that the estimate (26) and its analogue for Q̃ apply for the rotated integer
lattice as well, for any rotation.

Recall that m = |I|. Let

Q̃ext = {α = (α1, α2, . . . , αk−1) ∈ IRk−1 : ||α||2 ≤ T ′, αi ≥ 0 for all i ≥ m} (27)

Q̃int = {α = (α1, α2, . . . , αk−1) ∈ IRk−1 : (28)

||α||2 ≤ T ′ − (g + 1), αi ≥ 0 for all i ≥ m}

Observe that Q̃ ⊆ Q̃ext \ Q̃int . Also, let Z̃ denote

Z̃ = {α = (α1, α2, . . . , αk−3) ∈ IRk−3 : ||α||2 ≤ T ′, αi ≥ 0 for all i ≥ m} . (29)

The set Q̃ext (respectively, Q̃int) is the intersection of the (k − 1)-dimensional ball of squared radius T ′

(resp., T ′ − (g + 1)) centered at the origin with the half-spaces αi ≥ 0 for all i ≥ m. The set Z̃ is the
intersection of the (k−3)-dimensional ball of squared radius T ′ centered at the origin with the half-spaces
αi ≥ 0 for all i ≥ m. The analogue of (26) that is required for our argument is

|A(Q̃ext) − Vol(Q̃ext)| = kO(1) · Vol(Z̃) . (30)

Given (30) we show (25) by the following argument.

Lemma 5.1 A(Q̃) = 2O(
√

k) · 2ǫk ·
(

πe
6

)k/2 · yk−3.

Proof: By (30),

A(Q̃) ≤ A(Q̃ext) −A(Q̃int) ≤ Vol(Q̃ext) + kO(1) · Vol(Z̃) − Vol(Q̃int) + kO(1) · Vol(Z̃)

= (Vol(Q̃ext) − Vol(Q̃int )) + kO(1) · Vol(Z̃).

Observe that Vol(Z̃) = 2ǫk

2k−3 · βk−3 · (T ′)
k−3
2 . Also, since T ′ is much greater than g,

Vol(Q̃ext) − Vol(Q̃int) =
2ǫk

2k−1
· βk−1((T

′)
k−1
2 − (T ′ − (g + 1))

k−1
2 )

≤ O(1) · 2ǫk

2k−1
· βk−1 · k · (g + 1) · (T ′)

k−3
2 .

Hence

A(Q̃) ≤ O(1) · 2ǫk

2k−3
· (kO(1) · βk−3 + k · (g + 1) · βk−1) · (T ′)

k−3
2 .

Since βk−3 = Θ(k · βk−1) and g ≤ k, it follows that

A(Q̃) ≤ kO(1) · 2ǫk

2k−1
· βk−1 · (T ′)

k−3
2 .

By (12), T ′ ≤ k
3 · y2(1 +O( 1√

k
)). Also, βk−1 = π

k−1
2

Γ(k+1
2

)
. Hence

A(Q̃) = 2O(
√

k) · 2ǫk ·
(πe

6

)k/2
· yk−3 .
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Hence it remains to prove (30). Our proof is closely related to the argument in [17], pp. 94-97, and
is provided for the sake of completeness. In addition, our argument is more general than the one in [17],
as the latter argument applies only for balls, while our argument applies for intersections of balls with
half-spaces.

Fix m to be a positive integer number. (In our application m = |I|.) For positive integer numbers k
and t, let Qk(t) denote the intersection of the k-dimensional ball Bk(t) centered at the origin with squared
radius t with the half-spaces H(i) = {α = (α1, α2, . . . , αk) | αi ≥ 0}, for all i ≥ m. Let V̄k(t) denote the
volume Vol(Qk(t)), and Āk(t) denote the number of points of the rotated integer lattice in Qk(t). Note
that V̄k(t) = βk

2max{k−m+1,0} · tk/2. The next lemma provides an upper bound for the discrepancy between

V̄k(t) and Āk(t) in terms of V̄k−2(t).

