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Abstract 3

The concept of distributed communication bit complexity was introduced by Dinitz, Rajsbaum, and Moran. They studied the bit 4

complexity of Consensus and Leader Election, arriving at more or less exact bounds. This paper answers two questions on Leader 5

Election, which remained there open. The first is to close the gap between the known upper and lower bounds, for electing a leader 6

by two linked processors. The second is whether the suggested algorithm, sending 1.5n bits while electing a leader in a chain of 7

even length n, is optimal, in the case when n is known to the processors. For both problems, absolutely exact bounds are found. 8

Moreover, the presented lower bound proofs show that there is no optimal algorithm other than the suggested ones. 9

c© 2007 Published by Elsevier B.V. 10

11

1. Introduction 12

The concept of distributed communication bit complexity was introduced by Dinitz, Rajsbaum, and Moran [3]; it 13

generalizes the known communication complexity measure (see e.g. [6,2]) to the distributed computing setting. They 14

showed that message complexity is unable to distinguish between the complexities of solving Consensus, Leader 15

Election, and Maximal Id Finding (henceforth, denoted Consensus, Leader, and MaxF) in chains and rings, which 16

contradicts intuition. In contrast, the bit complexity bounds proven there distinguish them successfully, which justifies 17

importance of the suggested complexity measure. In [3] (see its full version in [4]) and the sibling paper [5], several 18

more or less tight pairs of upper and lower bounds for Consensus, Leader, and MaxF in chains, trees, and rings were 19

found. 20

This paper studies two questions on Leader in chains, which remained open in [3]. The first is to close the gap 21

between the known upper and lower bounds, for electing a leader by two linked processors. The second is whether 22

the algorithm [5], sending 1.5n bits while electing a leader in a chain of even length n, is optimal, in the case when n 23

is known to the processors. For both cases, absolutely exact bounds are found: for the former question, the recursive 24

formula and explicit expression are given, while for the latter one, optimality of the known algorithm is confirmed. 25

Moreover, in both cases, the family of optimal algorithms is described; the lower bound proof shows that there is no 26

optimal algorithm other than those described. 27

We hope that our techniques would shed new light on some fine aspects of distributed computing. 28
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2. Our model1

The model we consider consists of a failure-free, asynchronous message passing distributed system, with arbitrary2

but finite link delays and negligible local computation time, without shared memory; it is a standard one, for more3

details see e.g. [1,7]. The network topology concerned is a chain, with n links and n+1 processors. We assume that the4

only input is distinct ids at terminals. Usually, the ids are taken from the set Z M = [0 . . . (M−1)] = {0, 1, . . . , M−1},5

|Z M | = M ≥ 2. All processors are identical, in the sense that they all run the same (deterministic) algorithm,6

parameterized by n and M . Processors may behave differently, because the processor algorithm has access to its id, if7

any, and to its number of incident links. Note that in our case of a chain, this information is the same for all internal8

(non-terminal) processors, so they react to incoming messages in the same way.9

Initially, all processors are asleep and in the same initial state, except for the id and number of incident links10

information. When a processor receives a message on an incident link or when it wakes up, spontaneously, before11

receiving the first message, it is activated. Then, the processor algorithm processes its local information, and the12

processor sends messages on its incident links (it may send zero or more messages on each link), maybe outputs13

something, and enters the waiting state; in our model, all of this is done immediately.14

In this paper, following [3,5], when defining an algorithm, we assume that each message consists of a single bit.15

In our lower bound proofs, we assume more generally that a processor may send several bits at the same time, but it16

receives information, sent to it, bit by bit. We also assume that, at any fixed moment, only a single message may be17

delivered to a processor. As described, there are no sending queues, but there may be queues of bits in-transit, waiting18

for delivery, at links.19

There may be different executions beginning from the same initial state. Thus, the distributed setting implies tasks,20

in contrast to the communication complexity setting, since different scheduling of computation, with a fixed input set,21

might lead to different (legal) outputs. For a task T , Bit C(T ) is the number of bits sent needed to solve T , in the worst22

case.23

The Leader task requires that each processor should output (decide on) a binary value “leader”/“non-leader”, so24

that there will be exactly one leader. Besides, it is required that any non-leader should learn which of its incident links25

is in the direction to the leader. The MaxF version of Leader requires that the terminal with the maximal id must be26

chosen to be leader; clearly, Bit C(MaxF) ≥ Bit C(Leader).27

We use the concept of scheduler which is a formal device that specifies the order in which processors wake up28

and messages are delivered. For convenience of analysis, we consider a formal clock: it starts from moment 0, and29

each processor activation step is done at the next moment 1, 2, . . . . Also, names A and B are given formally to the30

terminals. However, those clocks and names are not available to processors, and are in no sense related to the processor31

algorithm.32

Note that the “worst case”, for a certain algorithm, is its execution with maximal number of bits sent, over all id33

pairs and all possible executions. Hence an upper bound, confirmed by showing an algorithm, must be valid for all34

inputs and all schedulers, while to obtain a lower bound L , it is sufficient to show that, for any algorithm, there exists35

some input and some scheduler, such that the execution under that scheduler with that input requires at least L bits36

sent.37

We assume, following [3,5], that a scheduler wakes each terminal, eventually, if not awaken by a message38

previously, and that no internal processor is awaken by the scheduler. Another interesting model case is when a39

scheduler may wake any set of processors, and is meant to wake at least one arbitrary processor (the minimal waking40

assumption). This case is settled for the first problem addressed in this paper, and remains an open question for the41

second one.42

Remark: Notice that the model, where exactly one processor is awaken spontaneously, is not interesting. Indeed,43

the so awaken processor may decide to be leader and just inform all the others of this, by relaying bit sequences in44

both directions.45

We consider the following Termination Property: A distributed algorithm solving some task is said to have the46

termination property (or is terminating), if each processor becomes eventually ensured that no more messages47

concerning this task will be sent by any processor and that there are no messages in transit, except, maybe,48

messages sent by itself. This property enables each involved processor to begin eventually communicating with other49

participating processors on another task. Indeed, the only messages remaining to deliver, if any, are from itself; hence,50

by the FIFO property, any new message sent by it will reach the target processor after it would finish all its activity in51
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Fig. 1. Optimal algorithms: (a) the terminating case, (b) the non-terminating case, (c) rounds of various types, for the non-terminating case (earlier
messages up; the leader is filled grey).

