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Abstract

We provide bounds on the performance of back-to-front airplane boarding policies. In

particular, we show that no back-to-front policy can be more than 20% better than the policy

which boards passengers randomly.

1 Introduction

The process of airplane boarding is experienced daily by millions of passengers worldwide. Reduc-
tions in gate delays would yield significant economic benefits from more efficient use of aircraft
and airport infrastructure and would also improve passenger experience. See Van Landeghem and
Beuselinck, [7], Marelli et al., [4] and Van den Briel et al., [5, 6] for an extensive discussion.

Airplane boarding has been studied using detailed computer simulations by Van Landeghem
and Beuselinck, [7], Marelli et al., [4] , Van den Briel et al. [5, 6] and Ferrari and Nagel, [3].
Bachmat et al., [1, 2], have introduced an analytical model which was shown to be in nearly
complete agreement with the results of the aforementioned simulation studies.

Airlines have adopted a variety of boarding strategies in the hope of shortening the boarding
process for airplanes. Many airlines practice back-to-front boarding policies, namely, the airline
boards passengers from the back of the airplane first. These strategies are parametrized by the
choice of which groups of rows are allowed to join the boarding queue at any given time. Several
policies of this type have been studied both via simulations and analytically, [2-3,5-7], and the
results showed that these policies provide no improvement, and may even be detrimental. In
this letter we try to explain this phenomenon by proving bounds on the effectivness of back-to-
front boarding policies in the setting of the analytical model of [1, 2]. The analytical methods
have identified a congestion parameter k which plays a crucial role in assessing the effectivness of
boarding policies. The parameter k depends on the design of the airplane, namely, on the distance
between successive rows (leg room) and the number of passengers per row. We show that for an
airplane whose design leads to a congestion factor k ≥ 1 back-to-front policies can reduce boarding
time in comparison to random boarding by at most a factor of

√
k − 1√

k + 1−ln 2√
k

. (1)
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As was argued in [2], in reality the congestion factor k is around 4. For this value of the congestion
factor, our result shows that no back-to-front policy can improve upon random boarding by more
than 20%. Moreover, since the expression (1) tends to 1 as k grows to infinity, our lower bound
is, in fact, asymptotically optimal.

2 Modeling the airplane boarding process

In this section we explain how to estimate analytically the boarding time of a given back-to-front
policy, using the mathematical model of [1]. We represent a back-to-front policy by a monotone
decreasing sequence of numbers r̄ = (r0, r1, . . . , rm), 1 = r0 > r1 > . . . > rm−1 > rm = 0. The
sequence r̄ = (r1, . . . , rm−1) is referred to as a partition of size m. Assume that the airplane has
n rows and n′ passengers. We will assume that the airplane is full, and so n = Θ(n′). The set of
passengers who are seated between rows ri−1 · n and ri · n is called the ith group of passengers.
The back-to-front policy corresponding to the partition allows the passengers from the first group
of rows to join the queue first, followed by passengers from the second group and so on.

We represent passengers by points (q, r) in the unit square [0, 1]2. The row coordinate r
represents the row of the passenger divided by n. The queue coordinate q represents the position
of the passenger in the boarding queue divided by n′.

The boarding policy determines a joint density function p(q, r), which describes the probability
that a passenger sitting in row r will have queue position q. We note that in a back-to-front policy
with parameters r̄, passengers in the ith group occupy positions (1 − ri)n

′ to (1 − ri−1)n
′ in the

queue, therefore, the coordinates of passengers (q, r) in the ith group satisfy

ri−1 ≥ r ≥ ri (2)

and
1 − ri−1 ≤ q ≤ 1 − ri. (3)

We denote the square given by these inequalities by Si. The set of squares Si, i = 1, . . . , m,
contains the anti-diagonal segment given by q + r = 1, 0 ≤ q, r ≤ 1. For each i = 1, 2, . . . , m, let
Bi be the bottom edge of the square Si. See Figure 1.

