Bounds on the performance of back-to-front airplane boarding policies

Eitan Bachmat * Michael Elkin ${ }^{\dagger}$

Abstract

We provide bounds on the performance of back-to-front airplane boarding policies. In particular, we show that no back-to-front policy can be more than 20% better than the policy which boards passengers randomly.

1 Introduction

The process of airplane boarding is experienced daily by millions of passengers worldwide. Reductions in gate delays would yield significant economic benefits from more efficient use of aircraft and airport infrastructure and would also improve passenger experience. See Van Landeghem and Beuselinck, [7], Marelli et al., [4] and Van den Briel et al., [5, 6] for an extensive discussion.

Airplane boarding has been studied using detailed computer simulations by Van Landeghem and Beuselinck, [7], Marelli et al., [4], Van den Briel et al. [5, 6] and Ferrari and Nagel, [3]. Bachmat et al., $[1,2]$, have introduced an analytical model which was shown to be in nearly complete agreement with the results of the aforementioned simulation studies.

Airlines have adopted a variety of boarding strategies in the hope of shortening the boarding process for airplanes. Many airlines practice back-to-front boarding policies, namely, the airline boards passengers from the back of the airplane first. These strategies are parametrized by the choice of which groups of rows are allowed to join the boarding queue at any given time. Several policies of this type have been studied both via simulations and analytically, [2-3,5-7], and the results showed that these policies provide no improvement, and may even be detrimental. In this letter we try to explain this phenomenon by proving bounds on the effectivness of back-tofront boarding policies in the setting of the analytical model of [1, 2]. The analytical methods have identified a congestion parameter k which plays a crucial role in assessing the effectivness of boarding policies. The parameter k depends on the design of the airplane, namely, on the distance between successive rows (leg room) and the number of passengers per row. We show that for an airplane whose design leads to a congestion factor $k \geq 1$ back-to-front policies can reduce boarding time in comparison to random boarding by at most a factor of

$$
\begin{equation*}
\frac{\sqrt{k-1}}{\sqrt{k}+\frac{1-\ln 2}{\sqrt{k}}} \tag{1}
\end{equation*}
$$

[^0]As was argued in [2], in reality the congestion factor k is around 4. For this value of the congestion factor, our result shows that no back-to-front policy can improve upon random boarding by more than 20%. Moreover, since the expression (1) tends to 1 as k grows to infinity, our lower bound is, in fact, asymptotically optimal.

2 Modeling the airplane boarding process

In this section we explain how to estimate analytically the boarding time of a given back-to-front policy, using the mathematical model of [1]. We represent a back-to-front policy by a monotone decreasing sequence of numbers $\bar{r}=\left(r_{0}, r_{1}, \ldots, r_{m}\right), 1=r_{0}>r_{1}>\ldots>r_{m-1}>r_{m}=0$. The sequence $\bar{r}=\left(r_{1}, \ldots, r_{m-1}\right)$ is referred to as a partition of size m. Assume that the airplane has n rows and n^{\prime} passengers. We will assume that the airplane is full, and so $n=\Theta\left(n^{\prime}\right)$. The set of passengers who are seated between rows $r_{i-1} \cdot n$ and $r_{i} \cdot n$ is called the i th group of passengers. The back-to-front policy corresponding to the partition allows the passengers from the first group of rows to join the queue first, followed by passengers from the second group and so on.

We represent passengers by points (q, r) in the unit square $[0,1]^{2}$. The row coordinate r represents the row of the passenger divided by n. The queue coordinate q represents the position of the passenger in the boarding queue divided by n^{\prime}.