the previous task. For a distributed task T , we denote by Bit C t (T ) its bit complexity for the case when the termination 1

property is required; clearly, Bit C t (T ) ≥ Bit C(T ). 2

Suppose that there is an algorithm solving task T , for the case when ids are taken from the set Z M = [0 . . . (M−1)]. 3

Notice that its slight variation solves it, with the same complexity, if the id range is [s . . . (s+M−1)]. Indeed, receiving 4

the parameter value s, it suffices to simulate the original algorithm, relating to each id x as to x − s. In what follows, 5

we identify such an algorithm version with the original algorithm. 6

For simplicity of presentation, in this paper, we identify a terminal with its id; we say that two ids are paired if they 7

are given to the terminals. 8

3. Leader and MaxF for two processors 9

In this section, we consider the network consisting of two linked processors only. We find the bit complexity for 10

Leader and MaxF and describe all optimal algorithms. 11

Theorem 3.1. For the two processor network, Bit C(Leader) = Bit C(MaxF) = 2dlog2((M + 2)/3.5)e and 12

Bit C t (Leader) = Bit C t (MaxF) = 2dlog2((M + 1)/3)e. 13

The theorem is implied by the following algorithms and lower bounds. Since MaxF is a special variant of Leader, 14

we present our upper bounds for MaxF only and lower bounds for Leader only. 15

3.1. Algorithms 16

Proposition 3.2. For the two processor network, there exists a terminating algorithm solving MaxF with 2dlog2((M + 17

1)/3)e bits sent. 18

Proof. We suggest a recursive algorithm; its execution is divided into rounds sending two bits each. For the minimum 19

value 2 of M , there is a single degenerate round, requiring no communication: each processor decides leader or non- 20

leader according to the value of its id 1 or 0, respectively. For any M ≥ 3, let us divide the id range into the median id 21

bM/2c, the sub-range of lesser ids [0 . . . (bM/2c − 1)], and that of greater ids [(bM/2c + 1) . . . (M − 1)]. Note that, 22

for any M , the longest one of the sub-ranges is of length exactly bM/2c. 23

In the algorithm description, mnemonic meaning of operations is given in square brackets, for easier understanding. 24

Round Description (for illustration see Fig. 1(a)) 25

1. Each lesser id sends 0 [[Am I the non-leader?]], each greater id sends 1 [[Am I the leader?]], while the median id 26

sends nothing and waits. 27

2. If a lesser (resp., greater) id receives 0 (resp., 1), then [[it realizes that both ids are lesser (resp., greater) ones, and]] 28

the algorithm continues to the next round, for solving the problem in the corresponding sub-range (whose length is 29

at least 2, by the case assumption). 30

When the median id receives bit 0 or 1, it decides that it is the leader or non-leader, respectively, and responds 31

by the opposite bit [[I agree with your suggestion]]. 32

If a lesser id receives 1, then it decides non-leader; if a greater id receives 0, then it decides leader. 33
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Example: Let M be 11, so that Z M = [0..10], and the id pair be 10 and 8. Round 1: [[id 5 is the middle one]] Both1

10 and 8 send 1 and receive 1. Round 2: [[id 8 is the middle one]] Id 10 sends 1; when 8 receives that 1, it decides2

non-leader and replies by 0; when 10 receives that reply 0, it decides leader.3

The correctness of the proposed algorithm is immediate. The algorithm is terminating, since at any stage, each4

processor knows for sure whether it waits for the next bit to be delivered, or the algorithm finishes.5

Let us analyze now the number of bits sent. We define the following recurrent relation:6

mt
2(r+1) = 2mt

2r + 1, r ≥ 0; mt
0 = 2.7

Lemma 3.3. If M is at most mt
2r , at most 2r bits are sent by the above algorithm.8

Proof. We prove by induction on r . In the base case r = 0, the statement is trivially correct. Assume it is correct9

for r = k, k ≥ 0, and consider the case r = k + 1. For any M ≤ mt
2(k+1), either there is a single round, with two10

bits sent, or the algorithm continues to the same problem in some id sub-range. In the latter case, the length of both11

id sub-ranges is at most mt
2k . Hence, the algorithm finishes the problem solution with sending at most 2k bits, by the12

induction assumption. Thus, at most 2k + 2 bits are sent totally, as required. �13

The solution to the above recurrence relation is:14

mt
2r = 3 · 2r

− 1.15

By inverting it, we obtain the upper bound 2dlog2((M + 1)/3)e for the number of bits sent, as required. (Note that, in16

comparison with the bound 2dlog2 Me − 2 of the algorithm [3,4], this is less by approximately 2 · log2 1.5 ≈ 1 bit, as17

the asymptotic averages.) �18

Proposition 3.4. For the two processor network, there exists an algorithm solving MaxF in 2dlog2((M + 2)/3.5)e bits19

sent.20

Proof. The algorithm is similar, in structure, to the terminating algorithm as above. Moreover, it coincides with it for21

any M up to 5. Beginning from M = 6, the algorithm is as given below. The id range is divided into the minimum id22

0, the maximum id M − 1, the lesser ids from 1 to bM/2c, and the greater ids from bM/2c + 1 to M − 2. Each round23

sends 2 bits, except for the finishing round considering the id sub-range of length at least 6, which sends 4 bits.24

Round Description, M ≥ 6 (for illustration see Fig. 1(b), (c)25

1. Each lesser id sends 0 [[Am I the non-leader?]], each greater id sends 1 [[Am I the leader?]], while the minimum26

and maximum ids decide non-leader and leader, respectively, send nothing, and wait.27

2. If a lesser (resp., greater) id receives 0 (resp., 1), then [[it realizes that both ids are lesser (resp., greater) ones, and]]28

the algorithm continues to the next round, solving the problem in the corresponding sub-range.29

When the minimum or maximum id receives any bit, it responds by the opposite bit [[I am not the same as you;30

let us finish]].31

If a lesser (resp., greater) id receives 1 (resp., 0), then it repeats by sending once more 0 (resp., 1) [[confirms its32

intention]].33

3. After receiving the second bit, the minimum id always responds by 0 [[I am the non-leader]], and the maximum34

one by 1 [[I am the leader]].35

If a lesser or greater id receives the second bit 0, it decides leader, and if 1 non-leader.36