Since a passenger in a row r is equally likely to have any of the allowable queue positions, the
probability density function p is defined by p(q, r) = 1/(ri−1 − ri) if (q, r) ∈ Si, i = 1, . . . , m, and
p(q, r) = 0 otherwise (outside the squares Si).

In addition to the density function p the model also uses a congestion parameter k. The
congestion parameter is a certain function of the number of passengers per row, the average aisle
length occupied by a single passenger, and the aisle distance between a pair of successive rows (the
“leg-room”). Substituting realistic values of these parameters, one obtains a value of k roughly
equal to four (k = 4) [2]. Given the probability density function p = pr̄ which is determined by
the boarding policy at hand, and the congestion parameter k of the airplane, the model defines
the boarding time of the policy as follows.

Set α(q, r) =
∫ 1

r
p(q, z)dz. The boarding time T (r̄, k) is now given by the solution to the

following variational problem. Consider the set Φ of all piecewise differentiable functions ϕ(q)
defined on an interval [q′, q′′], 0 ≤ q′ < q′′ ≤ 1, with values in the unit interval [0, 1], and which
satisfy

ϕ′(q) + k · α(q, ϕ(q)) ≥ 0. (4)
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Figure 1: A graphic illustration of a partition into five boarding groups of different sizes. Each
square corresponds to one group. The bottom edges B1, B2, . . . , B5 of the squares S1, S2, . . . , S5,
respectively, are depicted by a solid thick line. This is a partition of size 5.
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Let
T (r̄, k) = T (pr̄, k) = max

ϕ∈Φ
L(ϕ) , (5)

where

L(ϕ) =

∫ q′′

q′

√

p(q, ϕ(q))(ϕ′(q) + k · α(q, ϕ(q))))dq. (6)

This estimate T for the boarding time was validated in [2] against detailed trace driven sim-
ulations, particularly those of van Landeghem and Beuselink, [7]. We note that this variational
problem has a natural interpretation in terms of spacetime (Lorentzian) geometry. L(ϕ) is the
length (proper-time) of the graph of ϕ with respect to the Lorentzian metric ds2 = dq(dq+k ·αdr).
The class of functions over which the maximum is taken consists of the time-like curves with re-
spect to the metric, hence T is the proper time of the maximal curve in the model. See [1] for
further details.

The value T = T (pr̄, k) is given by the maximum of the functional L(ϕ) over a large class
of functions ϕ(q). Our strategy for obtaining lower bounds on T is to present a particular curve
ϕ ∈ Φ with a large value L(ϕ).

Let b(q) denote the piecewise linear function defined by the union of the bottom edges of Si,
namely, b(q) = ri for 1 − ri−1 ≤ q < 1 − ri, i = 1, 2, . . . , m (see Figure 1).

Lemma 2.1 For all points (q, r), 0 ≤ q ≤ 1, 0 ≤ r ≤ b(q), it holds that α(q, b(q)) = 1.

Proof: By definition, α(q, r) =
∫ 1

r
p(q, z)dz. Let i = i(q) be the index such that 1 − ri−1 ≤ q ≤

1 − ri. Then by definition of the density function p(q, r),

∫ 1

r

p(q, z)dz =

∫ ri−1

ri

1/(ri−1 − ri)dz = 1 .

Definition 2.2 Given a partition r̄ = (1 = r0, r1, . . . , rm−1, rm = 0), and an index j ∈ {1, 2, . . . , m},
we define a piecewise linear continuous function ϕ(r̄,j)(q) = ϕj(q) as follows. The variable q is
in the range [0, 1 − rj]. The graph of the function ϕj is composed of h = h(j, r̄) linear segments,
ψ1, . . . , ψh where h is an integer, 1 ≤ h ≤ 2 · j.

The segments are of two types. A segment ψ of the first type is a horizontal segment (that is,
a segment with slope 0), and it is necessarily a subsegment of some bottom edge Bi for an index i
between 1 and j. Moreover, the segment ψ contains the left endpoint (1 − ri−1, ri) of the segment
Bi. Finally, the right-most segment ψh is of the first type and consists of the entire bottom edge
Bj of the square Sj.