The boarding policy determines a joint density function $p(q, r)$, which describes the probability that a passenger sitting in row r will have queue position q. We note that in a back-to-front policy with parameters \bar{r}, passengers in the i th group occupy positions $\left(1-r_{i}\right) n^{\prime}$ to $\left(1-r_{i-1}\right) n^{\prime}$ in the queue, therefore, the coordinates of passengers (q, r) in the i th group satisfy

$$
\begin{equation*}
r_{i-1} \geq r \geq r_{i} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
1-r_{i-1} \leq q \leq 1-r_{i} . \tag{3}
\end{equation*}
$$

We denote the square given by these inequalities by S_{i}. The set of squares $S_{i}, i=1, \ldots, m$, contains the anti-diagonal segment given by $q+r=1,0 \leq q, r \leq 1$. For each $i=1,2, \ldots, m$, let B_{i} be the bottom edge of the square S_{i}. See Figure 1 .

Since a passenger in a row r is equally likely to have any of the allowable queue positions, the probability density function p is defined by $p(q, r)=1 /\left(r_{i-1}-r_{i}\right)$ if $(q, r) \in S_{i}, i=1, \ldots, m$, and $p(q, r)=0$ otherwise (outside the squares S_{i}).

In addition to the density function p the model also uses a congestion parameter k. The congestion parameter is a certain function of the number of passengers per row, the average aisle length occupied by a single passenger, and the aisle distance between a pair of successive rows (the "leg-room"). Substituting realistic values of these parameters, one obtains a value of k roughly equal to four $(k=4)$ [2]. Given the probability density function $p=p_{\bar{r}}$ which is determined by the boarding policy at hand, and the congestion parameter k of the airplane, the model defines the boarding time of the policy as follows.

Set $\alpha(q, r)=\int_{r}^{1} p(q, z) d z$. The boarding time $T(\bar{r}, k)$ is now given by the solution to the following variational problem. Consider the set Φ of all piecewise differentiable functions $\varphi(q)$ defined on an interval $\left[q^{\prime}, q^{\prime \prime}\right], 0 \leq q^{\prime}<q^{\prime \prime} \leq 1$, with values in the unit interval $[0,1]$, and which satisfy

$$
\begin{equation*}
\varphi^{\prime}(q)+k \cdot \alpha(q, \varphi(q)) \geq 0 \tag{4}
\end{equation*}
$$

Figure 1: A graphic illustration of a partition into five boarding groups of different sizes. Each square corresponds to one group. The bottom edges $B_{1}, B_{2}, \ldots, B_{5}$ of the squares $S_{1}, S_{2}, \ldots, S_{5}$, respectively, are depicted by a solid thick line. This is a partition of size 5 .

Let

$$
\begin{equation*}
T(\bar{r}, k)=T\left(p_{\bar{r}}, k\right)=\max _{\varphi \in \Phi} L(\varphi), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.L(\varphi)=\int_{q^{\prime}}^{q^{\prime \prime}} \sqrt{p(q, \varphi(q))\left(\varphi^{\prime}(q)+k \cdot \alpha(q, \varphi(q))\right)}\right) d q \tag{6}
\end{equation*}
$$

This estimate T for the boarding time was validated in [2] against detailed trace driven simulations, particularly those of van Landeghem and Beuselink, [7]. We note that this variational problem has a natural interpretation in terms of spacetime (Lorentzian) geometry. $L(\varphi)$ is the length (proper-time) of the graph of φ with respect to the Lorentzian metric $d s^{2}=d q(d q+k \cdot \alpha d r)$. The class of functions over which the maximum is taken consists of the time-like curves with respect to the metric, hence T is the proper time of the maximal curve in the model. See [1] for further details.

The value $T=T\left(p_{\bar{r}}, k\right)$ is given by the maximum of the functional $L(\varphi)$ over a large class of functions $\varphi(q)$. Our strategy for obtaining lower bounds on T is to present a particular curve $\varphi \in \Phi$ with a large value $L(\varphi)$.

Let $b(q)$ denote the piecewise linear function defined by the union of the bottom edges of S_{i}, namely, $b(q)=r_{i}$ for $1-r_{i-1} \leq q<1-r_{i}, i=1,2, \ldots, m$ (see Figure 1).