Lemma 5.2 For a sufficiently large real t > 0 and an integer k ≥ 5,

|Āk(t) − V̄k(t)| = O(k3/2 · V̄k−2(t)) .

Remark: This lemma applies even if k = k(t) is a function of t.
Before proving Lemma 5.2, we first provide a number of auxiliary lemmas that will be useful for its

proof. We start with Euler Sum-formula ([17], Satz 29.1, p.185).

Lemma 5.3 For a real-valued function f(u) differentiable in a segment [a, b],

∑

a<ℓ≤b

f(ℓ) =

∫ b

a
f(u)du+ ψ(a) · f(a) − ψ(b) · f(b) +

∫ b

a
ψ(u) · f ′(u)du ,

where ψ(u) = u− ⌊u⌋ − 1
2 .

In addition, we will use the following property of the function ψ(·).

Lemma 5.4 For any two real numbers κ and λ, κ ≤ λ, −1/8 ≤
∫ λ
κ ψ(u)du ≤ 1/8.

Proof: The function ψ is periodic with period 1. Its integral is 0 over each complete period. Hence the
integral is maximized by setting κ = i + 1/2 and λ = i + 1, for some integer i. Hence the integral is at
most 1/8. Analogously, the integral is minimized by setting κ = i and λ = i + 1/2, for some integer i.
Hence it is at least −1/8.

Next, we use Lemma 5.4 to derive another useful property of the function ψ(·).

Lemma 5.5 For a positive real number t and a positive integer p ≥ 2,

|
∫

√
t

0
u · ψ(u)(t− u2)

p
2
−1du| ≤ t

p−1
2 .

Proof: Since f(u) = u is a monotone increasing function, there exists ξ ∈ [0,
√
t] such that

∫

√
t

0
u · ψ(u)(t − u2)

p
2
−1du =

√
t

∫

√
t

ξ
ψ(u)(t − u2)

p
2
−1du .

Since g(u) = (t − u2)
p
2
−1 is a monotone decreasing function in [ξ,

√
t], there exists η ∈ [ξ,

√
t] such that

the right-hand-side is equal to
√
t · (t− ξ2)

p
2
−1
∫ η
ξ ψ(u)du. By Lemma 5.4,

|
√
t(t− ξ2)

p
2
−1

∫ η

ξ
ψ(u)du| ≤

√
t · (t− ξ2)

p
2
−1 ≤

√
t · t p

2
−1 = t

p−1
2 .
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Note also that

|
∫ 0

− 1
2

u · ψ(u)(t − u2)
p
2
−1du| ≤ |

∫ 0

− 1
2

(t− u2)
p
2
−1du| ≤ 1

2
· t

p
2
−1 .

Hence for any t and p as above,

|
∫

√
t

− 1
2

u · ψ(u)(t − u2)
p
2
−1du| ≤ t

p−1
2 +

1

2
· t p

2
−1 ≤ t

p−1
2

(

1 +
1

2
√
t

)

. (31)

We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2:

We prove by induction on k that there exists a universal constant c > 0 such that

|Āk(t) − V̄k(t)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

· V̄k−2(t) . (32)

The constant c will be determined later.
The induction base is k = 5. It is well-known (see, e.g., [4]) that |Ā5(t)− V̄5(t)| = O(V̄3(t)) = O(t3/2).
Next, we prove the induction step.
In all summations below, ℓ is an integer index. The analysis splits into two cases. The first case is

k + 1 < m, and the second is k + 1 ≥ m. In the first case

Āk+1(t) =
∑

|ℓ|≤
√

t

Āk(t− ℓ2) =
∑

|ℓ|≤
√

t

V̄k(t− ℓ2) +
∑

|ℓ|≤
√

t

(Āk(t− ℓ2) − V̄k(t− ℓ2)) ,

and so

|Āk+1(t) −
∑

|ℓ|≤
√

t

V̄k(t− ℓ2)| = |
∑

|ℓ|≤
√

t

(Āk(t− ℓ2) − V̄k(t− ℓ2))| ≤
∑

|ℓ|≤
√

t

|Āk(t− ℓ2) − V̄k(t− ℓ2)| .