A segment ψ of the second type is a segment with slope (−k) that ends in a point (1− ri−1, ri)
for some index i, 1 ≤ i ≤ j. Moreover, for all values of q for which ψ(q) is defined, the inequality
ψ(q) ≤ b(q) holds.

Fix an index j, 1 ≤ j ≤ m. The curve ϕj(q) is the unique piecewise linear continuous curve
in which segments of the first and second types alternate. The sequence (ψ1, ψ2, . . . , ψh) is called
the segment decomposition of the curve ϕj. See Figures 2 and 3 for an illustration.
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Figure 2: The curve ϕm with m = 5 and h = 6. The segments of the second type are depicted by
diagonal lines, and the segments of the first type are depicted by horizontal lines. These segments
alternate.

The next observation follows from Definition 2.2 by a basic geometric argument. See Figure 4 for
an illustration.

Observation 2.3 Consider an index j ′, j < j ′ ≤ m. If (q̃, r̃) is a point of ϕj′ which belongs to
the bottom edge Bj of the square Sj then the curves ϕj and ϕj′ coincide in the range [0, q̃].

For a fixed partition r̄, let Ω = {ϕ1, ϕ2, . . . , ϕm} be the family of m curves as above. For
curves ϕ ∈ Ω there is a combinatorial description of the functional L(ϕ). Specifically, consider
a curve ϕ ∈ Ω, and let ψ1, ψ2, . . . , ψh, be its decomposition into linear segments. By definition,
L(ϕ) =

∑

` L(ψ`). Since p(q, r) = 0 for all points (q, r) with 0 ≤ q ≤ 1 and r < b(q), it follows that
for any segment ψ of the second type, we have L(ψ) = 0. Consider now a segment ψ of the first
type defined on an interval [q′(ψ), q′′(ψ)], with q′ = q′(ψ) = 1 − ri−1. The segment ψ is contained
in the bottom edge Bi of the square Si, for some index i between 1 and m, and so q′′ ≤ 1− ri. By
(6) we obtain

L(ψ) =
√
k(q′′ − q′)

√

1

ri−1 − ri

. (7)

Hence L(ϕj) is the sum of the contributions of the horizontal segments.
We recall that T is defined as the maximum of the functional L(ϕ) over all piecewise differ-

entiable functions which satisfy condition (4). Obviously, segments of the first type satisfy the
condition (4). By Lemma 2.1, segments of the second type also satisfy the condition (4). Conse-
quently, the curves ϕ(r̄,j) satisfy condition (4). We will show that for every partition r̄, the cost

L(ϕm) of the curve ϕm is at least
√
k − 1, and conclude that T ≥

√
k − 1.
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Figure 3: The curve ϕ4 for the same partition r̄. Note that h = h(r̄, 4) = 4. The linear segments of
ϕ4 are denoted by ψ̃1, ψ̃2, ψ̃3, and ψ̃4. Comparing this curve with the curve ϕ5 (see Figure 2) we see
that ψ̃1 = ψ1, ψ̃2 = ψ2, ψ̃3 = ψ3, but ψ̃4 6= ψ4. Specifically, ψ̃4 is the entire bottom edge B4 of the
square S4, while ψ4 is a (proper) subsegment of B4.
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ϕ4 and ϕ5 coincide for q ∈ [0, q̃].
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To illustrate our approach we consider the case m = 1. In this case there is the unique partition
r̄ = (r0 = 1, r1 = 0). For this partition, S1 is the entire unit square, and the density function
p(q, r) is given by p(q, r) = 1 for all points (q, r) in the square S1. This partition corresponds to
the policy of allowing passengers to board the airplane in random order, in other words, the airline
does not employ a boarding policy. We will compare all other policies with this one. It has been
shown in [1] that for this partition T =

√
k + 1−ln(2)√

k
. In this case the family Φ = {ϕ1} of curves

contains just one single curve ϕ1(q) = 0 for all q, 0 ≤ q ≤ 1, and by equation (7), L(ϕ1) =
√
k.