Let us prove that the algorithm solves MaxF. The only non-trivial case concerns the decision of a lesser (resp.,37

greater) id which gets the first bit 1 (resp., 0). Let us consider such a lesser id x (the other case is similar). If the other38

id is a greater or the maximum one, it sends the second bit 1 to x , and x correctly decides non-leader, while if the39

other id is the minimum one, it sends 0 to x , and x correctly decides leader.40

The algorithm is non-terminating in the case when, in some round, the minimum or maximum id, w.r.t. the range of41

that round, decides and waits. Indeed, let that id be x . If the other id is the maximum or minimum one, the execution42

finishes, and no bit will ever be delivered to x . In all other cases, some bit should be delivered to x , eventually. Note43

that there are no means, for x , to distinguish between these two situations.44

For the analysis of the number of bits sent, we define the following recurrence relation:45

mnt
2r+2 = 2mnt

2r + 2, r ≥ 1; mnt
2 = 5, mnt

0 = 2.46
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Lemma 3.5. If M is at most mnt
2r , at most 2r bits are sent by the above algorithm. 1

Proof. The proof is similar to that of Lemma 3.3, so only differences from that proof are mentioned. The (trivial) base 2

cases of induction are r = 0 and r = 1. At the induction step, the analysis is similar to that in the proof of Lemma 3.3, 3

except for the finishing round. By the round description, the number of bits sent in any finishing round is exactly four; 4

this suffices, since for M ≥ 6, it holds that 2r ≥ 4. � 5

The solution to the above recurrent relation is: 6

mnt
2r = 3.5 · 2r

− 2, r ≥ 1. 7

By inverting it, we obtain the upper bound 2dlog2((M + 2)/3.5)e for the number of bits sent. Also for the basic case 8

M = 2, this expression gives the right value zero, as required. (Note that the above bound is less by approximately 9

2 log2 1.75 ≈ 1.5 bits, as the asymptotic averages, than the number of bits 2dlog2 Me − 2 of the algorithm [3,4].) � 10

3.2. Lower bounds 11

Now, we pass to the lower bounds. We prove the lower bounds for executions under the symmetric scheduler [3,4], 12

defined as follows: 13

• At step 0, both processors are awaken; 14

• At each following step, the first bit in every queue, if any, is delivered. 15

Proposition 3.6. Consider an arbitrary algorithm A solving Leader in the two processor network, when ids are 16

chosen from an arbitrary integer set Z. For any r ≥ 1, if |Z | ≥ mnt
2(r−1) + 1, then there exists an input pair, such that 17

in the execution of A under the symmetric scheduler at least 2r bits are sent. If A is terminating, the same holds even 18

if |Z | ≥ mt
2(r−1) + 1. 19

Proof. Let us call an id passive, w.r.t. A, if it sends no bit upon its spontaneous wake-up. 20

Lemma 3.7. 1. There exist at most two passive ids. 21

2. If there exist two passive ids, then each one of them decides immediately upon its wake-up, while the decision 22

depends on the id only and the decisions for those two passive ids are different. 23

3. If A is terminating and M exceeds 2, then there exists at most one passive id. 24

Proof. If there are at least two passive ids, each of them must decide immediately. Indeed, let us give any two of them 25

to the processors, and if the algorithm does not finish immediately, there is a deadlock, under the symmetric scheduler. 26

The notion of “decision of a passive id” is well defined, since information on its id only is available to a processor 27

upon its wake-up. Moreover, the decisions of any two passive ids must be different: leader and non-leader, for legality 28

of pairing of those ids. This implies 2. Also, 1 is straightforward, since the existence of three passive ids contradicts 29

the above observation. 30

Now we pass to item 3. Suppose that for a terminating algorithm, there are two passive ids, say x and y; since M 31

is at least 3, there is at least one non-passive id, say z. If x and y are given to the processors, the algorithm finishes, 32

and x will never get any bit. If x and z are given to them, under the symmetric scheduler, x will get some bit sent by 33

z, eventually. Notice that there are no means for x , upon its (immediate) decision, to distinguish between these two 34

situations. Hence, x can never be ensured that the algorithm has or has not finished, a contradiction to the termination 35

property. � 36

Let us, first, assume that A is terminating. Let us denote |Z | = M . We prove the statement of the Proposition by 37

induction on r . Basic case r = 1: Since M is at least mt
0 + 1 = 3, by Lemma 3.7(3), there are at least two non-passive 38

ids. Let us give them to the processors. Since each one of them sends at least one bit, under the symmetric scheduler, 39

at least two bits are sent. 40

Assume now correctness of the statement for r = k, k ≥ 1, and let us prove it for the case r = k + 1. Among 41

at least mt
2k + 1 ids in Z , at most one is passive. Let us divide the set of other ids, which is of cardinality at least 42

mt
2k = 2mt

2(k−1) +1, into two groups Z0 and Z1, according to their first bit sent, either 0 or 1, respectively. The largest 43

one of them is of cardinality at least mt
2(k−1) + 1; we denote it by Z ′. 44

Please cite this article in press as: Ye. Dinitz, N. Solomon, Two absolute bounds for distributed bit complexity, Theoretical Computer Science
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Let us consider the continuation of A, from its step 1 under the symmetric scheduler an on, for all choices of ids1

from Z ′. In fact, the only information available to each processor after step 0, is its own id and the fact that the other2

id belongs to Z ′ as well. Therefore, the simulation of A from step 1 under the symmetric scheduler and on is an3

algorithm solving Leader, when ids are chosen from Z ′. Note that if an id sends k bits, k > 1, upon its wake-up by4

A, then it sends the last k −1 bits out of them, upon its wake-up in this simulation. By the induction assumption, there5

exist a pair of ids from Z ′, such that the simulation sends at least 2k bits, under the symmetric scheduler. Totally, A6

working for that id pair, under the symmetric scheduler, sends at least 2k + 2 bits, as required.7

Let us turn now to the case when the termination property is not required.8

Basic case r = 1 and M ≥ 3: The situation when there exist two non-passive ids is considered previously.9

