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Abstract
The problem of constructing dense subsets S of
{1,2,...,n} that contain no three-term arithmetic

progression was introduced by Erdés and Turdn
in 1936. They have presented a construction with
|S| = Q(n'°832) elements. Their construction was im-
proved by Salem and Spencer, and further improved by
Behrend in 1946. The lower bound of Behrend is

n
S| = Q
| | <22\/§\/10g2n_10g1/4n>

Since then the problem became one of the most cen-
tral, most fundamental, and most intensively studied
problems in additive number theory. Nevertheless, no
improvement of the lower bound of Behrend has been
reported since 1946.

In this paper we present a construction that im-
proves the result of Behrend by a factor of ©(yv/logn),
and shows that

— n ogl/4
|S] = 9(22\/5@ log n) .

In particular, our result implies that the construction of
Behrend is not optimal.

Our construction and proof are elementary and self-
contained. Also, the construction can be implemented
by an efficient algorithm.

Behrend’s construction has numerous applications
in Theoretical Computer Science. In particular, it is
used for fast matrix multiplication, for property testing,
and in the area of communication complexity. Plugging
in our construction instead of Behrend’s construction in
the matrix multiplication algorithm of Coppersmith and
Winograd improves the state-of-the-art upper bound
on the complexity of the matrix multiplication by
a factor of log”mn, for some fixed constant v > 0.
We also present an application of our technique in
Computational Geometry.
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1 Introduction

A subset S C {1,2,...,n} is called progression-free if it
contains no three distinct elements 4, j,¢ € S such that
1 is the arithmetic average of j and /, i.e., i = %. For
a positive integer n, let v(n) denote the largest size of
a progression-free subset S of {1,2,...,n}.

Providing asymptotic estimates on v(n) is a central,
fundamental, and very well-studied inverse problem in
additive number theory. This problem was introduced?
by Erdés and Turan [20], and they showed that v(n) =
Q(n'°832). This estimate was improved by Salem and
Spencer [36], and further improved by Behrend [10] in
1946. Behrend has shown that

n
1.1 = Q
( ) V(n) <22\/§ /—Ingn'.10g1/4n> ;

and this bound has remained state-of-the-art for more
than sixty years. A slightly weaker lower bound that
does not rely on the Pigeonhole Principle was shown by
Moser [30]. (Moser [30] cites [10] for the lower bound
v(n) > m, for every e > 0. This lower bound
is slightly weaker than (1.1). The lower bound (1.1) can,
however, also be derived by the argument of Behrend.)
We refer the reader to [21] for a thorough general
discussion of inverse problems in Additive Number

Theory.
The first non-trivial upper bound wv(n) =
(logﬁ)gn) was proved in a seminal paper by Roth

[34]. This bound was improved by Bourgain [12, 13],
and the current state-of-the-art upper bound is v(n) =

(log log n)?
O(?’l ’ log2/3 n

lated to Szemerédi’s theorem [39], which in particular,
implies that v(n) = o(n). It is also related to the prob-
lem of finding arbitrarily long arithmetic progressions of
prime numbers (see, e.g., Green and Tao [24]), and to
other central problems in the additive number theory.
In this paper we improve the lower bound of
Behrend by a factor of ©(v/logn), and show that

) [13]. The problem is also closely re-

v(n) = Q

M pel/t
<22\/§ e log n) .

TA cl
[40].

osely related problem was studied by van der Waerden



Though the improvement is not large, our result demon-
strates that the bound of Behrend is not optimal. Also,
it is the first lower bound that shows that v(n) is asymp-
totically greater than 22\/5%

Like the proof of Behrend, our proof relies on the
Pigeonhole Principle. Consequently, the result of Moser
[30] remains the best known lower bound achieved
without relying on the Pigeonhole Principle. However,
we hope that our argument can be made independent
of the Pigeonhole Principle. (See also Section 8.)

Related work: The proof of Behrend was generalized
by Rankin [33] to provide large subsets of {1,2,...,n}
that contain no arithmetic progression of length k, for
any fixed k. (See also [29] the more recent variant
of the proof of [33].) Ruzsa [35] and Shapira [37]
extended the proofs of Behrend [10] and Rankin [33]
further, and constructed large subsets of {1,2,...,n}
that exclude solutions of certain linear Diophantine
equations. Abbott [1, 2, 3] and Bosznay [11] generalized
the proof of Behrend [10] in another direction, and
devised constructions of large non-averaging subsets of
S of {1,2,...,n}. (A subset S is said to be non-
averaging if no element z € S is an average of two
or more other elements of S.) Gasarch et al. [23]
studied the problem empirically, and constructed large
progression-free subsets of {1,2,...,n} for n < 250.

Consequent work: The preliminary version of this
paper was published in the electronic archive [19] in
January 2008. Since then several authors continued
our line of research. Specifically, Green and Wolf [25]
found a simpler proof of our result. They point out,
however, that “the only advantage of our approach is
brevity: it is based on ideas morally close to those of
Elkin, and moreover, his argument is more constructive
than ours.” In an even more recent development
O’Bryant [31] has combined our techniques with those
of Rankin [33] and Green and Wolf [25], and improved
Rankin’s lower bound by a factor log®n, for some small
positive € = ¢(k). (In the preliminary version of our
paper [19] we anticipated that our techniques could be
useful to improve Rankin’s bound.) We believe that
similar ideas may help improving some of the results of
[35, 37, 1, 2, 3, 11].

Overview of the proof: Our proof is elementary,
and self-contained. The proof of Behrend is based on the
observation that a sphere in any dimension is convexly
independent, and thus cannot contain three vectors
such that one of them is the arithmetic average of the
two other. We replace the sphere by a thin annulus.
Intuitively, we are able to produce larger progression-
free sets because an annulus of non-zero width contains

more integer lattice points than a sphere of the same
radius does. However, unlike in a sphere, the set of
integer lattice points in an annulus is not necessarily
convexly independent. To counter this difficulty we
show that as long as the annulus A is sufficiently thin,
the set U of its integer lattice points contains a convexly
independent subset W C U whose size is at least a
constant fraction of the size of U, i.e., [W| = Q(|U]).
The subset W is, in fact, the exterior set Fxt(U) of the
set U. (By “exterior set of U” we mean the boundary
of the convex hull of U.)

In our analysis we actually have to consider the
intersection S of the annulus A with a certain hyper-
cube C, and to show that |Ext(U)| = Q(|U]) for the
corresponding set U of integer lattice points of S. To
prove a lower bound on the cardinality of Ext(U), we
consider a set F of hyperplanes, and demonstrate that
each point € U \ Ext(U) belongs to one of the hyper-
planes H, from F. We then argue that F contains only
a small number of hyperplanes, and that each of these
hyperplanes ‘H contains only a relatively small number
of points of U.

Our analysis of the number of integer lattice points
in HNU boils down to estimating the (k—1)-dimensional
volume of the corresponding high-dimensional body
U=HNS = HNANC, and showing that the
discrepancy between the volume of U and the number
of integer lattice points in it is quite small. A naive
upper bound on the volume of U is the volume of the
(k — 1)-dimensional annulus H N A, where k is the
dimension of the annulus A. The latter volume is much
easier to compute, but unfortunately, this upper bound
turns out to be far too crude. Instead we show that
after an appropriate rotation of the space, the body
U = HN AN C becomes contained in the intersection
of the annulus H N A with a relatively small number of
octants, and use the volume of this intersection as our
upper bound for the volume of U.

In addition, estimating the discrepancy between
the volume and the number of integer lattice points of
U is not easy either. One technical difficulty is that
the dimension k of this body is not fixed, but rather
tends to infinity logarithmically with the radius of the
annulus 4. On the other hand, most estimates for
the discrepancy between the volume and the number
of integer lattice points of high-dimensional bodies
assume that the dimension is fixed, and consequently,
these estimates are inapplicable for our purposes. To
overcome this technical difficulty we explicated the
dependency on the dimension in the relevant estimates.
Another technical difficulty is that the annulus A is
very thin. Intuitively, thin bodies may have a large
volume but contain no (or a very small number of)



integer lattice points. From the technical perspective,
this makes the analysis more elaborate.

However, even though the part of our proof that
shows that Ext(U) has large cardinality is technically
challenging, we believe that our main contribution is in
devising a new scheme for producing large progression-
free sets. This scheme builds upon Behrend’s construc-
tion, but it employs a different strategy for construct-
ing a convexly independent set of integer lattice points.
While Behrend’s construction uses a set of integer lat-
tice points that lie on a sphere, our scheme constructs a
large convexly independent subset of the set of integer
lattice points of an annulus. As was mentioned above,
this annulus has to be sufficiently thin so that Exzt(U)
will be of size which is at least a constant fraction of
|U|. In our proof we set the width of the annulus to be
the maximum (up to a constant factor) value for which
this condition holds. (Note that the size of the resulting
progression-free set is proportional to the width of the
annulus that we use.)