Lemma 2.1 For all points $(q, r), 0 \leq q \leq 1,0 \leq r \leq b(q)$, it holds that $\alpha(q, b(q))=1$.
Proof: By definition, $\alpha(q, r)=\int_{r}^{1} p(q, z) d z$. Let $i=i(q)$ be the index such that $1-r_{i-1} \leq q \leq$ $1-r_{i}$. Then by definition of the density function $p(q, r)$,

$$
\int_{r}^{1} p(q, z) d z=\int_{r_{i}}^{r_{i-1}} 1 /\left(r_{i-1}-r_{i}\right) d z=1
$$

Definition 2.2 Given a partition $\bar{r}=\left(1=r_{0}, r_{1}, \ldots, r_{m-1}, r_{m}=0\right)$, and an index $j \in\{1,2, \ldots, m\}$, we define a piecewise linear continuous function $\varphi_{(\bar{r}, j)}(q)=\varphi_{j}(q)$ as follows. The variable q is in the range $\left[0,1-r_{j}\right]$. The graph of the function φ_{j} is composed of $h=h(j, \bar{r})$ linear segments, $\psi_{1}, \ldots, \psi_{h}$ where h is an integer, $1 \leq h \leq 2 \cdot j$.

The segments are of two types. A segment ψ of the first type is a horizontal segment (that is, a segment with slope 0), and it is necessarily a subsegment of some bottom edge B_{i} for an index i between 1 and j. Moreover, the segment ψ contains the left endpoint $\left(1-r_{i-1}, r_{i}\right)$ of the segment B_{i}. Finally, the right-most segment ψ_{h} is of the first type and consists of the entire bottom edge B_{j} of the square S_{j}.

A segment ψ of the second type is a segment with slope $(-k)$ that ends in a point $\left(1-r_{i-1}, r_{i}\right)$ for some index $i, 1 \leq i \leq j$. Moreover, for all values of q for which $\psi(q)$ is defined, the inequality $\psi(q) \leq b(q)$ holds.

Fix an index $j, 1 \leq j \leq m$. The curve $\varphi_{j}(q)$ is the unique piecewise linear continuous curve in which segments of the first and second types alternate. The sequence $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{h}\right)$ is called the segment decomposition of the curve φ_{j}. See Figures 2 and 3 for an illustration.

Figure 2: The curve φ_{m} with $m=5$ and $h=6$. The segments of the second type are depicted by diagonal lines, and the segments of the first type are depicted by horizontal lines. These segments alternate.

The next observation follows from Definition 2.2 by a basic geometric argument. See Figure 4 for an illustration.

Observation 2.3 Consider an index $j^{\prime}, j<j^{\prime} \leq m$. If (\tilde{q}, \tilde{r}) is a point of $\varphi_{j^{\prime}}$ which belongs to the bottom edge B_{j} of the square S_{j} then the curves φ_{j} and $\varphi_{j^{\prime}}$ coincide in the range $[0, \tilde{q}]$.

For a fixed partition \bar{r}, let $\Omega=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right\}$ be the family of m curves as above. For curves $\varphi \in \Omega$ there is a combinatorial description of the functional $L(\varphi)$. Specifically, consider a curve $\varphi \in \Omega$, and let $\psi_{1}, \psi_{2}, \ldots, \psi_{h}$, be its decomposition into linear segments. By definition, $L(\varphi)=\sum_{\ell} L\left(\psi_{\ell}\right)$. Since $p(q, r)=0$ for all points (q, r) with $0 \leq q \leq 1$ and $r<b(q)$, it follows that for any segment ψ of the second type, we have $L(\psi)=0$. Consider now a segment ψ of the first type defined on an interval $\left[q^{\prime}(\psi), q^{\prime \prime}(\psi)\right]$, with $q^{\prime}=q^{\prime}(\psi)=1-r_{i-1}$. The segment ψ is contained in the bottom edge B_{i} of the square S_{i}, for some index i between 1 and m, and so $q^{\prime \prime} \leq 1-r_{i}$. By (6) we obtain

$$
\begin{equation*}
L(\psi)=\sqrt{k}\left(q^{\prime \prime}-q^{\prime}\right) \sqrt{\frac{1}{r_{i-1}-r_{i}}} . \tag{7}
\end{equation*}
$$