Otherwise, there are passive ids x and y, deciding differently, and a single non-passive id, z. Since z may be paired10

with any one of x and y, it cannot decide immediately after its wake-up. Hence, it has to be activated by a message,11

before deciding. Therefore, if z is paired with x , there is a message from z and a message to z, summing in at least12

two bits sent.13

Basic case r = 2 and M ≥ 6, as well as the inductive step are considered similarly as the inductive step for the14

terminating case, except for the case r = 2 and M = 6. In this remaining case, the sub-case max{|Z0|, |Z1|} ≥ 3 may15

also be considered in the same way. Hence the only remaining sub-case is when |Z0| = |Z1| = 2 and thus there are16

two passive ids. Recall that our aim is now the lower bound four bits sent.17

1. Suppose that some passive id does not reply to the first bit received. Then, any non-passive id, if paired with it,18

must send at least two bits immediately upon its wake-up in order to be activated once more. Then, if two non-passive19

ids are paired, they send 4 bits already at step 0.20

2. Assume that some passive id, x , replies by the same bit, w.l.o.g. bit 1, to the first bit received by it. Consider, as21

above, the continuation of A after step 0, when ids are chosen from Z1 ∪ {x}. Its simulation is an algorithm solving22

Leader, while there are three possible ids, with the additional restriction that x decides as it decides in A. As shown23

above, this needs at least two bits sent, in the worst case, even without any restriction, all the more with it. Thus, A24

needs at least four bits sent, in the worst case.25

3. Consider the remaining case when every passive id replies by the opposite bit to the first bit received. If an id26

from Z0 receives 1, it cannot decide, since this 1 may come from the id already decided leader or that already decided27

non-leader. The same concerns any id from Z1. Hence, if we pair an id from Z0 and an id from Z1, both of them have28

to receive two bits. This suffices. �29

3.3. On a family of optimal algorithms30

The proof of Proposition 3.6 implies that the structure of any optimal algorithm must be such as that of the31

algorithms from Section 3.1. Let us describe possible variations of those algorithms; validity and fullness of the32

following description may be established easily.33

Let us, first, describe variations for an optimal algorithm solving MaxF. They are minimal in the case of a border34

value of M , i.e. that equal to mt
2r or m2r : then, only roles of bit values 0 and 1 may be exchanged, at each round. Note35

that the value of the reply of the middle, minimal, or maximal id should be opposite to the value of the bit received by36

it, by the reasons as in item 2 in the proof of Proposition 3.6.37

If M is less at least by one than mt
2r , for a terminating algorithm, then the id bM/2c may join the set of lesser ids.38

Also, if M is less at least by one than m2r , for a non-terminating algorithm, then either id 0 may be set to be lesser,39

or id M − 1 to be greater, or id bM/2c may play the role of middle id, instead of both of them, as in the terminating40

algorithm. If M is at most m2r − 2, both minimal and maximal id roles may be cancelled similarly. Besides, if the41

summary number of lesser and greater ids is strictly less than 2mt
2(r−1) or 2m2(r−1), then the lengths of sub-ranges42

may vary arbitrarily, restricted from above by mt
2(r−1) or m2(r−1) each one. Similar variations may be done at each43

round, provided the current sub-range length is strictly less than the corresponding border value.44

Summarizing, we see that there is the same generic structure of the sub-range tree, while the lengths of sub-ranges45

may vary, restricted by values of mt
· or m·. Also, at some rounds, middle, minimal, and maximal ids may be cancelled,46

or the middle id may be introduced instead of the pair of minimal and maximal ones. These are all possible variations,47

for MaxF.48

Consider now additional variations for optimal Leader algorithms (of course, the variations as for MaxF may be49

applied). Now, there is no need for lesser ids to have values lesser than those for greater ids, and similarly for middle,50

Please cite this article in press as: Ye. Dinitz, N. Solomon, Two absolute bounds for distributed bit complexity, Theoretical Computer Science
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minimal and maximal ids. Also, the sets of lesser and maximal ids must not be continuous integer intervals. Hence, 1

values of middle, minimal, and greater ids may be chosen arbitrarily, and not only the lengths, but also the composition 2

of the sets of lesser ids may be arbitrary, at each algorithm round. 3

3.4. Case of minimal waking assumption 4

Let us consider now the model variation, where just a single processor, out of the two, may be awaken by the 5

scheduler (the minimal waking assumption). Let us use notion of Bit Cm(T ) and Bit Cmt (T ), for this model variation. 6

We assume that there are at least three possible ids. 7

The main observation is that there is no passive id, at the beginning of any algorithm, working under this 8

assumption. Indeed, assume to the contrary that there exists a passive id. If it is paired with any other id, and awaken 9

alone, by the scheduler, then the execution finishes immediately. Hence, all ids are meant to have a built-in decision. 10

However, pairing two of them with the same decision leads to a non-legal decision pair. 11

Theorem 3.8. For the two processors network, under the minimal waking assumption, Bit Cm(Leader) = 12

Bit Cm(MaxF) = 2dlog2((dM/2e+2)/3.5)e+2 and Bit Cmt (Leader) = Bit Cmt (MaxF) = 2dlog2((dM/2e+1)/3)e+ 13

2. 14

Proof. In terms of Section 3.1, the sense of the above observation is that, at moment 0, the lesser and greater id sets, 15

as well as Z0 and Z1, partition the entire id set. 16

Correspondingly, descriptions of the relevant algorithms are similar to those in Section 3.1, differing at the 17

first round only, and is as follows: For both algorithms, the lesser ids are [0 . . . bM/2c], the greater ids are 18

[(bM/2c]+1) . . . (M −1)], and there are no middle, minimal, and maximal ids. Algorithm validity is straightforward, 19

as in Section 3.1. 20

We denote by mm
· and mmt

· analogues of m· and mt
· , respectively. Clearly, mm

2r = 2 ·m2(r−1) and mmt
2r = 2 ·mt

2(r−1). 21

This implies the algorithm running time bounds given by the expressions in the theorem statement. Also, the matching 22

lower bound may be proved similarly to the proof of Proposition 3.6, taking into account the above observation. � 23

4. Leader in a chain of even length 24

Consider the Leader problem in a chain of even length n. Let P0 denote the middle processor of the chain. We call 25