Applications of our technique: Given a large pos-
itive real R, and an integer k > 2, let Cx(R) denote the
maximum size of a convexly independent set (hence-
forth, CIS) of k-dimensional integer vectors with norm
at most R. Equivalently, Cx(R) is the number of ex-
treme points of the convex hull of the set of extreme
points of the k-dimensional ball B(R) of radius R cen-
tered at the origin. In 1925 Jarnik [27] proved that
Cy(R) = ©(R?/3). His proof is constructive, and it gives
rise to an algorithm with running time O(R?/3log R)
for computing a CIS with an optimal (up to constant
factors) size. More precise estimates on Cy(R) were de-
rived by Arnold [7] and Balog and Barany [8]. In 1963
Andrews [6] published a simple argument that extends
the upper bound of Jarnik to larger dimensions, and
shows that Cj(R) = O(Rk_2+ﬁ) for all k > 3. Estab-
lishing the corresponding lower bound turned out to be
more difficult, and only in the end of nineties Barany
and Larman [9] proved that Cy(R) = Q(Rk72+ki+1) for
all £ > 3. The proof of [9] is quite elaborate, and in par-
ticular, it relies on the Flatness Theorem of Khintchine
[28]. In addition, the result of [9] is not constructive in
the sense that, to the best of our knowledge, it does not
give rise to an efficient algorithm for constructing a CIS
of size Cy(R). The fastest currently known algorithm
for computing such a CIS invokes one of the existing
algorithms for computing a convex hull of an arbitrary
set of vectors on the ball B(R). However, this approach
is doomed to have running time Q(|B(R)|) = Q(RF).
On the other hand, since the input and the output sizes
for this problem are O(log R) and O(Rk_2+%), respec-
tively, it is reasonable to expect that by other means one

can do significantly better.

The fastest currently known algorithm for comput-
ing a k-dimensional convex hull of an arbitrary set of n
points for & = 3 is due to Preparata and Hong [32], and
it requires O(nlogn) time. For k > 4 the best known
output-sensitive algorithm is due to Chan [14], and it re-
quires O(n-log g+ (nq)l_m -logo(l) n) time, where ¢
is the size of the output. Using these algorithms for our
problem (n = R¥, ¢ = Rk_2+%) one obtains running
time of O(nlogn) = O(R3log R) for computing the CIS
of optimal size in 3 dimensions. For even (respectively,
odd) k£ > 4 the running time is O(n27’€%2+m .

log®M n) (resp., O(nQ_Q'% 1og®M n)).

By applying the technique that we developed for
constructing large progression-free sets we provide an
alternative (to the one of [9]), simple and constructive
proof of the lower bound Ci(R) = Q(Rk_2+ﬁ) for
k > 5. For k = 4 and k = 3 our proof provides
slightly suboptimal estimates. Specifically, for k = 4

- . 12/5
it yields C4(R) = Q ((log?mT)Q/“"

by a factor of O((loglog R)?/%). For k = 3 we show
C3(R) = Q(R3/?7¢), for an arbitrarily small ¢ > 0,
which is suboptimal by a factor of R¢. Our proof relies
on standard estimates for the discrepancy between the
volume and the number of integer points in large k-
dimensional balls, and is otherwise self-contained.
More importantly, our proof gives rise to a very
efficient algorithm for computing a CIS of nearly op-
timal size. Specifically, the running time of our algo-
rithm is O(Rk_H'ﬁ) = O(nl_ﬁ) for all £ > 3. In
other words, it is sublinear in n, while any algorithm
that computes the convex hull of B(R) requires time
at least linear in n. (In fact, with existing algorithms
the running time is superlinear in n.) Moreover, the
improvement in running time becomes even more sig-
nificant as k grows to infinity; indeed, the exponent of
n in the running time of our algorithm tends to 1, while
the exponent of the algorithm that is based on comput-
ing the convex hull of B(R) tends to 2. In addition,
already for small k the running time of our algorithm
is significantly smaller than that of the previously best-
known one. See Table 1 for a concise comparison be-
tween the exponents of n in the running times of our
and previous algorithms for this problem. In the bot-
tom line of the table we provide the exponent of the
output size, which serves as a lower bound for the run-
ning time of any algorithm for this problem. Note, how-
ever, that this improved efficiency comes with a price.
For k > 5 our algorithm may provide a CIS which is of
size smaller at most by a constant factor than the opti-
mal one. For & = 4 the approximation factor becomes

), which is suboptimal



k 3 4 5 6 7 8 9 10 00

Previous 1 | 31/30 | 10/9 | 9/7 | 21/16 | 64/45 | 36/25 | 41/27 | — 2
Our (1 — ) 3/4 | 4/5 5/6 |6/7|7/8 8/9 9/10 [ 10/11 | — 1
Lower Bound (1 - Z5) | 1/2 [ 3/5 2/3 | 5/7|3/4 7/9 4/5 9/11 | — 1

Table 1: The exponents of previous upper bounds on the running time, our upper bounds, and lower bounds, for k in
the range 3 < k < 10 are summarized. Polylogarithmic factors are suppressed.

O((loglog R)?*/%) = O((log logn)?/°), and for k = 3 it is
O(R¢) = O(n¢/3), for an arbitrarily small € > 0. On the
other hand, we believe that in many applications one
would be willing to use our far more efficient algorithm
while compromising slightly on the output size.

Applications of our result: Throughout the years
the construction of Behrend has found numerous appli-
cations in Theoretical Computer Science. In particular,
it is a central ingredient in the celebrated matrix multi-
plication algorithm of Coppersmith and Winograd [18].
It was also used for property testing [5], and for de-
vising multi-party protocols for basic communication-
theoretic problems [15]. Our construction can be im-
plemented by a deterministic algorithm with running

time n/2Q(\/@), and thus it may be used instead of
Behrend construction in all applications. (Our running
time is sublinear in n, but superlinear in the size of the
output.)

However, naturally, the resulting improvements are
very small. Specifically, the current estimate for the
running time of the algorithm of [18] (which is the
current state-of-the-art algorithm for multiplying two
square n X n matrices) is n¥-{(n), with w < 2.376 being
a universal constant, and ((n) being a function such
that ¢(n) = n°). Plugging in our construction instead
of that of Behrend into the algorithm of [18] improves
this estimate to O(n* - lg(ﬁ')n), for some universal small
constant v > 0. Even though the improvement is only
by a factor of log” n, it may serve as an indication of
the relevance and potential applicability of our result to
the area of Algorithmics.

To our knowledge, our result provides no direct
bearings to property testing. To improve the results
of Alon and Shapira [5] one needs large subsets that
exclude arithmetic progressions of length larger than 3,
and subsets that exclude some more general patterns.
However, it is plausible that our construction will be
later extended to provide larger subsets of these kinds,
and this, in turn, may result in improved estimates for
the problems considered in [5].

Finally, Chandra et al.[15] used large progression-
free subsets to devise efficient multi-party protocols
for some basic problems in Communication Complex-

ity. However, plugging in our construction instead of
Behrend’s construction in the analysis of [15] improves
only lower-order terms in their estimates.

The Structure of the Paper: In Section 2 we pro-
vide definitions and notation that are used throughout
the paper. In Section 3 we overview Behrend’s con-
struction [10]. Section 4 contains our construction and
its analysis. The analysis uses an estimate (inequal-
ity (4.20)) of the discrepancy between the number of
integer lattice points and the volume of a certain high-
dimensional body. This estimate is closely related to
known ones. For the sake of completeness, we provide
a self-contained proof of this estimate in Section 6. In
Section 5 we provide an alternative proof for the result
of Barany and Larman [9]. In Section 7 we discuss the
application of our result to fast matrix multiplication.
In Section 8 we provide a short summary and discuss
some directions for future research.

2 Preliminaries

For a pair a, b of real numbers, a < b, we denote by [a, b]
(respectively, (a,b)) the closed (resp., open) segment
containing all numbers z, a < x < b (resp., a < x < b).
We also use the notation (a,b] (respectively, [a,b)) for
denoting the segment containing all numbers z, a <
x < b (resp., a < x < b). For integer numbers n and m,
n < m, we denote by [{n, m}] the set of integer numbers
{n,n+1,...,m}. If n = 1 then we use the notation
[{m}] as a shortcut for [{1,m}]. For a real number z,
we denote by |z| (respectively, [z]) the largest (resp.,
smallest) integer that is no greater (resp., no smaller)
than z. For a k-vector §, we denote by gcd(d) the
greatest common divisor of non-zero coordinates of d.

A triple 14, j, £ of distinct integers is called an arith-
metic triple if one of these numbers is the average of two
other numbers, i.e., ¢ = #. A set S of integer num-
bers is called progression-free if it contains no arithmetic
triple. For a positive integer number n, let v(n) denote
the largest size of a progression-free subset S of [{n}].

Unless specified explicitly, log (respectively, In)
stands for the logarithm on base 2 (resp., €).

For a positive integer £ and a vector v =



(v1,v2,...,0k), let ||v]| = \/Zle v? denote the norm

of the vector v. The expression ||v||? = Zle v? will be
referred to as the squared norm of the vector v.

For aset v 0@ . o) ¢ RF of vectors, a vector
v is a convex combination of vV v . . v® if there
exist non-negative numbers p1,po,...,p: that sum up
to 1 (i.e., 25:1 p;=1),and v = 25:1 piv®. A convex
combination is called trivial if for some i € [{t}], p; = 1.
Otherwise, it is called non-trivial. For a set U C RF of
vectors, we say that U is a convezly independent set if
for every vector u € U, there is no non-trivial convex
combination of vectors from U that is equal to u. For
aset X C R of vectors, the exterior set of X, denoted
Ext(X), is the subset of X that contains all vectors
v € X such that v cannot be expressed as a non-trivial
convex combination of vectors from X. (This is the set
of the extreme points of the convex hull of X.)