In the second case the same inequalities apply, but the index ℓ runs in the range 0 ≤ ℓ ≤
√
t in all

summations. It turns out to be more convenient to have the index ℓ vary in the range −1
2 ≤ ℓ ≤

√
t

rather than 0 ≤ ℓ ≤
√
t in these summations.

By the induction hypothesis (that is, by (32)),

|Āk(t− ℓ2) − V̄k(t− ℓ2)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

· V̄k−2(t− ℓ2) .

Hence

|Āk+1(t) −
∑

|ℓ|≤
√

t

V̄k(t− ℓ2)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

·
∑

|ℓ|≤
√

t

V̄k−2(t− ℓ2) . (33)

Next, we estimate
∑

|ℓ|≤
√

t V̄k(t− ℓ2) via Euler Sum-formula (Lemma 5.3). In the first case, we substitute

a = −
√
t, b =

√
t, and f(u) = V̄k(t− u2). Then f(a) = f(b) = V̄k(0) = 0, and

df

du
(u) =

d

du
V̄k(t− u2) = βk

d

du
(t− u2)

k
2 = − βk · k · (t− u2)

k
2
−1u .
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By Lemma 5.3 it follows that

∑

|ℓ|≤
√

t

V̄k(t− ℓ2) =

∫

√
t

√
t
V̄k(t− u2)du− k · βk

∫

√
t

√
t
ψ(u)(t − u2)

k
2
−1udu . (34)

In the second case (k ≥ m− 1), a = −1
2 , b =

√
t, and again f(a) = f(b) = 0. Also,

df

du
(u) = − βk · 1

2k−m+1
· k · (t− u2)

k
2
−1u ,

and thus,

∑

− 1
2
<ℓ≤

√
t

V̄k(t− ℓ2) =

∫

√
t

− 1
2

V̄k(t− u2)du− k · βk

2k−m+1

∫

√
t

− 1
2

ψ(u)(t− u2)
k
2
−1udu . (35)

In the first case, since h(u) = uψ(u) is an even function on IR \ ZZ, the right-hand-side in (34) is equal to

∫

√
t

√
t
V̄k(t− u2)du− 2k · βk

∫

√
t

0
ψ(u)(t− u2)

k
2
−1udu .

Let J denote |
∫

√
t

0 u · ψ(u)(t− u2)
k
2
−1du|. By Lemma 5.5, J ≤ t

k−1
2 . Hence

∑

|ℓ|≤
√

t

V̄k(t− ℓ2) =

∫

√
t

√
t
V̄k(t− u2)du− 2kβk · J = V̄k+1(t) − 2kβk · J .

It follows that
|V̄k+1(t) −

∑

|ℓ|≤
√

t

V̄k(t− ℓ2)| = 2kβk · J ≤ 2kβk · t k−1
2 . (36)

In the second case by (35) and since
∫

√
t

0 V̄k(t− u2)du = V̄k+1(t), it follows that

∑

− 1
2
<ℓ≤

√
t

V̄k(t− ℓ2) =

∫ 0

− 1
2

V̄k(t− u2)du+ V̄k+1(t) − k · βk

2k−m+1

∫

√
t

− 1
2

ψ(u)u(t − u2)
k
2
−1du .