A-half and B-half the chain intervals [A . . . P0] and [P0 . . . B], respectively. All algorithms presented in this section 26

are terminating, so we do not distinguish between Bit C(·) and Bit C t (·). 27

4.1. Algorithms 28

Let us begin with the description of a few algorithms (for illustration see Fig. 2). In any execution, we call a 29

b-processor an internal processor awaken by the bit b, b ∈ {0, 1}. 30

Algorithm 2 (works for n = 2): The terminals decide “non-leader”, while the single non-terminal has the built-in 31

decision “leader”. No bit is sent. 32

Algorithm 4 (works for n = 4): Terminals decide “non-leader” and send 1. Any 1-processor decides “non-leader” 33

and sends 0 forward. The single 0-processor P0 does not send anything. It decides “leader”, upon its wake-up or when 34

it gets one more 0. Totally, 4 bits are sent. 35

Flipping the bit values 0 and 1 results in another variant of Algorithm 4. 36

Algorithm 6 (works for n = 6): Each terminal decides “non-leader” and sends 1. Any 1-processor decides “non- 37

leader”, and sends 00 forward. Any 0-processor, upon its wake-up, does nothing and waits for an additional bit. In 38

what follows, when activated by the second bit from the same neighbor, it decides “non-leader” and sends 0 forward. 39

If it receives the second bit from the other neighbor, it decides “leader” and sends nothing (this happens for P0 only). 40

Totally, 8 bits are sent. 41

A degenerate, in a sense, version of Algorithm 6 arises by setting arbitrarily the behavior of a 0-processor after 42

receiving 1 after 0, which never happens. Other algorithm variants arise by changing 00 to 01. The rearrangement 43

between first two links to carry 1 and 0b, b ∈ {0, 1}, defines another variants of Algorithm 6, with sub-variants where 44
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Fig. 2. Executions of Algorithm 2, of the basic variant of each one of Algorithm 4, Algorithm 6, and Algorithm 8, and two sample executions of
the Main Algorithm, for n = 8. (Bits sent at a link are ordered from left to right. The leader is filled grey.)

some ids send 00, while others send 01. Even more variants are the result of flipping the bit values 0 and 1, as in1

Algorithm 4.2

Algorithm 8 (works for n = 8): It differs from Algorithm 6 in the following: Instead of 1, 00, and 0 sent on the3

three consequent links of each half-chain, there are 1, 00, 01, and 0 sent on its four links. Totally, 12 bits are sent.4

The variants of Algorithm 8 are obtained by arbitrary rearrangements of 1, 00, and 01, and by flipping the bit5

values.6

Main Algorithm [5] (works for any n ≥ 8): Each terminal decides “non-leader” and sends 0. Any 0-processor7

sends 1 forward. Any 1-processor decides “non-leader”, sets that the leader is farther, and sends 0 forward and 18

backward. Any 0-processor, upon receiving 1 from its following processor, decides “non-leader”, sets that the leader9

is farther, and sends nothing. Upon receiving 0 from its following processor, a 0-processor decides “leader”, and sends10

nothing. When a 1-processor receives a bit, except for that waking it, it does not react. Totally, 1.5n bits are sent.11

Subtle variations of the Main Algorithm arise if a single id sends nothing upon its wake-up, and when awaken by12

a message (necessarily by bit 1), either decides “leader” and replies by 1, or decides “non-leader” and replies by 0;13

instead, the same decision may be made, by that exceptional id, immediately upon its wake-up. The other variant of14

the above mentioned versions of the Main Algorithm arises by flipping the bit values.15

Proposition 4.1. Algorithms 2, 4, 6, 8, and the Main Algorithm solve Leader in 0, 4, 8, 12, and 1.5n bits sent,16

respectively.17

Proof. The validity of Algorithms 2, 4, 6, and 8 is obvious. The validity of the Main Algorithm is proved in [5]; we18

prove it, for completeness. It is easy to check that, since n is even, the “waves” propagating from the terminals meet19

always at a link between a 0-processor, sending 1, and either a 1-processor or a terminal, sending 0. Therefore, (i)20

exactly one 0-processor (that incident to the wave meeting link) gets reply 0, which causes it to decide “leader”, and21

(ii) the number of bits sent at the links looks always as two sequences 1, 2, . . . 1, 2, beginning from the two chain22

ends (one may be empty), which results totally in 1.5n bits sent. The only exception, for (i), is in one of the cases,23

mentioned as “subtle variations”, where all 0-processors receive the reply 1, while the terminal (with the exceptional24

id) decides “leader”. Also in this case, there is the bit sequence 1, 2, . . . 1, 2, as above. �25

4.2. Lower bound26

Let us consider the family of schedulers which wake A first, allow B to be awaken by the first message sent to it,27

if it exists, and otherwise wake B after all processors have become quiescent. Let us call the execution prefix before28

waking B, under any such scheduler, a full A-wave; a full B-wave is defined similarly. A full wave is called halting29

if it halts before reaching the other terminal. Clearly, any wave depends only on the id given to its initiating terminal,30

which we denote by the wave origin, and on the scheduler. Any prefix of a full wave is called a wave.31
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It is easy to see that any execution begins from interleaved independent A- and B-waves. We say that waves meet, 1

when a message, sent at a link, e, in one of the waves, reaches a processor, P , activated by the other wave. We denote 2

the wave meeting moment, if any, by tm , and say that the waves meet at e and at P . Assume that full A- and B-waves, 3

executed separately, cover overlapping chain areas. Clearly, by fine tuning the wave interleaving by the scheduler, we 4

are able to make the waves meet at any processor in the overlapped area, and at any one of its incident links. 5

It may also happen that some two waves do not meet at all, but both halt before a meeting. In wave analysis, we 6

use words like “forward”, “ backward”, “farther”, “next”, etc., w.r.t. the wave origin. 7

Theorem 4.2. For a chain of even length n and a set of possible ids of cardinality M ≥ 6, Bit C(Leader) is 0 if 8

n = 2, 4 if n = 4, 8 if n = 6, 1.5n if n ≥ 8. Besides, if n is at least 10, there is no optimal algorithm, except for the 9

Main Algorithm. 10

The statement holds even if non-leaders are not required to know the direction to the leader. 11

The rest of Section 4.2 is devoted to the proof of this theorem. In what follows, we analyze an arbitrary optimal 12