For a positive integer /¢, let 3y denote the volume of
an ¢-dimensional ball of unit radius. It is well-known
(see, e.g, [22], p.3) that

t/2

22) T

Be =
where I'(+) is the (Euler) Gamma-function. We use the
Gamma-function either with a positive integer param-
eter n or with a parameter n + % for a positive inte-

ger n. In these cases the Gamma-function is given by
I'(n+1) =n!and

rn+s) -

(See [22], p.178.) Observe also that

o) - (-3 (1)

> -l
> (n- 1)1
By definition, it is easy to verify that for an integer ¢,

0>2, B = O(%72).

(2n)l/7

(2.3) o

N
ol

3 Behrend’s Proof

The state-of-the-art lower bound for wv(n) due to
Behrend [10] states that for every positive integer n,

(3.5)

v(in) = Q

n
(22\/§\/logn . 10g1/4n> ’

In this paper we improve this bound by a factor of
O(v/logn), and show that for every positive integer n,

_ n logl/4
(3.6) v(n) = 9(22\@@ log n> .

Note that it is sufficient to prove this bound only for
all sufficiently large values of n. The result for small
values of n follows by using a sufficiently small universal
constant ¢ in the definition of Q2-notation.

We start with a short overview of the original
construction of Behrend [10].

Fix a sufficiently large positive integer n. The
construction involves a positive integer parameter k that
will be determined later. Set y = n'/*/2. In what
follows we assume that y is an integer. The case that y
is not an integer is analyzed later in this section.

Consider independent identically distributed ran-
dom variables Y7,Ys,...,Y:, with each Y; distributed
uniformly over the set [{0,y — 1}], for all ¢ € [{k}]. Set
Z; =Y2 for alli € [{k}], and Z = Zle Z;. Tt follows
that for all i € [{k}],

2
J? = %+9(y)~

Let puz = IE(Z) denote the expectation of the random
variable Z. It follows that

(3.7) Bz = §y2+@(k-y).

Also, for all i € [{k}], Var(Z;) = E(Z?) —

E(Z;)* = E(Y) — $y* + O(y*). Hence

Var(Z;) = y—4+@(y3)—y—4+@(y3) = i-y4—|—O(y3).
) 9 45

Hence

= byt (1+0(1/y))

4
P . 4-— 3
Var(Z) = k-y 45+O(ky ) T

and the standard deviation of Z, o, satisfies

oy = ﬁ-y?%-(uowy».

By Chebyshev inequality, for any a > 0,

(3.8)

1

]P(|Z—uz|>a'0'2)§ 5

a
Hence, for a fixed value of a, a > 0, at least (1 — 25)-
fraction of all vectors v from the set [{0,y — 1}]¥ have
squared norm ||v||? that satisfies

pz —a-oz <|pl*<pz+a-oz.

These vectors are now going to be used as numbers in
the (2y)-ary representation. Since all their coordinates
are at most y — 1, no base-2y carries are needed to add
two such numbers.



Note that each vector v € [{0,y—1}]* has an integer
squared norm. By the Pigeonhole Principle, there exists
a value T such that uz —a-0z <T < uz+a-oz such
that at least (1 — %) - m - y* vectors from the
discrete cube C' = [{0,y — 1}]* have squared norm 7.
Let S denote the set of these vectors. See Figure 1 for

an illustration. By (3.8),

3v6
20Vk - y2+1 2

1 1

> _
a2)

N (1

yk72

Vi

for a fixed positive constant ¢ = c(a). Set a = 2.
Now ¢ = ¢(2) is a universal constant, and consequently,

81=9 (%

-(1—06» "

.07

26V
set k = [v/2-logn]. It follows that

). To maximize the right-hand-side, we

= n
Sl = Q .
| | <22\/§\/logn_10g1/4n>

Observe that all vectors in S have the same norm
VT, and thus, for every three vectors v,u,w € S,
v # “E%. To obtain a progression-free set S C [{n}]
we consider coordinates of vectors from S as digits of
(2y)-ary representation. Specifically, for every vector
v = (v1,02,...,0) €S, let & = Zf:_ol vir1 - (2y)t. The
set S is now given by S = {0 | v € §}. Let f(:): S — 8
denote this mapping.
Note that for every v € S,

=n—1.

0 <9<y -1

Observe also that since S C [{0,y — 1}]*, the mapping
f is one-to-one, i.e., if v # u, for v,u € S, then ¥ # .
Consequently,

< n
Sl = |5 = Q .
| | | | <22\/§\/logn'10g1/4n>

Finally, we argue that S is a progression-free set. Sup-
pose for contradiction that for three distinct numbers
v, u,w € S, V= “JrT“’ Let w,v,w be the corresponding
vectors in S, v = (v1,v2,...,0k), u = (ug,uz,...,ug),
w = (wq,wa, ..., wg). Then

Al w k—1
A i+1 it+1 i i
v o= E — 5 (2y)" = E vit1 - (2y)"
i=0 i=0
However, since all the coordinates
V1, V2, e vy Uy Ul, Uy« v vy Uk, W1, W, . - ., W are in

[{0,y — 1}], it follows that v; = £ for every index

u+w

i € [{k}]. Consequently, v , a contradiction to
the assumption that ||[v|| = |Ju|| = ||w]||. Hence S is a
progression-free set of size Q(m)

logl/4n

Consider now the case that y = Lz/k is not an
integer number. In this case the same construction is
built with |y| instead of y. Set n’ = (2|y])*. By the
previous argument, we obtain a progression-free set .S
that satisfies

n/
S Q
| | <22\/§\/logn’ -1Og1/4n’>

0 "
22\/§\/logn . 10g1/4 n

k
Observe that X < (%) = 1+ @(%) = 1+
o \/logn
2(1/v2)\logn |
Hence |S| = Q <—22ﬁ ng»logl/‘ln), and we are

done.

4 Our Proof

In this section we present our construction of
progression-free sets S C  [{n}] with at least

Q (22@#@ log'/4 n) elements. Fix k = [/2logn],
and y = n'/F /2. Observe that

9k/2 1 Tog n
4.9 —_— < — 2 V2
(4.9) T S 35
1 Vlogn 9k/2
< y< 2 < I
2 2

For convenience we assume that y is an integer. If this
is not the case, the same analysis applies with minor
adjustments. (Specifically, we set y = [n'/¥/2]. By the
same argument as we used in Section 3, the resulting
lower bound will be at most by a constant factor smaller
than in the case when n'/* /2 is an integer.)

Consider the k-dimensional ball centered at the
origin that has radius R’ given by

k
~y> + O(ky) .

(4.10) 3

R/Q = uy =
(See (3.7).) By Chebyshev inequality, the annulus S of
all vectors with squared norm in [R'?—2-0z, R?+2-04]
contains at least % - y* integer lattice points of the
discrete cube C' = [{0,y — 1}]*.

The annulus & is far too thick for our needs, and
next we “slice” it into many very thin annuli. One

of these annuli will be later used to construct the



R
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Figure 1: The intersection S of the discrete cube C' with the sphere of radius R is depicted by the bold line.

convexly independent set W that was mentioned in the
introduction.

Fix a parameter g = € - k, for a universal constant
€ > 0 that will be determined later. Partition the (thick)
annulus S into [4[’721 = Cannuli 81, 8., ..., Sy, with the

annulus S; containing all vectors with squared norms in
the range [R? — 207 + (i — 1) - g, R?> — 207 + i - g), for
i€ [{¢—1}],and [R? — 207 + ({ —1)oz, R"* + 204] for
i = {. See Figure 2 for an illustration.

Observe that for distinct indices 4,7 € [{£}], the
sets of integer lattice points in &; and Sj are disjoint.
Thus, by the Pigeonhole Principle, there exists an index
i € [{¢}] such that the annulus S; contains at least

V) eV )

3k
2 F = Q-
v= 900

(411)

integer lattice points of C' N S. (The first inequality
is by (3.8).) In other words, there exists a radius
R = \/R? 207 +i-g for some i, that satisfies R? €
[R"? — 207,R"? + 20|, and such that the annulus S
containing all vectors with squared norm in the range
[R? — g, R?] contains at least Q(v/k-y*~2) integer lattice
points of C'NS. (The annulus S is defined by S = {b €
R*: |[b]|* € [R? — g, R%]}.)
By (3.7), (3.8), and (4.10),

(412) R?* < R?*+204
k
< §-y2+0(k-y)+0(\/E-y2)
s (o))
< = 1+0 | — .
< 3 7%

Let S be the set of integer lattice points of CNS. We
will show that that S contains a convexly independent

subset S with at least |S| > % integer lattice points.

Consequently,

S| > 181 _ Q(WVEky2) = Q(log4n — 2 ) .
( _) 2 22\/5\/103;17,
4.13

Consider the set S = f(S) constructed from S by the
mapping f described in Section 3. Since § is a convexly
independent set, by the same argument as in Section

3, |S] = |S|, and moreover, S is a progression-free
set. Hence |S| = Q <log1/4 n- W% , and our result

follows.

The following lemma is useful for showing an upper
bound on the number of integer lattice points in S that
do not belong to the exterior set of S, Ext(S). This
lemma is due to Coppersmith [16]. Intuitively, this
lemma states that for every non-exterior integer lattice
point b in our annulus, there necessarily exists a small
non-zero integer vector & which is almost orthogonal to
b. See Figure 3 for an illustration.

Let B (R?) denote the k-dimensional ball of radius
R centered at the origin, and B denote the set of integer
points contained in this ball. Denote T = R2.

LEMMA 4.1. [16] Let b € B\ Ext(B) be an integer
lattice point that satisfies T — g < ||b||> < T. Then
there exists a mon-zero integer vector & that satisfies
0< (b,0) < g and 0 < [|3]2 < g.