Hence $L\left(\varphi_{j}\right)$ is the sum of the contributions of the horizontal segments.
We recall that T is defined as the maximum of the functional $L(\varphi)$ over all piecewise differentiable functions which satisfy condition (4). Obviously, segments of the first type satisfy the condition (4). By Lemma 2.1, segments of the second type also satisfy the condition (4). Consequently, the curves $\varphi_{(\bar{r}, j)}$ satisfy condition (4). We will show that for every partition \bar{r}, the cost $L\left(\varphi_{m}\right)$ of the curve φ_{m} is at least $\sqrt{k-1}$, and conclude that $T \geq \sqrt{k-1}$.

Figure 3: The curve φ_{4} for the same partition \bar{r}. Note that $h=h(\bar{r}, 4)=4$. The linear segments of φ_{4} are denoted by $\tilde{\sim}_{1}, \tilde{\psi}_{2}, \tilde{\psi}_{3}$, and $\tilde{\psi}_{4}$. Comparing this curve with the curve φ_{5} (see Figure 2) we see that $\tilde{\psi}_{1}=\psi_{1}, \tilde{\psi}_{2}=\psi_{2}, \tilde{\psi}_{3}=\psi_{3}$, but $\tilde{\psi}_{4} \neq \psi_{4}$. Specifically, $\tilde{\psi}_{4}$ is the entire bottom edge B_{4} of the square S_{4}, while ψ_{4} is a (proper) subsegment of B_{4}.

Figure 4: The curve $\varphi_{4}\left(\right.$ respectively, $\left.\varphi_{5}\right)$) is depicted on the left-hand (resp., right-hand) figure. In terms of the notation in the text, $j=4, j^{\prime}=5$. The condition $\left.\tilde{q}, \tilde{r}\right) \in B_{4} \cap \varphi_{5}$ implies that the curves φ_{4} and φ_{5} coincide for $q \in[0, \tilde{q}]$.

To illustrate our approach we consider the case $m=1$. In this case there is the unique partition $\bar{r}=\left(r_{0}=1, r_{1}=0\right)$. For this partition, S_{1} is the entire unit square, and the density function $p(q, r)$ is given by $p(q, r)=1$ for all points (q, r) in the square S_{1}. This partition corresponds to the policy of allowing passengers to board the airplane in random order, in other words, the airline does not employ a boarding policy. We will compare all other policies with this one. It has been shown in [1] that for this partition $T=\sqrt{k}+\frac{1-\ln (2)}{\sqrt{k}}$. In this case the family $\Phi=\left\{\varphi_{1}\right\}$ of curves contains just one single curve $\varphi_{1}(q)=0$ for all $q, 0 \leq q \leq 1$, and by equation $(7), L\left(\varphi_{1}\right)=\sqrt{k}$.

Theorem 2.4 If $k>1$ then for any partition $\bar{r}=\left(r_{0}=1, r_{1}, \ldots, r_{m-1}, r_{m}=0\right)$, we have $L\left(\varphi_{(\bar{r}, m)}\right) \geq \sqrt{k-1}$.

Proof: The proof is by induction on m. The induction base $m=1$ was established above. Let

$$
F_{m}=\min \left\{L\left(\varphi_{\left(\bar{r}^{\prime}, m^{\prime}\right)}\right) \mid m^{\prime} \leq m, \bar{r}^{\prime} \text { is a partition of size } m^{\prime}\right\}
$$

Let $\bar{r}=\left(r_{0}=1, r_{1}, . ., r_{m}, r_{m+1}=0\right)$ be a partition of size $m+1$, and consider $\varphi_{(\bar{r}, m+1)}$.
Let $\left(\psi_{1}, \psi_{2}, \ldots, \psi_{h}\right)$ be the segment decomposition of the curve $\varphi_{(\bar{r}, m+1)}$. We split the argument into two cases, depending on the value of r_{m}. First suppose that $r_{m} \geq \frac{k-1}{k}$. By definition, the last linear segment ψ_{h} of φ_{m+1} has the form $\psi_{h}(q)=0$, for $1-r_{m} \leq q \leq 1$, and so

$$
\begin{equation*}
L\left(\varphi_{m+1}\right) \geq L\left(\psi_{h}\right)=\sqrt{k r_{m}} \geq \sqrt{k-1} \tag{8}
\end{equation*}
$$