Leader algorithm A; by Proposition 4.1, it sends no more bits than stated in Theorem 4.2, in the worst case. In what 13

follows, we prove the required lower bounds and uniqueness, without using the assumption that any non-leader is 14

required to know the direction to the leader. 15

Obviously, Algorithm 2 is optimal. Henceforth, we assume n be at least 4. 16

4.2.1. Auxiliary statements 17

Lemma 4.3. In the case when n ≥ 4 and M ≥ 3, for at most one id, there exists a wave initiated by it which halts 18

before P0. 19

Proof. Suppose, to the contrary, that there exist two distinct ids, x, y, such that for any one of them, there exist a 20

wave, initiated by it, which does not reach P0. If we interleave those two waves, arbitrarily, we obtain some legal 21

execution, E , where P0 is not awaken. Then, P0 has some built-in decision. However, since the algorithms for all 22

internal processors are the same, all (at least three) internal processors have the same built-in decision. Therefore, the 23

built-in decision of all inner processors, if any, must be “non-leader”; thus, the leader is always chosen among the 24

terminals. Let us show that this cannot happen. 25

Observe that x and y decide differently, in E : one “leader”, and the other “non-leader”, based on their halting 26

waves only. 27

Let us pair some other id, z, with either x or y, in the following manner: we first simulate the x /y-wave of E , 28

and then start a wave from z. Observe, first, that z must decide differently, in those two executions, since all inner 29

processors had decided “non-leader”, and terminals given x or y had have different decisions before the wave from 30

z was initiated. Different decisions may happen only if the z-wave meets either the x-wave or y-wave (or both), and 31

information propagates from some wave meeting back to z; assume, w.l.o.g., the x-wave. 32

Let us analyze the number of bits sent in the above (x, z)-execution. Up to the wave meeting, there were at least n 33

messages sent on all the links of the chain. By our assumption, the wave meeting processor is farther than P0, from z. 34

In other words, at least 0.5n + 1 bits propagated from the wave meeting back to z. This results in more than 1.5n bits, 35

totally—a contradiction to the choice of A. � 36

We denote the exceptional id, as in Lemma 4.3, by ex-id1, if exists. For a wave from any other id, we call its part 37

up to waking P0 the half-wave. Notice that if any two ids other than ex-id1 are paired, the two half-waves should meet 38

at P0, if their finishing moments are synchronized to be close by. 39

Let us say that a non-terminal processor is a one-entry, w.r.t. some execution, if it receives just a single bit (waking 40

it), during that execution. 41

Observation 4.4. Assume we are using ids other than ex-id1. In any execution of any algorithm with N bits sent, 42

there are at least 2n − 2 − N one-entries. Therefore, in any execution of A, there are at least two one-entries, if 43

n = 4, 6, 8, and at least three if n ≥ 10. 44

Indeed, suppose that there are k one-entries, each receiving one bit, while the n − 1 − k other internal processors 45

receive at least two bits each. Then, N is at least k + 2(n − 1 − k) = 2n − 2 − k, and the first part of the statement 46

follows. The second part is implied by Proposition 4.1. 47

We say that a scheduler is Tail-Preference Balanced (or TPB) if: 48
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1. In each half-chain, it delivers always messages in-transit at links closest to the wave origin;1

2. It delivers no messages to P0, as far as possible;2

3. Immediately after delivering the first message to P0, the first message on the other incident link is delivered to it,3

if any.4

Let us fix an arbitrary TPB scheduler, S, and analyze executions of A under it. By the TPB-rules and Lemma 4.3,5

if ids are other than ex-id1, the two waves meet at P0. Besides, at tm , all processors are quiescent, except for P0, and6

all the message queues at links of the chain are empty, except for those to and from P0. Hence after tm , information7

to processors other than P0 propagates from P0 only. Notice, besides, that up to tm , the two waves are completely8

independent of one another, except for maybe the messages sent by P0 (but not delivered).9

Lemma 4.5. Consider an algorithm sending at most N bits. Then, for any id, x, given to w.l.o.g. A, except for ex-id110

and at most one more id, some other id, y 6= ex-id1, may be given to B, so that in the execution under S, there are at11

least n − 1 − bN/2c one-entries in the A-half-chain.12

Proof. Suppose the contrary. Let us say that an id is lacking one-entries, if when we give that id to w.l.o.g. A, and13

any other id, except for ex-id1, to B, in the execution under S, there are less than n − 1 − bN/2c one-entries in the14

A-half-chain.15

Suppose that, except for ex-id1, there are more than one id lacking one-entries. Let us pair two such ids in16

an execution under S. There would be less than n − 1 − bN/2c one-entries in each half chain, that is less than17

2(n − 1 − bN/2c) ≤ 2n − 2 − N one-entries in both of them, while P0 is not a one-entry—a contradiction to18

Observation 4.4. �19

Let us denote the second exceptional id, as in Lemma 4.5, if exists, by ex-id2. Notice that for A and any n, the20

lower bound for the number of one-entries n − 1 − bN/2c is strictly positive, and is at least 2 if n is at least 10, by the21

choice of A and by Proposition 4.1.22

Let us assign to each id x , as in Lemma 4.5, some execution, Ex , as in that lemma. Let Px denote the farthest23

one-entry in A-half-chain, w.r.t. Ex .24

Corollary 4.6. For any id, x, given to w.l.o.g. A, except for ex-id1, ex-id2 and at most one more id, at the execution25

of A under S, all processors in [A . . . Px ] decide “non-leader” (in particular, the terminal decides so), independently26

of the id given to the other terminal.27

Proof. By the definition of a one-entry, in Ex , the propagation from P0 after tm to the direction of x stops before28

reaching Px . Hence, by TPB-rules, the interval [A . . . Px ] has finished all its activity in Ex , including processor29

decisions, before the A-wave propagated beyond Px , that is, independently of the information propagated from B.30

Recall that the A-half-wave from x under S is the same in all executions where x is given to A, that is, it coincides31

with that of Ex , including processor decisions.32

Assume to the contrary that there are two ids, each one of them causing at least one processor, in the interval as33

above, to decide “leader”. Then, we may pair these ids, under S, and thus arrive at an execution with two processors34

decided “leader”—a contradiction. �35

Let us denote the exceptional id as in Corollary 4.6, if it exists, by ex-id3. Notice that, by Corollary 4.6, for any36

pair x, y of ids distinct from ex-id1,2,3, the only region, where the leader may be chosen, is strictly between Px and37