Let J ′ denote |
∫

√
t

− 1
2

u · ψ(u)(t − u2)
k
2
−1du|. By (31),

J ′ ≤ t
k−1
2 +

1

2
· t k

2
−1 ≤ t

k−1
2

(

1 +
1

2
√
t

)

. (37)

Since V̄k(t− u2) ≥ 0 for all u, −1
2 ≤ u ≤ 0, the integral

∫ 0
− 1

2
V̄k(t− u2)du is non-negative as well. Thus,

|V̄k+1(t) −
∑

− 1
2
≤ℓ≤

√
t

V̄k(t− ℓ2)| ≤ k · βk

2k−m+1
· J ′ ≤ k · βk

2k−m+1
· t k−1

2

(

1 +
1

2
√
t

)

.

19



In the first case, by the triangle inequality, by (33) and (36),

|Āk+1(t) − V̄k+1(t)| ≤ |Āk+1(t) −
∑

|ℓ|≤
√

t

V̄k(t− ℓ2)| (38)

+ |
∑

|ℓ|≤
√

t

V̄k(t− ℓ2) − V̄k+1(t)|

≤



c ·
k−1
∑

j=1

√

j





∑

|ℓ|≤
√

t

V̄k−2(t− ℓ2) + |
∑

|ℓ|≤
√

t

V̄k(t− ℓ2) − V̄k+1(t)|

≤



c ·
k−1
∑

j=1

√

j





∑

|ℓ|≤
√

t

V̄k−2(t− ℓ2) + 2kβk · t k−1
2 . (39)

Analogously, in the second case,

|Āk+1(t) − V̄k+1(t)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

∑

− 1
2
≤ℓ≤

√
t

V̄k−2(t− ℓ2) (40)

+ 2k · βk

2k+2−m
· t k−1

2 ·
(

1 +
1

2
√
t

)

.

However, in the first case
∑

|ℓ|≤
√

t V̄k−2(t− ℓ2) ≤
∫

√
t

−
√

t
V̄k−2(u)du = V̄k−1(t). In the second case,

∑

− 1
2
≤ℓ≤

√
t

V̄k−2(t− ℓ2) =
∑

0≤ℓ≤
√

t

V̄k−2(t− ℓ2) ≤
∫

√
t

0
V̄k−2(u)du = V̄k−1(t) .

(In the first case the (k − 1)st coordinate varies between −
√
t and

√
t, while in the second case it is

non-negative, and thus varies between 0 and
√
t.) Hence in both cases the first terms in (39) and in the

right-hand-side of (40) are at most


c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

V̄k−1(t) .

Consequently, in both cases,

|Āk+1(t) − V̄k+1(t)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

· V̄k−1(t)

+ 2k · βk

2max{k+2−m,0} · t k−1
2 ·

(

1 +
1

2
√
t

)

.

By (2), βk = Θ
(

βk−1√
k

)

. Set c to be a universal constant such that c ≥
√

k·βk
2βk−1

, for all integer k ≥ 2. Then

|Āk+1(t) − V̄k+1(t)| ≤



c ·
k−1
∑

j=1

√

j





(

1 +
1

2
√
t

)

· V̄k−1(t)

+ c ·
√
k ·
(

1 +
1

2
√
t

)

· βk−1

2max{(k−1)−m+1,0} · t k−1
2 =



c ·
k
∑

j=1

√

j





(

1 +
1

2
√
t

)

V̄k−1(t) .
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Finally,
∑k

j=1

√
j ≤ k3/2, completing the proof.

6 Conclusion

In this paper we improved the lower bound of Behrend by a factor of Θ(
√

log n). As was already
mentioned, both Behrend’s and our proof arguments rely on the Pigeonhole Principle. It is reasonable
to believe that by choosing T = R2 = µZ (see (10)) one can get an annulus with at least as many integer
points as in the annulus S chosen via the Pigeonhole Principle. To prove that this is the case one should
probably use normal approximation of the discrete random variable Z (see Sections 3 and 4), and employ
probablistic estimates to argue that the probability that Z is between (µZ − ǫk

2 ) and (µZ + ǫk
2 ) is at least

as large as the probability that it is between (µZ − 2σZ) and (µZ + 2σZ), divided by ǫk
4σZ