Theorem 2.4 If k > 1 then for any partition r̄ = (r0 = 1, r1, . . . , rm−1, rm = 0), we have
L(ϕ(r̄,m)) ≥

√
k − 1.

Proof: The proof is by induction on m. The induction base m = 1 was established above. Let

Fm = min{L(ϕ(r̄′,m′)) | m′ ≤ m, r̄′ is a partition of size m′} .

Let r̄ = (r0 = 1, r1, .., rm, rm+1 = 0) be a partition of size m + 1, and consider ϕ(r̄,m+1).
Let (ψ1, ψ2, . . . , ψh) be the segment decomposition of the curve ϕ(r̄,m+1). We split the argument

into two cases, depending on the value of rm. First suppose that rm ≥ k−1
k

. By definition, the last
linear segment ψh of ϕm+1 has the form ψh(q) = 0, for 1 − rm ≤ q ≤ 1, and so

L(ϕm+1) ≥ L(ψh) =
√

krm ≥
√
k − 1 . (8)

We therefore assume that

rm <
k − 1

k
. (9)

Consider the line ` given by the equation r(q) = −kq + k(1 − rm) which passes through the
point E = (qE, rE) = (1−rm, 0) and has slope −k. Let j = j(r̄) ≤ m be the largest index such that
the line ` intersects the bottom edge Bj of the square Sj. Let D = (qD, rD) = ((1− rm)− rj/k, rj)
be the intersection point of the line ` with Bj. By definition of the curve ϕm+1, the next to last
segment ψh−1 coincides with the segment of the line ` connecting the points D and E. (See Figure
5.) Let C = (qC , rC) = (1 − k

k−1
rm,

k
k−1

rm) be the intersection point of ` with the anti-diagonal.
Note that since the squares Si cover the anti-diagonal, the q coordinate of the point D is no smaller
than that of C, i.e.,

qC = 1 − k

k − 1
rm ≤ qD ≤ 1 − rm .

Moreover, the r coordinate of D, rD, is no larger than the r coordinate of C, rC , i.e.,

rm ≤ rj = rD ≤ rC =
k

k − 1
rm. (10)

Let ϕ̃m+1 = ϕ̃m+1(r̄) be the part of ϕm+1 consisting of ψ1, . . . ψh−2, i.e., the curve ϕm+1 re-
stricted to the range [0, qD]. By (9) and (10), this range is not empty. Since ψh−1 is a segment
of the second type, L(ψh−1) = 0. Consequently, L(ϕm+1) = L(ϕ̃m+1) + L(ψh−1) + L(ψh) =
L(ϕ̃m+1) + L(ψh). By (8), L(ψh) =

√
krm.

Next, we estimate L(ϕ̃m+1). The index j = j(r̄) determines the curve ϕj (see Definition 2.2).
Since the point D lies on the bottom edge Bj, by Observation 2.3, the curve ϕ̃m+1 is also the

7



v

v

v

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T
T

T

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

C

D

ψ1

rj

E

Bj

q

r

`

qD = (1 − rm) − rj/k

Figure 5: The line ` contains the segment ψh−1, and intersects the bottom edge Bj of the square Sj.
The squares of the partition, the anti-diagonal and the line ` are all depicted by solid lines, and the
dotted line is used to connect the point D with its projection on the axis q.

8



x

x xx

x

J
J

J
J

J
J

A
A

A
A

A
A

A
A

A
A

G
H

I

D F

qD

γ

q

r

qF = 1 − rj

Figure 6: The piecewise linear curve GHID is ϕ̃m+1, and the curve GHIF is ϕj. The segment DF
is γ.

9



restriction of ϕj to the range [0, qD]. The curve ϕj is defined in the domain [0, 1 − rj]. Let γ be
the restriction of ϕj to the complementary domain [qD, 1− rj] = [1− rm − rj/k, 1− rj]. See Figure
6 for an illustration.

By definition of the functional L,

L(ϕj) = L(ϕ̃m+1) + L(γ) .