Py .38

4.2.2. Case analysis39

Clearly, the reaction of all internal processors to the bit waking it—deciding and bit sending—is completely defined40

by that bit, since the initial internal processor state is unique. Let us classify algorithms by satisfying the following41

properties I(b), b = 0, 1, of their executions under S. I(b): Any b-processor decides and relays a bit forward42

immediately upon its wake-up. In the following optimality proofs, we assume that no id is ex-id1, which implies that,43

in any execution, the two waves meet.44

Case 1: Neither I(0), nor I(1) are satisfied.45

Let us see that this case is impossible, for A. Indeed, let us consider an execution of A under S. The middle46

processor P0 should receive a message at its two adjacent links, by Lemma 4.3. Each other internal processor should47
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receive at least two messages, either for deciding, or for propagating the wave to the direction of P0. Thus, at least 1

2n − 2 messages should be received totally, which is too much, for A, for any n. 2

Case 2: Both I(0) and I(1) are satisfied. 3

Let us see that this case is impossible as well, for A. For this, we consider executions under S. 4

If both 0- and 1-processors decide “leader”, then in any execution, all internal processors (at least three) would be 5

leaders—a contradiction. Hence, we may assume w.l.o.g. that any 1-processor decides “non-leader”. 6

Observe that each 0-processor must decide “leader”. Indeed, otherwise, in any execution, all internal processors 7

would decide “non-leader”; then, by Corollary 4.6, in any execution under S of two ids other than ex-id1,2,3, no leader 8

would be chosen. 9

Assume that any 1-processor relays bit 0 farther. Obviously, no two ids send 0, since otherwise two leaders would 10

be chosen. Let us pair two ids, other than ex-id1, sending 1 upon the wake-up. If n ≥ 6, the two processors at distance 11

2 from the chain ends would decide “leader”—a contradiction. If n = 4, the two half-waves, together with the message 12

sent by P0, upon its wake-up, contain at least 5 bits sent, which is more than Algorithm 4 sends—a contradiction to 13

the optimality of A. 14

The only remaining sub-case is when any 0-processor decides “leader”, while any 1-processor decides “non-leader” 15

and relays 1 farther. Recall that no two ids cause the terminal to send 0. Hence, in the case M ≥ 6, we may choose an 16

execution E such that both terminals send 1, upon their wake-up. Then, in E , there would be no 0-processors, i.e. no 17

internal leaders. Applying Corollary 4.6, we deduce that no leader would be elected in E—a contradiction. 18

Summarizing, by cancelling Cases 1 and 2, for A, we have shown that the only possible case is: 19

Case 3: W.l.o.g., I(1) is satisfied, while I(0) is not. 20

Notice that any one-entry is a 1-processor, since any one-entry must decide and relay a message forward 21

immediately. By Observation 4.4, there exists an execution of A under S with at least two one-entries, which are 22

1-processors. So, the decision of each 1-processor must be “non-leader”, since otherwise at least two leaders would 23

be chosen, at that execution. 24

Assume, first, that any 1-processor relays 1 farther, upon its wake-up. By Corollary 4.6, for any execution of an 25

id pair (x, y), x, y 6= ex-id1,2,3, under S, the only region, where the leader may be chosen, is strictly between Px 26

and Py . However, both Px and Py are 1-processors, which implies that all processors in that interval are 1-processors. 27

Thus, no leader will be elected—a contradiction. 28

Now, we are left with the single possibility, used in the algorithms mentioned in the Theorem: Main Sub-Case 29

(MSC) : “Any 1-processor relays 0 farther”. 30

Observe that in any execution, with ids other than ex-id1, any 0-processor receives at least two bits. Indeed, any 31

0-processor, except maybe that of the wave meeting, must be activated at least twice, since upon its wake-up, it either 32

does not decide, or does not propagate the wave (or both); the processor where the waves meet, by definition receives 33

at least two bits. 34

At first, let us concentrate on the case n ≥ 10. Recall the execution Ex , defined after Lemma 4.5, for any id x other 35

than ex-id1,2. By Lemma 4.5, the half-wave from x , in it, validates the following property, for our case n ≥ 10. 36

Property 4.7. There exists a wave of A, from any id x other than ex-id1,2, containing at least two processors, which 37

had been awaken by the same bit, w.l.o.g. 1, and since then were never activated. 38

Let us consider a wave, W , as in Property 4.7, w.l.o.g. from A, and let P and Q denote the first two processors, 39

as there. Let us denote the distance between P and Q by k. Let us consider W , while giving to B any id other than 40

ex-id1, and change it to the following (well defined) execution prefix, E1, which: 41

• begins with waking A and B, 42

• does not deliver the first message sent by B, 43

• coincides with W (except for waking B), until waking Q, 44

• continues after that moment, up to reaching B, by delivering messages to processors farther than Q only, exactly 45

as for those farther than P , periodically, with period k links. 46

Note that, by construction, any processor at a period border has the same history as P; in particular, it is a 1- 47

processor and was activated only once. We claim that the prefix E1 is legal. This is so, since the situation in each 48

period after Q is, by construction, exactly the same as in that between P and Q, at the legal wave W . Note that 49
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nothing can prevent continuation of the prefix E1, until B is reached; in other words, this prefix is a non-halting1

wave from x . Also, nothing can prevent E1 to continue to be completed to a full execution, E ′. For illustration of the2

following analysis, the bottom sample in Fig. 2 may be useful.3

Claim 4.8. In MSC, in any execution beginning from a wave from A reaching B and a bit sent by B, at least 1.5n bits4

are sent.5

Proof. Let us divide the processors, beginning from that after A and finishing at B, into n/2 consequent pairs, and6

show that each pair receives at least three bits, which will suffice. At any pair consisting of two internal processors, if7

the first one is a 0-processor, then it receives at least two bits, which, together with the bit waking the next processor,8

sums into three bits. Otherwise, the first one is a 1-processor, which relays 0, causing the next one be a 0-processor; the9

latter one receives at least two bits, which suffices similarly. At the last pair, B receives a bit, while the first processor10

receives the bit waking it and the bit sent by B, which also suffices. �11

Notice that thus we have already proved that the Main Algorithm is optimal. The rest of the analysis, for the case12

n ≥ 10, concerns its uniqueness as the optimal one.13

Recall that the total number of bits sent by A cannot exceed 1.5n. Therefore, the bits sent in E ′ and counted in the14

proof of Claim 4.8 are all the bits sent. In particular, the terminal A, given any id other than ex-id1,2, never receives15

any bit; hence, such ids decide immediately upon waking up. An essential corollary, from the fullness of counting, is16

that at any pair of consecutive internal processors, exactly one is a one-entry. Hence, by the choice of P and Q (those17

defining the prefix E1), the period, at E1, is of length 2; it consists of a 1-processor and a 0-processor.18