Proof: Since b € B \ Ezt(B), there exist inte-
ger lattice points ai,as,...,ay; € B, for some posi-
tive integer ¢ > 2, and constants p1,p2,...,p;, 0 <
P1,D2,---,P¢ < 1, such that Zlepi = 1land b =
Ele p; - a;. Since ai,as,...,ay € B, it follows that
llai]l?,||az]|?, ..., ||ae||* < T. Observe that there ex-
ists an index ¢ € [¢] such that (a;,b) is greater than or
equal to |[b]|?. (Otherwise, |[b]|*> = (Elepi - a;,b) =
Ele pi - {a;,b) < ||b]|?, contradiction.)
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Figure 2: The annulus S is sliced into thin annuli 5'1,5'2, e

Suppose without loss of generality that (a1,b) >
[[6]]>. Then {a; — b,b) > 0. Set 6 = a; — b. Since
a1,b € B are integer lattice points, it follows that §
is an integer lattice point as well. Moreover, since
0 < p1,p2,---,p0 <1, we have § # 0. Moreover,

T > laal® = b+l = [[bl* +2(b,0) + llo]|* -

Recall that ||b||? > T — g. Hence 2(b,6) + ||5]|*> < g. As
(b,8) = (a1 — b,b) > 0, it follows that (b,4),||d]]* < g,
as required. [l

Since ||6]]> < g = €k, and since § is an integer
vector, we conclude that 4 may may contain at most
€ - k non-zero entries. This property will be helpful for
our argument.

Denote the number of integer vectors ¢ that have
squared norm at most g by D(g). The next lemma
provides an upper bound on ﬁ(g)

LEMMA 4.2. For any ¢ > 0 and g as above, there
exists 1 = n(e) > 0 such that lim.on(e) = 0, and
D(g) = O(2"*).

Proof: Fix an integer h, 1 < h < g. First, we count the
number N (h) of k-tuples (q1, g2, . . ., gr) of non-negative
integer numbers that sum up to h.

Consider permutations of (k — 1 + h) elements of
two types, with h elements of the first type and k — 1
elements of the second type. Elements of the first type
are called “balls”, and elements of the second type
are called “boundaries”. Two permutations ¢ and o’
are said to be equivalent if they can be obtained one
from another by permuting balls among themselves, and
permuting boundaries among themselves.

Let IT be the induced equivalence relation. Observe
that there is a one-to-one mapping between k-tuples
(g1,q2,...,qr) of non-negative integer numbers that
sum up to h and the equivalence classes of the relation
IT. Hence N(h) is equal to the number of equivalence

classes of I, i.e.,

(k— 1+ h)!

N(h) = (k— 1)l Al

_ (k—=1+h

- ()
In a k-tuple (01, d2, ..., dx) of integer numbers such that
Ele 82 = h, there can be at most h non-zero entries.
Hence, for a fixed k-tuple of integers (q1, qa, - - -, g ) such
that Zle ¢; = h, there may be at most 2" k-tuples
(61,02,...,0;) of integers such that 6? = ¢; for every
index i € [{k}]. Thus, the overall number D(h) of

integer k-tuples (01,92,...,0;) such that Zle 82 =h
satisfies

D(h) < 2h-N(h):2h(k_llz+h) .

Note that (kfilfh) < (k7;+g), for every integer h,
1 < h < g. Hence the number ﬁ(g) of integer k-tuples
(01,02,...,0;) with 1 < Zle 82 < g satisfies

g9

Dlg) = S.D(h) < S 2" N(n)
h

h=1 -
< N(g)-27! < 29+1.<’f+9>
g
9 ek

< gor1 (eEE9NT _ 2 20y (141

< p 6

— 9.9(log 2e+log(1+1))e-k .
Denote 77 = 7(e) = e(log2e + log(1 + ¢)). Then
D(g) <2-279%. Finally,
i . log(1 + ) 1 In(1+y)
iyt =ty PO L MOS0

completing the proof. |
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Figure 3: The annulus is depicted by bold curves. The integer vectors b and § are almost orthogonal, and ¢ has a very

small norm.

Consider again the annulus S = {b € R :T—¢g<
[[b]> < T}, T = R?, and the set S of integer lattice
points of S. For an integer vector § that satisfies 0 <
6] < g, let Z(8) denote the set of integer lattice points
b e S that satisfy 0 < (b, §) <g. Let W) = Z(6)nC
denote the intersection of Z (0) with the discrete cube
C = [{0,y — 1}]*, and let W(8) = |W (6 )|- Also, let
W =U{W(6):0 < [3|* < g}, and W = |W].

Let N denote the set of integer lattice points of
C'N'S that do not belong to Ext(B), and N = |N|. By
Lemma 4.1, N C W. Consequently,

(4.14) N<WwW< )
0<ll6][2<g

W (o) .

Fix a vector d, 0 < ||4]|> < g. In the sequel we provide
an upper bound for W (4).

Observe that since W (0) is a set of integer lattice
points, it follows that for every b € W (4), (b,8) €
(0.9} A

For an integer number h € [{0,g}], let W (d,h)
denote the subset of W () of integer lattice points b that
satisfy (b,0) = h. Let W(8,h) = |[W(8,h)|. Observe
that for distinct values h # h', h, b’ € [{0, g}], the sets
W (0, h) and W (3, R’) are disjoint. Consequently,

zg: W5, h) .
h=0

Next, we provide an upper bound for W (4, h).

Consider the hyperplane H = H(8,h) = {a € R" |
(a,8) = h}. Observe that W(8,h) = HNS N C is the
intersection of the hyperplane ‘H with the annulus S and
with the discrete cube C.

(4.15)

Let S denote the k-dimensional sphere with squared
radius T centered at the origin, ie., S = {a € R" :
[la]|* = T}. Consider the mtersectlon S’ of S with the
hyperplane H.

LEMMA 4.3. 8" C H is a (k — 1)-dimensional sphere

with squared radius (T — ﬁ) centered at W - 4.

Proof: For a vector « € SN'H,

k

h h
o — 5 2 = Q; — 5¢ 2
h? h h?
I S SN TN L
GEERGE GE

(For the last equality, note that since @ € H, we have
(a,0) =h.) 1

Recall that for a vector « € S, T — g < ||af|?> < T.
Hence the intersection of the hyperplane H with the
annulus S is the (k — 1)-dimensional annulus &’ C H,
centered at | 5}1|2 - 0, containing vectors « such that

h? h h?
T=9- o < o= dIF < T 5
Let T/ =T — \15\2\2' Then &’ is given by
(4.16) 8’ = {ae™:
T g<lla—— s <1}

||5||2

Note that since h > 0, it follows that 77 < T for all h
and 6. (By definition, it also holds that S’ = HN S.)



Recall that our goal at this stage is to provide an
upper bound for the number W (4, k) of integer lattice
points in W(6,h) = HNSNC = 8 NC. Let C =
[0, — 1]* be the (continuous) cube. (The discrete cube
C = [{0,y—1}]* is the set of integer lattice points of C.)
Let W = &' N C be the continuous version of W (4, h).
Since W((S, h) is the set of integer lattice points in W,
we are interested in providing an upper bound for the
number of integer lattice points in W. Our strategy is to
show an upper bound for the (k—1)-dimensional volume
Vol(W) of W, and to estimate the discrepancy between
Vol(W) and the number of integer lattice points in WW.

Note that since W C &', it follows that Vol(W) <
Vol(S’). However, this upper bound is too crude. (In
particular, it is greater than our lower bound (4.13)
on the volume and on the number of integer lattice
points in S.) Instead we will show that if the axes are
rotated appropriately, then W becomes contained in the
intersection of the annulus &’ with a relatively small
number ¢ of octants. Therefore, its volume is at most
Vol(S') - z+. (Because 27! is the overall number of
octants.) Our estimate for ¢ is ¢ < 29 = 2 and thus
this upper bound is smaller than the trivial one by a
factor of 2%,3: = 2= (1=9k+1 Gince y = ©(2%/2), this is
very significant.

Let H' = {a € R" | (a,§) = 0} be the parallel
hyperplane to H that passes through the origin. Next,
we will construct below an orthonormal basis T =
{71,725+ -,Vk—1} for H'. The axes will be rotated so
that the vectors of T will become the new unit vectors
of H'.

Recall that & satisfies 0 < ||6]|> < g = € -k, and it
is an integer vector. Consequently, § = (01,09, ..., k)
contains at most g = e-k non-zero entries. Let I C [{k}]
be the subset of indices such that §; # 0. Let m = |I|.
It follows that m < g =€ - k.

For every vector a = (a1, as, . ..

that
(4.17) > aidi=0.
iel

,ar) € H', it holds

Let v(0, 4 ~(m=1) be an arbitrary orthonormal
basis for the solution space of the equation (4.17). These
vectors are in R™. For each index j € [{m — 1}], we
view the vector 7) as 4 = (’yi(j) | i € I). (In other
words, fyi(J ) is the ith coordinate of the vector 7))
We form orthonormal vectors
4O 4@ 4m=h) e R* in the following way.
For each index j € [{m — 1}], and each index i € I,

the ith entry ’yi(j) of 41) is set as 7,7, and for each

index i € [{k}] \ I, the entry 'Ayi(j) is set as zero.
(The vectors 40,52 . 4(m=1) agree with vectors
A1 4@ 4= on all entries with indices from

I, and have zeros in all other entries.) In addition,
for each index j € [{k}] \ I, we insert the vector
& = (0,0,...,0,1,0,...,0), & € R, with 1 at the jth
entry and zeros in all other entries into the basis T.
Observe that & € H', ie., (§,d) = 0. The resulting
basis T is {41, 4@ ... 4m=Dyu{g; : 5 € [{k}\ I}
It is easy to verify that T is an orthonormal basis for
H.