. Although
this appears to be quite clear intuitively, so far we were not able to find sufficiently precise probabilistic
estimates to prove this statement formally. Once this intuition is formalized, our construction will become
independent of the Pigeonhole Principle. This, in turn, would be a significant improvement of the lower
bound of Moser [25].
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Appendix

A A Convex Hull of the Lattice Points of a Large Ball

Consider a k-dimensional ball B = B(T ) of squared radius T = R2 centered at the origin. Suppose that
k ≥ 5 is a fixed constant, and R tends to infinity. (We will later extend the proof to cases k = 4 and k = 3.
For the case k = 2 there is a classic construction of Jarnik [22] that can be efficiently implemented.)

In 1963 Andrews [5] has shown that Ext(B) = O(Rk−2+ 2
k+1 ). Much more recently Barany and Larman

[8] proved the tight lower bound Ext(B) = Ω(Rk−2+ 2
k+1 ). For small values of k the problem was studied

in [6, 7]. The proof of Barany and Larman [8] is quite elaborate. In particular, it employs the Flatness
Theorem of Khintchine [23]. In addition, the proof of [8] does not give rise to an efficient algorithm

for constructing a set of Ω(Rk−2+ 2
k+1 ) convexly independent vectors with norm at most R each. Next,

we provide a simple and (almost) self-contained proof that |Ext(B)| = Ω(Rk−2+ 2
k+1 ). (The proof uses

standard estimates for the discrepancy between the volume of a large ball and the number of integer
lattice points in it.) Later in the sequel we convert our proof into an efficient algorithm for constructing
a large set of convexly independent k-vectors of bounded norm.

Let g = g(R) > 0 be a large number that tends to infinity as R grows. The precise dependence of g
on R will be determined later. Let A = A(T, g) = B(T ) \B(T − g) be an annulus with squared radius T
and squared width g centered at the origin. As βk = Θ(1), the volume of A, Vol(A), satisfies

Vol(A) = Vol(B(T )) − Vol(B(T − g)) = βk · (T k/2 − (T − g)k/2) = Ω(T
k
2
−1 · g) . (41)

The number A(A) of integer lattice points in A satisfies A(A) ≥ A(B(T )) − A(B(T − (g − 1))). By
standard estimates (see, e.g., [4]),

|A(B(T )) − Vol(B(T ))| ≤ O(T
k
2
−1) , (42)

and thus,

A(A) ≥ Vol(B(T )) − Vol(B(T − (g − 1))) −O(T
k
2
−1) = Ω(T

k
2
−1 · g) . (43)

Next, we show that if g is not too large, then at most a constant fraction of integer lattice points of A
do not belong to Ext(B). This will imply that Ext(B) = Ω(A(A)) = Ω(T

k
2
−1 · g).

By Lemma 4.1, it is sufficient to provide an upper bound on the number of integer lattice points in
⋃

{A∩H(δ, h) : 0 < ||δ||2 ≤ g, 0 ≤ h ≤ g} (with h and δ being an integer number and vector, respectively).
Observe that we need only to count the integer lattice points in H(δ, h) for δ with gcd(δ) = 1. This is
because for a vector δ = c · δ′, for an integer c > 0, each integer lattice point α ∈ H(δ, h) belongs to the
hyperplane H(δ, h/c) as well, and h/c = 〈δ′, α〉 is an integer.

Fix some integer value j, 0 < j ≤ g, and consider a vector δ with ||δ||2 = j. The number rk(j) of
integer vectors δ on the surface of the k-dimensional sphere of squared radius j centered at the origin

satisfies rk(j) = O(j
k
2
−1). (See, e.g., [4].) For each fixed δ and h, the body (A ∩ H(δ, h)) is a (k − 1)-

dimensional annulus of squared radius at most T and squared width at most g. (See Lemma 4.4 and

equation (16).) Hence its volume is O(T
k−1
2

−1 · g). Moreover, this annulus is contained in the hyperplane
H = H(δ, h), and the lattice of integer points in H has determinant ||δ||. It follows that the number of

integer lattice points in A ∩ H is 1
||δ|| · O(T

k
2
− 3

2 · g) = 1√
j
· O(T

k
2
− 3

2 · g). Summing up over all possible

integer values of h, 0 ≤ h ≤ g, we obtain at most

|
⋃

0≤h≤g

(A ∩H(δ, h))| =
1√
j
·O(T

k
2
− 3

2 · g2)
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integer lattice points.