We therefore assume that

$$
\begin{equation*}
r_{m}<\frac{k-1}{k} . \tag{9}
\end{equation*}
$$

Consider the line ℓ given by the equation $r(q)=-k q+k\left(1-r_{m}\right)$ which passes through the point $E=\left(q_{E}, r_{E}\right)=\left(1-r_{m}, 0\right)$ and has slope $-k$. Let $j=j(\bar{r}) \leq m$ be the largest index such that the line ℓ intersects the bottom edge B_{j} of the square S_{j}. Let $D=\left(q_{D}, r_{D}\right)=\left(\left(1-r_{m}\right)-r_{j} / k, r_{j}\right)$ be the intersection point of the line ℓ with B_{j}. By definition of the curve φ_{m+1}, the next to last segment ψ_{h-1} coincides with the segment of the line ℓ connecting the points D and E. (See Figure 5.) Let $C=\left(q_{C}, r_{C}\right)=\left(1-\frac{k}{k-1} r_{m}, \frac{k}{k-1} r_{m}\right)$ be the intersection point of ℓ with the anti-diagonal. Note that since the squares S_{i} cover the anti-diagonal, the q coordinate of the point D is no smaller than that of C, i.e.,

$$
q_{C}=1-\frac{k}{k-1} r_{m} \leq q_{D} \leq 1-r_{m}
$$

Moreover, the r coordinate of D, r_{D}, is no larger than the r coordinate of C, r_{C}, i.e.,

$$
\begin{equation*}
r_{m} \leq r_{j}=r_{D} \leq r_{C}=\frac{k}{k-1} r_{m} \tag{10}
\end{equation*}
$$

Let $\tilde{\varphi}_{m+1}=\tilde{\varphi}_{m+1}(\bar{r})$ be the part of φ_{m+1} consisting of $\psi_{1}, \ldots \psi_{h-2}$, i.e., the curve φ_{m+1} restricted to the range $\left[0, q_{D}\right]$. By (9) and (10), this range is not empty. Since ψ_{h-1} is a segment of the second type, $L\left(\psi_{h-1}\right)=0$. Consequently, $L\left(\varphi_{m+1}\right)=L\left(\tilde{\varphi}_{m+1}\right)+L\left(\psi_{h-1}\right)+L\left(\psi_{h}\right)=$ $L\left(\tilde{\varphi}_{m+1}\right)+L\left(\psi_{h}\right)$. By $(8), L\left(\psi_{h}\right)=\sqrt{k r_{m}}$.

Next, we estimate $L\left(\tilde{\varphi}_{m+1}\right)$. The index $j=j(\bar{r})$ determines the curve φ_{j} (see Definition 2.2). Since the point D lies on the bottom edge B_{j}, by Observation 2.3, the curve $\tilde{\varphi}_{m+1}$ is also the

Figure 5: The line ℓ contains the segment ψ_{h-1}, and intersects the bottom edge B_{j} of the square S_{j}. The squares of the partition, the anti-diagonal and the line ℓ are all depicted by solid lines, and the dotted line is used to connect the point D with its projection on the axis q.

Figure 6: The piecewise linear curve GHID is $\tilde{\varphi}_{m+1}$, and the curve GHIF is φ_{j}. The segment $D F$ is γ.
restriction of φ_{j} to the range $\left[0, q_{D}\right]$. The curve φ_{j} is defined in the domain $\left[0,1-r_{j}\right]$. Let γ be the restriction of φ_{j} to the complementary domain $\left[q_{D}, 1-r_{j}\right]=\left[1-r_{m}-r_{j} / k, 1-r_{j}\right]$. See Figure 6 for an illustration.