Order the vectors of T so that 4) = v, for all j €
[{0,m — 1}], and so that the vectors {§; : j € [{k}]\ I}
appear in an arbitrary order among Yy, Ym+1s - - - Ve—1-

Move the origin to the center W -0 of the annulus
&', and rotate the annulus so that new axes become the
colinear with vectors v1, 7y, . .., Yx—1 of the orthonormal
basis Y. Obviously, this mapping is volume-preserving.

For a vector ¢ € H', let (1[Y], (Y], ..., Ck—1[Y]
denote the coordinates of ¢ with respect to the basis T,
ie., G[Y] = ((— W -0,7;). Observe that since (d, ;) =
0 for all ¢ € [{k — 1}], it follows that [Y] = (¢, ), for
alli e [{k—1}].

LEMMA 4.4. For a vector { € W = 8'NC, and an index
i€ [{m,....,k—1}], we have §[Y] > 0. In particular,
¢ has at least (1 — €) - k non-negative coordinates with
respect to the basis Y.

Proof: Note that for every index i € [{m,k — 1}], all
entries of 7; are non-negative. (Because these are the
vectors &, j € [{k}]\[ of the standard Kronecker basis.)
Since ¢ € C = [0,y — 1], it follows that for all indices
i € [{m,k — 1}], the ith coordinate of { with respect to
the basis T is non-negative, that is, ;[Y] = (¢,v;) > 0.
Hence ¢ has at least (k — 1) — (m —1) > (1 —¢€) - k
non-negative coordinates with respect to the basis T.

Recall that W C &', and the annulus S’ is given by

(with respect to the basis T)
S ={aeR1:T —g<|la <T}.

Let

Q = {aeR"!:

T'—g <|lal]* T, ¥i € [{m,k—1}],as[T] > 0}
be the intersection of &' with the (k — m) half-spaces
a;[Y] > 0, for all i € [{m,k —1}]. Let S” be the

intersection of the annulus S’ with the positive octant
(with respect to 1), i.e.,

§' =fae®N T —g< ol <T}.

It follows that W C Q. Hence Vol(W) < Vol(Q) =
2m=L. Vol(S") < 2¢k=1. Vol(S").
Next, we provide an upper bound for Vol(S").



LEMMA 4.5. For a sufficiently large integer k,

k/2
VOZ(SH) <g- (776) . yk—3 . 20(@) .

6

Proof: Let R’ = V/T'. Observe that R’ < R = T.
Let Bx—1 be the volume of the (k — 1)-dimensional ball
of unit radius. Then

Vol(8") = 581 (T') = — (T’ — g)"=). Note that

k—1

k-1 g 2 _
(RI2 _g) > — ( o ﬁ) le 1
k—1 gk —1)
> R <1 - 2R'2
> R R34
Hence by (2.2),
1 )
(4.18)Vol(S") < = kg Br1- R*3
1 =
T
< — kg . RF-3
R =y
k .
By (4.12), T = R* < % -y? (1+O(ﬁ)), and so
R< gy(l—FO(ﬁ)) Hence
1 BT
1" w2 k-3 oO0O(Vk)
< kg N ) ) )
Vol(S8") < ET k-g P(%) <3> y 2

By Stirling formula, if k41 is even then for a sufficiently
large k,

p(EEDN (k-1 o [E-1 () T
2 - 2 it

By (2.4), if k4 1 is odd then for a sufficiently large k,

() = o5

Y
“"ﬁ
N
N |

|

—_
N——

> T /F
V2 2 ez L
e 1 (% —1)k/?
B \/§ kE_1q es
2
k % 1 2 %
_ome (5)7-(1-%)
-V es
1 kk/2
> .
~ VEk (2e)F/2

Hence in both cases, for a sufficiently large k,

k
P(w) > 1k .
2 vk (2¢)%
Consequently,
Vol(S") <
k k k—3
< (k L m3VEQe)? k7 s Lo
- .g) k—1 k T3 Y :
2 ﬁkQ 372
N
=3 Te\s  g_
= 0Q1) (k- g) k> \/E(F) LyE=8 . 90(VE)
k
e\ 2 k—3 O(\/E)
< g-|— . . .
=9 (6) yo o2 i

We conclude that

Vol(W) < Vol(Q) < 27 1. Vol(S") <
1 5

e .
< Z. .26k.(_) yF3 . 90(VE)
=35 g 6 Y

Since IZV C Q, the number W (J, k) of integer lattice
points in W is at most the number @ of integer lattice
points in . In Section 6 we will show that @ is not

much larger than Vol(Q). Specifically,

(4.19)

k
(4.20) Q < LO() | gek (%6)5 yk3 . 90(Vk)
We remark that this estimate is quite crude, as it
says that the number @ of integer lattice points in Q
cannot be larger than by a factor of k(1) than Vol(@).
However, it is sufficient for our argument.
Next, we put all parts together and complete the

proof. By (4.20),
(4.21) W(,h) < Q <

< KO . gek (%)

(Ve

LyF3 . 20(VR)
By (4.15),

W () = zg:W((S,h) <
h=0

< (g+1) kKOMW .2k, (%e) L yk=3 . 20(VR)

Hence by (4.14), the overall number N of integer
lattice points in C'N' S that do not belong to Fxt(B)
(and thus, do not belong to Fzt(CNS), because S C B)

satisfies
> W) <

0<|1s][*<g

N
Te\s g A
LOM) | gk (F) TLyEm8 . 20VR) L Pg) .

N <

IN



Recall that ¢ < k. By Lemma 4.2, and since for a
sufficiently large k, k€1 < 20(‘/E), it follows that

k
ok (TENZ : "
kO(l).Q-k.(F)z yF 3.20(ﬁ).0(2n ky =

—  9(etn(e)+0(1/VE)+5 log 7# )k |

N

IN

yk—B .

By (4.11), the set S of integer lattice points of C' NS
contains

3 = QevE-y+?)

integer lattice points. Let ¢’ > 0 be a universal constant

ouh hat |83 V4. By (10), > 2F. Honeo
the inequality
k/2
y = 2 > 2. 1 9((e+n(e)+O(1/VR)+4 log %) -k
- 4 ek
(4.22)

holds whenever € > 0, k is sufficiently large, and € and
k satisfy

1> 10g%6+2-(6+77(6))+0<%) .

By Lemma 4.2, lim._,g n(e) = 0. Thus, for a sufficiently
small universal constant ¢ > 0, and sufficiently large
k, the inequality (4.22) holds, and thus |S| > 2N.
(More specifically, one needs to set € so that 0 <
2-(e+mn(e)) < 1—log%.) Hence the set S contains a
subset S of integer lattice points that belong to Ext(B),
and moreover, by (4.13),

(4.23) S|

= Qe-VE-y*?) =
_ /4, n
= Qlog”"n 2 —1ogn)'

Finally, we argue that our construction can be
implemented by a deterministic algorithm that requires
time m, for an arbitrarily small ' > 0. The
algorithm starts with computing the values R'? — 2 -
oz +i-g, fori e [{0,£—1}], and R? +2-0z. (See
the beginning of Section 4.) These values determine
the minimum and maximum values of vector norms in
the ¢ annuli 31,32, e ,Sg. This computation requires
O() = Oloz/g) = Oly) = O(n'/*) = 200l
time. Next, for every point b € C = [{0,y — 1}]%,
the algorithm tests whether this point belongs to one
of the annuli. If it does, it adds the point b into the set
of elements of the respective annulus, and increments
the size counter that corresponds to this annulus. In
the end of this computation (which requires O(y* - k)
time), for each annulus S; the algorithm knows its size

s;.  The algorithm selects the annulus S; with the
greatest size. Then for each point b € &;, and for
every vector § such that 0 < [|6]|? < g, the algorithm
tests whether 0 < (b,d) < g. If this is the case, the
algorithm removes the point b from Si. (By Lemma
4.1, the resulting set is convexly independent.) By
Lemma 4.2, the number of vectors & as above is 27%,
for n > 0 being an arbitrarily small constant. Thus
this computation requires at most O(y* - 27 - k) time.
Finally, the algorithm outputs the numbers that are
associated with the vectors that are left in S;. By
(4.23), there are Q(log!/*n - W) numbers in this

set. Since n = (2y)*, and k = [1/2-log, n], it follows

that the overall running time is at most

k
oWt 2m) < o2 = 0B g
n n
= O(Qk(l—n’)) - 0(2\/5(1777')\/@)

for an arbitrarily small constant ' > 1 > 0. Note that
this running time is sublinear in n, but superlinear in
the size of the output.

5 A Convex Hull of the Lattice Points of a
Large Ball

Consider a k-dimensional ball B = B(T) of squared
radius T = R? centered at the origin. Suppose that
k > 5 is a fixed constant, and R tends to infinity. (We
will later extend the proof to cases k = 4 and k = 3. For
the case k = 2 there is a classic construction of Jarnik
[27] that can be efficiently implemented.)