Since there are rk(j) = O(j
k
2
−1) possible integer vectors δ with ||δ||2 = j, it follows that

|
⋃

{A ∩H(δ, h) : 0 ≤ h ≤ g, ||δ||2 = j}| = O(j
k
2
− 3

2 · T k−3
2 · g2) .

Finally, the value of j runs over all positive integers that are no greater than g. Hence the total number
of integer lattice points in A = B(T ) \B(T − g) that do not belong to Ext(B(T )) is at most

W =

g
∑

j=1

O(j
k
2
− 3

2 · T k−3
2 · g2) = O(T

k−3
2 · g2) · g k

2
− 1

2 = O(T
k−3
2 · g k+3

2 ) . (44)

By (43), A(A) = Ω(g · T k
2
−1). We set g to be the largest value so that the inequality W ≤ 1

2A(A) holds.

In other words, g = c · T
1

k+1 = c · R
2

k+1 , for a sufficiently small universal constant c > 0. (Observe that
g = g(R) tends to infinity as R grows.)

For this choice of g, it holds that

|Ext(B)| ≥ 1

2
A(A) = Ω(T

k
2
−1+ 1

k+1 ) = Ω(Rk−2+ 2
k+1 ) .

This proves the theorem of Barany and Larman [8] for k ≥ 5. Next, we discuss the cases k = 4 and k = 3.
We start with k = 4. The right-hand-side in the estimate (42) for the discrepancy between A(B(T )) and
V (B(T )) becomes O(T · log2/3 T ) [4]. Hence to carry out the proof we will need to set g = ω(log2/3 T ).

Also, for k = 4, the value of rk(j) is no longer bounded by j
k
2
−1. However, r4(j) = O(σ(j)), where σ(j)

is the sum of the divisors of j. The function σ(j) can be bounded by σ(j) = O(j log log j). (See, e.g.,
[21], p.266.)

Hence the inequality (44) becomes W = O(T
k−3
2 g

k+3
2 log log g), and g has to be set as

g = Θ

(

T
1

k+1

(log log T )
2

k+1

)

= Θ

(

T 1/5

(log log T )2/5

)

.

Hence |Ext(B)| = Ω

(

T
k
2 −1+ 1

5

(log log T )2/5

)

= Ω
(

R12/5

(log log R)2/5

)

. This estimate is weaker than the optimal estimate

(due to Barany and Larman [8]) by a factor of O((log logR)2/5).
Next, we turn to the case k = 3. Here the estimate (44) becomes A(B(T ))−V (B(T )) = O(T 2/3 ·log6 T )

[4]. Hence we need to set g so that T
k
2
−1 ·g = T

1
2 ·g = ω(T 2/3 · log6 T ), i.e., g = ω(T

1
6 log6 T ). To provide

an upper bound on r3(j) we use Siegel’s Theorem [32].

Theorem A.1 For any ǫ > 0, r3(j) = O(j
1
2
+ǫ), where the dependence on ǫ is hidden by the O-notation.

Propagating this change through our analysis we obtainW = O(T
k−3
2 g

k+3
2

+ǫ). Hence g = Θ(T
1

k+1+2ǫ ) =

T 1/4−O(ǫ), and |Ext(B)| = R
3
2
−O(ǫ). This estimate is weaker than the estimate of [8] by a factor of RO(ǫ),

where ǫ > 0 is an arbitrarily small constant.
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