By definition of the functional L,

$$
L\left(\varphi_{j}\right)=L\left(\tilde{\varphi}_{m+1}\right)+L(\gamma)
$$

By (7),

$$
L(\gamma)=\sqrt{k} \sqrt{\frac{1}{r_{j-1}-r_{j}}}\left(1-r_{j}-q_{D}\right)=\sqrt{k} \sqrt{\frac{1}{r_{j-1}-r_{j}}}\left(r_{m}-\frac{k-1}{k} r_{j}\right) .
$$

The segment γ is contained in the bottom edge B_{j} of the square S_{j}. The length of γ is $r_{m}-\frac{k-1}{k} r_{j}$, and the length of B_{j} is $r_{j-1}-r_{j}$. It follows that $r_{j-1}-r_{j} \leq r_{m}-\frac{k-1}{k} r_{j}$, and so

$$
\begin{equation*}
L(\gamma) \leq \sqrt{k \cdot\left(r_{m}-\frac{k-1}{k} r_{j}\right)} . \tag{11}
\end{equation*}
$$

We conclude that

$$
L\left(\tilde{\varphi}_{m+1}\right) \geq L\left(\varphi_{j}\right)-\sqrt{k\left(r_{m}-\frac{k-1}{k} r_{j}\right)} .
$$

To estimate $L\left(\varphi_{j}\right)$, consider the affine map $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
U(q, r)=\left(\left(1-r_{j}\right) q,\left(1-r_{j}\right) r+r_{j}\right) .
$$

This map contracts the plane by a factor of $1-r_{j}$ around the fixed point $(0,1)$. Consider the partition $\bar{r}^{\prime}=\left(1=1-\frac{1-r_{0}}{1-r_{j}}, 1-\frac{1-r_{1}}{1-r_{j}}, \ldots, 1-\frac{1-r_{j-1}}{1-r_{j}}, 1-\frac{1-r_{j}}{1-r_{j}}=0\right)$ of size $j<m+1$. This partition determines the curve $\hat{\varphi}=\varphi_{\left(\bar{r}^{\prime}, j\right)}$. By the definition of the functional L (see (6) and (7)), $L(U(\varphi))=\sqrt{1-r_{j}} \cdot L(\varphi)$ for any curve φ. Since $j<m+1$, by the induction hypothesis, $L(\hat{\varphi}) \geq \sqrt{k-1}$. Therefore,

$$
L\left(\varphi_{j}\right) \geq \sqrt{(k-1)\left(1-r_{j}\right)} .
$$

By (11),

$$
L\left(\tilde{\varphi}_{m+1}\right)=L\left(\varphi_{j}\right)-L(\gamma) \geq \sqrt{(k-1)\left(1-r_{j}\right)}-\sqrt{k\left(r_{m}-\frac{k-1}{k} r_{j}\right)} .
$$

Consequently,

$$
L\left(\varphi_{m+1}\right)=L\left(\tilde{\varphi}_{m+1}\right)+L\left(\psi_{h}\right) \geq\left(\sqrt{(k-1)\left(1-r_{j}\right)}-\sqrt{k\left(r_{m}-\frac{k-1}{k} r_{j}\right)}\right)+\sqrt{k r_{m}} .
$$

Let $a=r_{j} / r_{m}$ be the ratio between r_{j} and r_{m}. By (10),

$$
\begin{equation*}
1 \leq a \leq \frac{k}{k-1} \tag{12}
\end{equation*}
$$

It follows that

$$
L\left(\varphi_{m+1}\right) \geq \sqrt{k-1} \sqrt{1-a r_{m}}-\sqrt{k}\left(\sqrt{1-\frac{k-1}{k} a}-1\right) \sqrt{r_{m}}
$$

Let $g\left(r_{m}, a\right)$ denote the right-hand side. Next, we prove that for all a and $r_{m}, 1 \leq a \leq \frac{k}{k-1}$ and $0 \leq r_{m} \leq \frac{k-1}{k}$,

$$
\begin{equation*}
g\left(r_{m}, a\right) \geq \sqrt{k-1} \tag{13}
\end{equation*}
$$