In 1963 Andrews [6] has shown that Fzt(B) =
O(Rk_2+ﬁ). Much more recently Barany and Lar-
man [9] proved the tight lower bound Ezt(B) =
Q(Rk_2+ﬁ). For small values of k the problem was
studied in [7, 8]. The proof of Barany and Larman
[9] is quite elaborate. In particular, it employs the
Flatness Theorem of Khintchine [28]. In addition, the
proof of [9] does not give rise to an efficient algorithm
for constructing a set of Q(Rk_2+%) convexly inde-
pendent vectors with norm at most R each. Next, we
provide a simple and (almost) self-contained proof that
|Ext(B)| = Q(Rki%k%l). (The proof uses standard
estimates for the discrepancy between the volume of a
large ball and the number of integer lattice points in
it.) Later in the sequel we convert our proof into an ef-
ficient algorithm for constructing a large set of convexly
independent k-vectors of bounded norm.

Let ¢ = g(R) > 0 be a large number that tends
to infinity as R grows. The precise dependence of g
on R will be determined later. Let A = A(T,g) =
B(T)\B(T—g) be an annulus with squared radius 7" and



squared width g centered at the origin. As §; = ©(1),
the volume of A, Vol(A), satisfies

(5.24) Vol(A) = Vol(B(T)) — Vol(B(T — g)) =
= P (T2 = (T —9)"%) = T g) .

The number A(A) of integer lattice points in A satisfies
A(A) > A(B(T)) — A(B(T — (g — 1))). By standard
estimates (see, e.g., [4]),

(5.25) |A(B(T)) — Vol(B(T))| < O(T57Y),
and thus,
(5.26)  A(A) > Vol(B(T)) —

—Vol(B(T — (g—1))) —O(T3 ") =
= QT3 '.g).

Next, we show that if g is not too large, then at most
a constant fraction of integer lattice points of A do
not belong to Ext(B). This will imply that Ext(B) =
Q(A(A)) = Q(TE ).

By Lemma 4.1, it is sufficient to provide an upper
bound on the number of integer lattice points in [J{AN
H(S,h) : 0 < ||8]|> < g,0 < h < g} (with h and & being
an integer number and vector, respectively). Observe
that we need only to count the integer lattice points in
H(5,h) for 6 with ged(d) = 1. This is because for a
vector 0 = ¢-¢’, for an integer ¢ > 0, each integer lattice
point « € H(d, h) belongs to the hyperplane H(d, h/c)
as well, and h/c = (8, a) is an integer.

Fix some integer value j, 0 < j < g, and consider
a vector § with [[§]|> = j. The number rp(j) of
integer vectors § on the surface of the k-dimensional
sphere of squared radius j centered at the origin satisfies
r(j) = 0(j21). (See, e.g., [4].) For each fixed &
and h, the body (ANH(J,h)) is a (k — 1)-dimensional
annulus of squared radius at most T and squared width
at most g. (See Lemma 4.3 and equation (4.16).) Hence
its volume is O(T%_1 - g). Moreover, this annulus is
contained in the hyperplane H = H (4, h), and the lattice
of integer points in H has determinant ||4||. It follows
that the number of integer lattice points in AN H is
H%H 0Tz % .g) = % -O(T%% . g). Summing up over
all possible integer values of h, 0 < h < g, we obtain at
most

U AnHEw) =
0<h<g

integer lattice points.
k
Since there are 7;(j) = O(j21) possible integer
vectors § with ||6]|? = j, it follows that

{ANH@.h) 0 <h < g [|8]* =5} =

Finally, the value of j runs over all positive integers that
are no greater than g. Hence the total number of integer
lattice points in A = B(T")\ B(T'—g) that do not belong
to Ext(B(T)) is at most

g
(5.27) W = Zo(j%—% T g?) =
j=1
B3 E_1 k=3 k43
= O(T > .92).92 2 =0T 2 -g2)

By (5.26), A(A) = Q(g- T ). We set g to be the
largest value so that the inequality W < 2 A(A) holds.
In other words, g = c- TFT = C-R’CLH, for a sufficiently
small universal constant ¢ > 0. (Observe that g = g(R)
tends to infinity as R grows.)

For this choice of g, it holds that

(Brt(B)] > 5A(4) = TR = a(RbHE) .

This proves the theorem of Barany and Larman [9]
for K > 5. Next, we discuss the cases £k = 4 and
k = 3. We start with £ = 4. The right-hand-side in the
estimate (5.25) for the discrepancy between A(B(T))
and V(B(T)) becomes O(T-log?/3 T) [4]. Hence to carry
out the proof we will need to set g = w(log2/3 T). Also,
for k = 4, the value of ri(j) is no longer bounded by
75~ However, r4(j) = O(c(j)), where o () is the sum
of the divisors of j. The function o(j) can be bounded
by o(j) = O(jloglogj). (See, e.g., [26], p.266.)
Hence the inequality (5.27) becomes
O(T¥g¥ loglog g), and g has to be set as

W:

1
TrE+T

o — _)-o <7T” : )
g = ) = .
(loglog T)#+1 (loglog T")2/%

E_141 12/5
Hence |Ezt(B)| = Q2 <m> =0 (W).
This estimate is weaker than the optimal estimate
(due to Barany and Larman [9]) by a factor of
O((loglog R)?/%).

Next, we turn to the case k = 3. Here the estimate
(5.27) becomes A(B(T)) — V(B(T)) = O(T?/3 - 10g° T
[4]. Hence we need to set g so that T5~1.g=T3 .g =
w(T?3 10g®T), ie., g = w(T% log® T'). To provide an
upper bound on r3(j) we use Siegel’s Theorem [38].

THEOREM 5.1. For any € > 0, r3(j) = O(j27), where
the dependence on € is hidden by the O-notation.

Propagating this change through our analysis we
— 1
obtain W = O(T¥gk§3+e). Hence g = ©(TF1+%) =

T/4=0) and |Ezt(B)| = R2=°(9). This estimate is




weaker than the estimate of [9] by a factor of RO(9),
where € > 0 is an arbitrarily small constant.

Next, we use our proof to devise an efficient algo-
rithm for constructing large convexly independent sets
(henceforth, CISs) of k-dimensional vectors with norm
at most R. For k = 2 the construction of Jarnik [27]
(see also [17]) yields directly an efficient algorithm for
constructing such a CIS with an optimal number of
Q(R?/3) vectors. The running time of this algorithm
is O(R?/? -log R), which does not leave much room for
improvement. Hence we restrict our attention to the
case k > 3.

The trivial approach to the problem is to invoke
one of the algorithms for computing extreme points
of a convex hull of an arbitrary set of n points on
the set S of integer points of the ball of radius R
centered at the origin. Observe that n = |S| =
O(RF). Moreover, the size of the output, that is, the
number of vertices in the convex hull of S, is ¢ =
@(Rk72+ki+1) = G(nl_%'kﬁ). For k = 3 there is an
algorithm of Preparata and Hong [32] that requires O(n-
logn) = O(R? - log R) time. For k > 4 the best-known
output-sensitive algorithm for computing convex hulls
has running time O(nlogq + (nq)l_m . logo(l) n)
[14]. Substituting ¢ = @(nlf%Jrﬁ), we get the
bound of O(nz_ﬁ'km 1og?M n) for even k, and

O(nzf}ﬁ 10g®M n) for odd k.

Next, we describe the algorithmic version of our
proof, and analyze its running time. We initialize a set
S to contain all k-vectors b of squared norm between
T—gand T,ie.,T—g<]|b||> <T. For each b € S and
for each integer k-vector § of squared norm at most g,
we compute the scalar product (b,d) and test whether
0 < (b,6) < g. Ifit is, we remove b from S. After testing
all vectors b the algorithm returns the set S.

More specifically, we fix a vector §, and for each
integer j, 0 < 7 < g, we list all points b that satisfy
T —g < |b]]? < T and (b,8) = j. To do it we test
for each possible (k — 2)-tuples (b1, b2, ..., bk—2), —R <
b; < R, for 1 < i < k — 2, whether there are possible
values of by_; and by such that both T —g < [|b||? < T
and (b,0) = j hold for b = (by,ba,...,bx). For each
(k—2)-tuple (b1, ba, ..., bk—2), all possible pairs bx_1, by,
as above can be computed in O(1) time. Thus, this step
requires O(RF~2) time. Since we do it for each of the
g + 1 possible values of j, 0 < j < g, for each fixed
vector § the running time is O(R*~2-g). Since there are
O(g*/?) possible values of vector § (since it is an integer
vector with squared norm at most g), it follows that
the total running time is O(R¥=2 - g5+1) = O(R*2 .
R%) = O(Rk_l‘kﬁ) = O(nl_ﬁ). (Observe that
the output size, which serves also a lower bound on

the required time, is Q(R’“Hﬁ) = Q(Rk(l_ﬁ ) =
Q(nl_ﬁ)) See Table 1 (in the introduction) for a
concise comparison between the values of the exponent
7 in the running time O(nY) of our algorithm with
the running time of the previous best known algorithm
(that computes extreme points of the convex hull of an
arbitrary body).

6 Discrepancy between Volume and Number
of Integer Lattice Points

Consider the annulus &' = {a = (a1, 9,...,a5-1) €
R"™ | T — g < ||a||?> < T}, and its intersection Q
with the half-spaces a; > 0 for all i € [{m,k — 1}].
In this section we argue that the number @ (denoted

also by A(Q)) of integer lattice points in ) is not much

larger than Vol(Q). Specifically, we show that
k/2
028 @ = 2000k (T s

This proves (4.20), and hence completes the proof of our
result.