By (7),

L(γ) =
√
k

√

1

rj−1 − rj

(1 − rj − qD) =
√
k

√

1

rj−1 − rj

(rm − k − 1

k
rj) .

The segment γ is contained in the bottom edge Bj of the square Sj. The length of γ is rm − k−1
k
rj,

and the length of Bj is rj−1 − rj. It follows that rj−1 − rj ≤ rm − k−1
k
rj, and so

L(γ) ≤
√

k ·
(

rm − k − 1

k
rj

)

. (11)

We conclude that

L(ϕ̃m+1) ≥ L(ϕj) −
√

k

(

rm − k − 1

k
rj

)

.

To estimate L(ϕj), consider the affine map U : IR2 → IR2 given by

U(q, r) = ((1 − rj)q, (1 − rj)r + rj) .

This map contracts the plane by a factor of 1 − rj around the fixed point (0, 1). Consider the

partition r̄′ = (1 = 1 − 1−r0

1−rj
, 1 − 1−r1

1−rj
, . . . , 1 − 1−rj−1

1−rj
, 1 − 1−rj

1−rj
= 0) of size j < m + 1. This

partition determines the curve ϕ̂ = ϕ(r̄′,j). By the definition of the functional L (see (6) and
(7)), L(U(ϕ)) =

√

1 − rj · L(ϕ) for any curve ϕ. Since j < m + 1, by the induction hypothesis,

L(ϕ̂) ≥
√
k − 1. Therefore,

L(ϕj) ≥
√

(k − 1)(1 − rj) .

By (11),

L(ϕ̃m+1) = L(ϕj) − L(γ) ≥
√

(k − 1)(1 − rj) −
√

k(rm − k − 1

k
rj) .

Consequently,

L(ϕm+1) = L(ϕ̃m+1) + L(ψh) ≥
(

√

(k − 1)(1 − rj) −
√

k(rm − k − 1

k
rj)

)

+
√

krm .

Let a = rj/rm be the ratio between rj and rm. By (10),

1 ≤ a ≤ k

k − 1
. (12)
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It follows that

L(ϕm+1) ≥
√
k − 1

√
1 − arm −

√
k

(

√

1 − k − 1

k
a− 1

)

√
rm .

Let g(rm, a) denote the right-hand side. Next, we prove that for all a and rm, 1 ≤ a ≤ k
k−1

and

0 ≤ rm ≤ k−1
k

,

g(rm, a) ≥
√
k − 1 . (13)

Obviously, this will complete the proof. Differentiating the function g(rm, a) with respect to the
variable rm we get

∂g

∂(rm)
(rm, a) = (−a)

√
k − 1

2
√

1 − arm

−
√
k

(

√

1 − k − 1

k
a− 1

)

1

2
√
rm

.

The equality ∂g

∂(rm)
(rm, a) = 0 holds when

√
k

(

1 −
√

1 − k − 1

k
a

)

(
√

1 − arm) = a
√
k − 1

√
rm .

Since rm < k−1
k

and 1 ≤ a ≤ k
k−1

, both sides are non-negative, and thus squaring both sides results
in the following equivalent equation.

k

(

1 −
√

1 − k − 1

k
a

)2

(1 − arm) = a2(k − 1)rm . (14)

Fix a and consider (14) as an equation in the single variable rm. This is clearly a linear equation.
The free coefficient of this equation is positive, and thus this equation has at most one solution.
Since g(0, a) = g(k−1

k
, a) =

√
k − 1 for all values of a, by the mean value theorem this equation

has exactly one solution. Hence the function ga(rm) = g(rm, a) has a unique extremum in the
interval 0 ≤ rm ≤ k−1

k
. Moreover, since limrm→0

∂g

∂(rm)
(0, a) = ∞ it follows that this extremum

is a maximum. Consequently, for all values of a, 1 ≤ a ≤ k
k−1

, and rm < k−1
k

, it holds that

g(rm, a) ≥ g(0, a) =
√
k − 1.
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