Obviously, this will complete the proof. Differentiating the function $g\left(r_{m}, a\right)$ with respect to the variable r_{m} we get

$$
\frac{\partial g}{\partial\left(r_{m}\right)}\left(r_{m}, a\right)=(-a) \frac{\sqrt{k-1}}{2 \sqrt{1-a r_{m}}}-\sqrt{k}\left(\sqrt{1-\frac{k-1}{k} a}-1\right) \frac{1}{2 \sqrt{r_{m}}}
$$

The equality $\frac{\partial g}{\partial\left(r_{m}\right)}\left(r_{m}, a\right)=0$ holds when

$$
\sqrt{k}\left(1-\sqrt{1-\frac{k-1}{k} a}\right)\left(\sqrt{1-a r_{m}}\right)=a \sqrt{k-1} \sqrt{r_{m}} .
$$

Since $r_{m}<\frac{k-1}{k}$ and $1 \leq a \leq \frac{k}{k-1}$, both sides are non-negative, and thus squaring both sides results in the following equivalent equation.

$$
\begin{equation*}
k\left(1-\sqrt{1-\frac{k-1}{k} a}\right)^{2}\left(1-a r_{m}\right)=a^{2}(k-1) r_{m} \tag{14}
\end{equation*}
$$

Fix a and consider (14) as an equation in the single variable r_{m}. This is clearly a linear equation. The free coefficient of this equation is positive, and thus this equation has at most one solution. Since $g(0, a)=g\left(\frac{k-1}{k}, a\right)=\sqrt{k-1}$ for all values of a, by the mean value theorem this equation has exactly one solution. Hence the function $g_{a}\left(r_{m}\right)=g\left(r_{m}, a\right)$ has a unique extremum in the interval $0 \leq r_{m} \leq \frac{k-1}{k}$. Moreover, since $\lim _{r_{m} \rightarrow 0} \frac{\partial g}{\partial\left(r_{m}\right)}(0, a)=\infty$ it follows that this extremum is a maximum. Consequently, for all values of $a, 1 \leq a \leq \frac{k}{k-1}$, and $r_{m}<\frac{k-1}{k}$, it holds that $g\left(r_{m}, a\right) \geq g(0, a)=\sqrt{k-1}$.

References

[1] Bachmat, E., Berend, D., Sapir, L., Skiena, S., N. Stolyarov. 2006. Analysis of airplane boarding, spacetime geometry and random matrix theory. Journal of physics A: Mathematical and general, 39, pages L453-L459.
[2] Bachmat, E., Berend, D., Sapir, L., Skiena, S., N. Stolyarov. 2005. Analysis of airplane boarding times, submitted. Available at www.cs.bgu.ac.il/ẽbachmat.
[3] Ferrari, P., K. Nagel. 2005. Robustness of efficient passenger boarding in airplanes, Transportation Research Board Annual Meeting, paper number 05-0405, Washington D.C., Available at www.trb.org.
[4] Marelli, S., G. Mattocks, R. Merry. 1998. The role of computer simulation in reducing airplane turn time, Boeing Aero Magazine, Issue 1.
[5] Van den Briel, M., J. Villalobos, G. Hogg. 2003. The Aircraft Boarding Problem. Proc. of the 12'th Industrial Eng. Res. Conf., IERC, CD ROM only, article number 2153.
[6] Van den Briel, M., J. Villalobos, G. Hogg, T. Lindemann, A.V. Mule. 2005. America West develops efficient boarding strategies, Interfaces, 35, 191-201.
[7] Van Landeghem, H., A. Beuselinck. 2002. Reducing passenger boarding time in airplanes: A simulation approach. European J. of Operations Research, 142, 294-308.

[^0]: *Department of Computer Science, Ben-Gurion University, partially supported by an IBM faculty award, Email:ebachmat@cs.bgu.ac.il
 ${ }^{\dagger}$ Department of Computer Science, Ben-Gurion University, elkinm@cs.bgu.ac.il