Consider the (k — 1)-dimensional ball B of squared

radius ¢ centered at the origin, for some sufficiently large
t > 0. Let A(B) denote the number of integer lattice
points in B. For a positive integer j, let V;(t) denote
the volume of the j-dimensional ball of squared radius
t centered at the origin. It is well-known (see, e.g., the
survey of Adhikari [4]) that for a constant dimension
k—1, |JA(B) — V(B)| = O(Vi_3(t)). However, in our
case the dimension k — 1 grows logarithmically with t.
Fortunately, the following analogous inequality holds in
this case:
(6:29)  |A(B)—V(B)| = KOO - Viy(t) .
We prove (6.29) in the sequel. It is worth mentioning
that Vi_3(t) is almost as large as the volume of the
annulus &', and consequently, one has to provide quite
precise estimates for the discrepancy between A(DB)
and V(B). In particular, a crude estimate of 20(%) .
Vi—3(t) would not be sufficient for our argument, but
rather a polynomial dependence in k is needed, i.e.,
kO . V,._3(t). Providing such a precise estimate in a
(k—1)-dimensional space with the dimension growing to
infinity logarithmically in the radius of B is technically
somewhat involved.

Another subtle point is that we have rotated the
vector space to move from the standard Kronecker
basis to the orthonormal basis Y. (In fact, T is an
orthonormal basis for the hyperplane H’, but it can be
completed to an orthonormal basis for R* by inserting
the unit vector H%H into it.) Consequently, the integer
lattice was rotated as well, and so in our context A(B)



and A(Q) are actually the numbers of points of the
rotated integer lattice that are contained in B and
in Q, respectively. It is easy to see that the set of
points of the integer lattice that lie in B is in one-to-
one correspondence to the set of points of the rotated
integer lattice that lie in B. On the other hand, this is
not necessarily the case for Q However, we argue below
that the estimate (6.29) and its analogue for Q apply
for the rotated integer lattice as well, for any rotation.
Recall that m = |I|. Let

(6.30) Qest = {a=(a1,9,...,a5-1) € RFL .
||0¢||2 <T', a; >0 for all i > m}
(6.31) Qint = {a=(a1,a9,...,a5_1) € R

lla|> < T —(g+1), a; >0 for all i >m}
Observe that Q C Qeut \ Qint. Also, let Z denote

(6.32) Z = {a=(ai,a,...,q,_3) € RF 3.
lla||*> < T’ a; >0 for all i > m} .

The set Qeqt (respectively, me) is the intersection of
the (k — 1)-dimensional ball of squared radius T” (resp.,
T’ — (g +1)) centered at the origin with the half-spaces
«; > 0 for all ¢ > m. The set Z is the intersection of the
(k — 3)-dimensional ball of squared radius 7" centered
at the origin with the half-spaces «; > 0 for all i > m.
The analogue of (6.29) that is required for our argument
is
(6.33) |A(Qeat) — Vol(Qear)] = KOV - Vol(Z) .

Given (6.33) we show (6.28) by the following argu-
ment.

A € me k/2 —_

LEMMA 6.1, A(Q) = 20(VF) . gk . (me)™= yk=3,
Proof: By (6.33),

A(Q) A(Qeat) — A(Qint)

Vol(Qeut) + KON - Vol(Z) —

— Vol (Qint) + +k°V - Vol(2)

= (Vol(Qeat) — Vol(Qint)) + kO - Vol(Z).

Observe that Vol(Z) = 2%—; Bz (T")*=*. Also, since
T’ is much greater than g,

VOZ(Qemt) - VOl(ant) =

<
<

2ek ko1 , Eo1
= o= A (T (T =g+ 1))
ock k-3
< O() o B (g4 1) (1)
Hence
- 2€k
AQ) < O1)- o3 (KW - B3 +

3

th g+ 1) Bror) (1)

Since Bx—3 = O(k - Bx—1) and g < k, it follows that

5 o . 2% N
AQ) < KOU - S By - (T)5
By (4.12),ka <t y*(1+0(7z)). Also,
—1
_ w2
Br—1 = T Hence

A(Q) = 2000 . ek (%)’”2 L

Hence it remains to prove (6.33). Our proof is
closely related to the argument in [22], pp. 94-97, and
is provided for the sake of completeness. In addition,
our argument is more general than the one in [22], as
the latter argument applies only for balls, while our
argument applies for intersections of balls with half-
spaces.

Fix m to be a positive integer number. (In our
application m = |I|.) For positive integer numbers
k and t, let Q(t) denote the intersection of the k-
dimensional ball By(t) centered at the origin with
squared radius ¢ with the half-spaces H® = {a =
(a1,0,...,ak) | a; > 0}, for all i@ > m. Let Vi(t)
denote the volume Vol(Qy(t)), and A(t) denote the
number of points of the rotated integer lattice in Q/(¢).
Note that V() = W}({,ﬁi’;&m -t*/2. The next lemma
provides an upper bound for the discrepancy between
Vi(t) and Ag(t) in terms of Vi_o(2).

LEMMA 6.2. For a sufficiently large real t > 0 and an
integer k > 5,

[ Ak(t) = Vi(t)] = Ok - Viea (1)) -

Remark: This lemma applies even if k = k(t) is a
function of t.

Before proving Lemma 6.2, we first provide a num-
ber of auxiliary lemmas that will be useful for its
proof. We start with Euler Sum-formula ([22], Satz 29.1,
p.185).

LEMMA 6.3. For a real-valued function f(u) differen-
tiable in a segment [a,b],

b
>0 = [ fdut o) s -

a<t<b .
—M@f@+/¢@%ﬂMM,

where P(u) =u— [u] — 3.

In addition, we will use the following property of
the function ().



LEMMA 6.4. For any two real numbers k and A, k < )\,
-1/8 < f w)du < 1/8.

Proof: The function v is periodic with period 1. Its
integral is 0 over each complete period. Hence the
integral is maximized by setting x = ¢ + 1/2 and
A = i+ 1, for some integer i. Hence the integral is
at most 1/8. Analogously, the integral is minimized by
setting k = i and A = i+ 1/2, for some integer i. Hence
it is at least —1/8. |}

Next, we use Lemma 6.4 to derive another useful
property of the function ().

LEMMA 6.5. For a positive real numbert and a positive
integer p > 2,

Vi
|/0 w-p(u)(t — ) E | < 5T

Proof: Since f(u) = w is a monotone increasing
function, there exists ¢ € [0, /¢] such that

NG ) i p
/ wip(u)(t—u?) " du = Vi / W) (t—u?) 5 Ldu .
0 13

Since g(u) = (t — u?)2~! is a monotone decreasing
function in [¢, /1], there exists 7 € [€, \/_] such that the
right-hand-side is equal to /7 - (t — £2)2~! fn

By Lemma 6.4,

Vit — )5 /5 " plu)du] <

< VB (E-)E < VT =

Note also that

NG
(6.34) |/ u-P(u)(t —u?)2 du| <
1
—3
<2t Lo o
5 <

IN
"
w|‘?
/N
[\)
|-
N—

We are now ready to prove Lemma 6.2.

Proof of Lemma 6.2:

We prove by induction on k that there exists a
universal constant ¢ > 0 such that

(6.35)  [Ak(t) = Vi(t)] <
k—1 ~
< c-Z\/E (1+W> Vi—a(t) .

The constant ¢ will be determined later.

The induction base is k = 5. It is well-known (see,
.g., [4]) that |A5(t) — Vs(1)] = O(Va (1)) = O(*/2).

Next, we prove the induction step.

In all summations below, £ is an integer index. The
analysis splits into two cases. The first case is k+1 < m,
and the second is k + 1 > m. In the first case

Apa(t) = D At-1) =
el <vE
> t-)+
| <vE
+ ) (ARt —02) = Vit — %),
0| <vi
and so
A (t) = D Vit =) =
l0<Vi
= | Z (Ap(t —07) = Vi(t — )] <
e <VE
< Z [Ag(t = 02) = Vi(t = £2)] .
0 <vi

In the second case the same inequalities apply, but the
index £ runs in the range 0 < ¢ < v/t in all summations.
It turns out to be more convenient to have the index ¢
vary in the range —% < ¢ < +/t rather than 0 < ¢ < /%
in these summations.

By the induction hypothesis (that is, by (6.35)),

|Ap(t — ) = Vi(t — £%)] <

< ckzj\/} <1+2%/E>-Vk_2(t—£2).

Hence
(6.36) |Apra(t) — Y Wa(t—£%)] <
le|<vt
k—1
< CZ\/E <1+—> ZVk 2t—€2
J=1 le|<vt

Next, we estimate 3, <7 Vi(t — ¢?) via BEuler Sum-

formula (Lemma 6.3). In the first case, we substitute



= Vt, and f(u) = Vi(t — u?). Then

f(a) = f(b) = V4(0) =0, and

By Lemma 6.3 it follows that

S V- =

(6.37)

le|<vi
vt _
= / Vie(t — u?)du —
Vit
\/E k
—k - Bk/ Y(u)(t —u?)? Tudu .
Vit
In the second case (k > m — 1), a = —%, b= +/t, and
again f(a) = f(b) = 0. Also,
df 1 _
du() —ﬁk'm ke(t—u?®)?tu,
and thus,
(6.38) Yoo oWt-) =

In the first case, since h(u) = uw(u) is an even function
on R\ Z, the right-hand-side in (6.37) is equal to

Vi Vi )
/ Vk(t—uQ)du—2k-ﬁk/ Y(u)(t —u?)2  udu .
Vit 0

Let J denote |f0\/zu p(u)(t — u?)5~'du|. By Lemma

6.5 J<tT

S V- =

1<V

. Hence

vt
:/ Vie(t —u?)du — 2kBy - J =
NG

= Vi1 (t) — 2k - J .
It follows that

(6.39) - > V(t-0)] =

1< Vi
— BT < 2By tT

Vit ()

In the second case by (6.38) and since
foﬂ Vi(t — u?)du = Vi11(t), it follows that

Z Vk(t—KQ) =

—3<e<VE
2k m+1 / w

Let J' denote |f:/£uw( )(t — u?)s

0
/ Vie(t — u?)du +

+Vig1 (t) — u(t —u ) “du .

~1du|. By (6.34),

1 1
640) J < tT 437 < T 1+—>.
(6.40) s (155
Since Vi (t —u?) > 0 for all u, —3 < u < 0, the integral
fi); Vi (t — u?)du is non—negatlve as well. Thus,
2
Ve ()= > Wat—£)] <
—l<e<Vi
Bk
< k- SE—m1 -J
B [ 1
Sk gt 1"’2—\/%

In the first case, by the triangle inequality, by (6.36)
and (6.39),

(6.41)
Ak (1) = Vi ()] < [Apaa(t) = > Val(t—63)
le|<vt
+ | Z Vit = £2) = Viya (2)]
le|<vt
k—1 B
< e DoVl DD et +
Jj=1 ||<vt
+ |Zth— — Vip1(8)] <

|| <VE

642 ( Z\/_) ZVk Qt— +2/€ﬂk t2
J=1 le|<vt
Analogously, in the second case,
(6.43)  [Apr1(t) = Vipa(t)] <
k—1 1 B
CZ\/} (1+2—\/g> k_Q(t_EQ)‘f'
j=1 —3<e<ViE



However, in

the first Z‘Z‘S\/ng_g(t —

@) < [V Viis(u)du = Vioy(t). In the
second case,

case

Z Vk Q(t_é):

<e<Vi

E Z Viea(t = £7) <

0<e<vi

N)I»—-

Vi _
< / Veo(u)du = Vi a(t) .
0
(In the first case the (k —1)st coordinate varies between
—+/t and v/, while in the second case it is non-negative,
and thus varies between 0 and v/¢.) Hence in both cases

the first terms in (6.42) and in the right-hand-side of
(6.43) are at most

k—1
1 _
c- ] 1+ ——= ) Vioa(t) .
> Vi) (1 57) Bt
Consequently, in both cases,

|/_1k+1(t) - Vk+1(t)| <

ckz_;\/E (1+ 2\1[) Vo1 (t) +

.<1+2iﬂ>.

By (2.2), fr = © (’8’“‘1). Set ¢ to be a universal

B

omax{k+2-m,0}

k—1

+ 2. S

vk
constant such that ¢ > ;/gf ’:’, for all integer k£ > 2.
Then
| A1 (t) — Viesa t)| <
< Z Vi (t) +
1 -
Vi (105 B

2\/f " gmax{(k—1)—m+1,0}

- czj;\/; <1+2%/%) Vi1 (t) -

Finally, 2?21 V7 < k32, completing the proof. [

7 Fast Matrix Multiplication

In this section we argue that our improved construc-
tion of progression-free subsets can be used to improve
slightly the state-of-the-art matrix multiplication algo-
rithm of Coppersmith and Winograd [18]. Specifically,

the upper bound of [18] on the running time of their
algorithm is n* - ¢(n), with w < 2.376 being a uni-
versal constant and ((n) being a function such that
¢(n) = n°M. In what follows we show that by plug-
ging in our construction instead of the construction of
Behrend in the algorithm of [18; one can improve their
upper bound by a factor of log® n, for some small uni-
versal constant § > 0.

The following variant of the result of Behrend [10]
(or, actually, of [36]) is used in [18].

THEOREM 7.1. [36] Given € > 0 there exists an integer
M. such that for all M > M. there exists a progression-
free subset B C [{M}] of size M' > M*'~¢.

There are three different variants of the same matrix
multiplication algorithm described in [18]. The simplest
of them achieves w < 2.404. The lightly more elaborate
intermediate variant achieves w < 2.388, and, finally,
the most elaborate variant achieves w < 2.376. Each of
these variants can be slightly improved by using our
progression-free subsets instead of those provided by
Behrend construction. We will argue this for the two
variants of the algorithm, specifically, for the interme-
diate and the most elaborate ones.

The inequality that governs the running time of the
intermediate variant of the algorithm of [18] is

3 27 . q(liﬁ)w /e
(744) ((]+ 2) > 65(1 +ﬁ)1+g(2 _ 2ﬁ)2—25 cC

where ¢ and 3 are parameters, w is the exponent of
the resulting algorithm, € > 0 is an arbitrarily small
constant from Theorem 7.1, and 0 < ¢’ < 11is a universal
constant. (The only unknown in this inequality is w.)
As shown in [18], if € = 0 then the minimum value w*
of w for which the inequality (7.44) holds is achieved by
setting ¢ = 6 and 8 = 0.048. This value is w* < 2.387.
By a simple calculation it follows that for an ar-
bitrary ¢ > 0, the minimum value of w for which this
inequality holds is w = w* + ©(¢). The running time
of the intermediate variant of the algorithm of [18] is
then n® 0 . 7(n), where 7(n) = n°") is a function
from the Schonhage theorem (see [18], p.253). Let ¢
denote the specific constant hidden by the ©-notation
above. Consequently, this running time can be pre-
sented as n®" - 7(n) - (n€)¢. We denote n(n) = (n°)°.
Since this analysis assumes only that for any suffi-
ciently large M there exists a progression-free subset
of [{M}] of size at least M'~<, it follows from the re-
sult of Behrend [10] that one can set here e such that

ne = 0(2\/§Vl°g2” -log'/*n), and then 5(n) becomes
(2‘/§Vlog2 . 1og1/4 n)¢. By using our result we get a



slightly smaller value € of €, that is, the value that sat-
’ f\/ O, n
isfles n® = 0(2101171/52)’ and a slightly smaller func-

2ﬁﬁ)c. Hence 0’ (n) =

logl/4n
and the running time of the intermediate vari-

L_n(n)
loge/2n*

tion 1’ (n) given by n'(n) = (

n(n)
]Ogu/Z n’

ant of [18] becomes n¥” -7(n)-n'(n) = n*" -7(n)

Hence this running time is better by a factor of logc/ Zn
than the original one. The constant 6 = ¢/2 > 0 is a
(small) universal constant.

Now, we turn to the most elaborate variant of
the algorithm of [18]. On the bottom of p.268
it is stated that after pruning there are “approxi-
mately” (AO,A1,£2,A3,A4) triples of remaining blocks,
where Ay, ..., Ay are parameters of the algorithm. By
inspection of the pruning process described on p.263 of
[18] we obtain that the more precise form of this expres-
sion is (AO,A1,22,A3,A4) -c'*", where ¢’ and € are as above.
Hence the inequality that governs the running time of
this variant of the algorithm (see p.269 of [18]) becomes

(7.45)
20)%(q® + 2)*"[4q*(¢* + 2)]"
2 > ( . e
(g+2) = F-G-H-L “

where

F = (2a+2b+¢)%+2+e

G (26 + 2d)?0+2

H (2541J)26+(2 ’

L = (2b0)%*a®,

and where ¢, @, b, ¢, d are parameters that satisfy certain
constraints specified in [18], w is the exponent of the
resulting algorithm, and 0 < ¢’ < 1 is a universal
constant. Again, let w* be the minimum value of w
for which the inequality (7.45) holds when ¢ = 0. The
specific values of the parameters for which this minimum
value is achieved are listed in [18]. This minimum value
satisfies w* < 2.376.

Similarly to the intermediate variant, for an arbi-
trary value of € > 0, the minimum value w for which

the inequality (7.45) holds is w = w* + ¢ - ¢, for
some universal positive constant c¢. Thus, the overall
running time of the algorithm is n* t¢¢ . 7(n). Us-

ing the construction of Behrend one can write here

né = 0(2‘/§V 10827 16g1/4 1), and using our construction

V8y/logg n
0(21%17/4”)
time of this variant of the algorithm of [18] when us-
ing our construction of progression-free sets is smaller
by a factor of logC/Qn = 1og5n than when using the
construction of Behrend, for § = ¢/2.

we get n¢ = Hence the overall running

To summarize, we have shown that our improve-
ment of the construction of Behrend implies an improve-
ment by a factor of log‘S n, for some small universal con-
stant § > 0, of the best known estimates on the running
time of the state-of-the-art algorithms for matrix mul-
tiplication.

8 Conclusion

In this paper we improved the lower bound of Behrend
by a factor of ©(y/logn). As was already mentioned,
both Behrend’s and our proof arguments rely on the
Pigeonhole Principle. It is reasonable to believe that
by choosing T'= R? = pz (see (4.10)) one can get an
annulus with at least as many integer points as in the
annulus S chosen via the Pigeonhole Principle. To prove
that this is the case one should probably use normal
approximation of the discrete random variable Z (see
Sections 3 and 4), and employ probablistic estimates to
argue that the probability that Z is between (uyz — %)
and (uz + %) is at least as large as the probability that
it is between (uz —20z) and (uz+20y), divided by 4;’“2 .
Although this appears to be quite clear intuitively, so far
we were not able to find sufficiently precise probabilistic
estimates to prove this statement formally. Once this
intuition is formalized, our construction will become
independent of the Pigeonhole Principle. This, in turn,
would be a significant improvement of the lower bound
of Moser [30].
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