Lemma 4.9. For n ≥ 10, internal processors behave at A exactly as in the Main Algorithm.19

Proof. A consequence of the above analysis is that 0- and 1-processors must alternate, at any wave; thus any 0-20

processor relays 1. Recall that, by Property 4.7, a full wave E1 as above may be built from any id, except for ex-id1,2.21

Recall also that terminals decide immediately. Since such a decision may be “leader” for at most one id, and since M22

is at least 6, there exist at least three ids deciding immediately “non-leader”.23

Let us consider the full wave E1 from A given one of those ids, x , while B is given another one of them. Recall that24

any 1-processor decides “non-leader”, so the leader must be chosen among 0-processors. By the periodicity of each25

wave, the only place for the leader may be at the link of wave meeting, that is, the leader must be the 0-processor, R,26

next to B. An easy parity reason implies that A sent 0. Since x was chosen arbitrarily, all ids that decide immediately27

“non-leader” send 0; thus B sent 0 as well. Recall that there may not be any bits sent, except for those counted in the28

proof of Claim 4.8. Hence, R should decide immediately upon receiving 0 from B. Therefore, we arrive at a necessary29

condition that whenever a 0-processor receives 0 from the next processor, it decides “leader”.30

Observe that no 0-processor receives a bit from the previous processor, except for the bit waking it. Indeed,31

otherwise, by the periodicity of E1, all of them should receive such a bit; in particular, R would receive three bits, in32

a contradiction with fullness of counting in the proof of Claim 4.8. As a consequence: when a processor receives first33

bit 0, it sends 1 forward immediately. Thus, the second bit received by any 0-processor comes always from the next (1-34

)processor; note that it should be the same bit, for all of them. Since n is at least 10, there are at least two 0-processors35

not incident to the link of wave meeting, so the bit as above must be 1. Hence, when a processor receives first bit36

1, it immediately sends 1 backwards and 0 forward. Summarizing, we arrive at all the rules of the Main Algorithm37

concerning internal processors. �38

Lemma 4.10. For n ≥ 10, terminals behave at A exactly as in the Main Algorithm.39

Proof. Recall that any id, other than ex-id1, sends some bit upon its wake-up. By the rules for internal processors40

(shown to be unique, in Lemma 4.9), any wave propagating from such an id is non-halting. Let us show that no wave41

may begin from sending bit 1. Indeed, then the full wave would contain 2 + 1 + · · · + 2 + 1 = 1.5n bits sent, up to42

waking the other terminal. However, if the other terminal is not ex-id1, it sends some bit as well, resulting in at least43

1.5n + 1 bits sent totally—a contradiction. So, any id, other than ex-id1, sends bit 0, upon its wake-up. When we44

pair two ids, other than ex-id1, under S, two waves beginning from bit 0 meet at P0. Hence, either P0 or one of its45

adjacent 0-processors (depending on the parity of n/2) would be elected as leader. This means that any such id must46

decide “non-leader” immediately upon its wake-up.47
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So, the only case remaining to consider is when ex-id1, w.l.o.g. at B, does not send anything upon its wake-up. It 1

may either decide, or not decide immediately. When activated by the coming full wave, it has to decide “leader” or 2

“non-leader”, if not decided upon the wake-up, and send a bit, in order to inform its neighbor R of its decision. Then, 3

R will decide accordingly. Notice that this variation of the Main Algorithm is as given in its description. � 4

This is the end of analysis of the case n ≥ 10. 5

For the cases n = 4, 6, 8, let us assume, to the contrary, that A sends strictly less than 4, 8, 12 bits (respectively), in 6

the worst case. Then, the inequality n −1−bN/2c ≥ 2, which was crucial in the case n ≥ 10, for the existence of two 7

one-entries in half-waves (in the sense made precise in Lemma 4.5), holds as well, and thus establishes Property 4.7. 8

As a consequence, we are able to establish Claim 4.8, in the same way as in the above case. We thus show that at least 9

1.5n bits are sent, arriving at a contradiction to our assumption. This is the end of the proof of Theorem 4.2. 10

4.3. Proof of uniqueness for n = 2, 4, 6, 8 11

In this section, we extend the uniqueness result of Theorem 4.2 to the case n ≤ 8. In our analysis of this case, we 12

restrict attention to the sub-case MSC, from the case analysis of Theorem 4.2, since the part of this analysis before 13

considering MSC is for general n. We often mean using scheduler S, without mentioning this. 14

Theorem 4.11. In the case n ≤ 8 and M ≥ 6, there is no optimal algorithm, except for Algorithms 2, 4, 6, 8, and the 15

Main Algorithm for n = 8. 16

Proof. Consider, first, the case n = 2, when no bit is sent by A. Obviously, Algorithm 2 is optimal, so the only goal 17

is to prove that A cannot be distinct from it. If the built-in decision of P0 is “leader”, Algorithm 2 is clearly unique. 18

Assume to the contrary that P0 decides “non-leader”. At a terminal, id only defines the decision. It is easy to see 19

that there exist two ids causing the terminal to decide in the same way. Pairing such two ids, we arrive at a non-legal 20

execution. Therefore, Algorithm 2 is the unique optimal algorithm, for the case n = 2. 21

Passing to the case 4 ≤ n ≤ 8, let us summarize what remains to be proved. Assume first, that algorithm A, 22

competing with Algorithms 4, 6, and 8, admits at least one non-halting wave, say W from id z. By Observation 4.4 23

and the definition of MSC, W should contain at least two processors, each received only one bit 1. That is, the 24

statement of Property 4.7 holds for z; let us show that it holds for all ids required. Notice that the wave W may be 25

changed to become periodic, in the way as given in the proof of Theorem 4.2. Let us consider any id, y, other than 26

z and ex-id1,2. By Lemma 4.5, there exists a half-wave, generated by y, which contains at least one 1-processor, P . 27

Now, if we follow that wave from y up to waking P , and after that change it to become periodic, with the same period 28

as that of the z-wave, we end up with a (legal w.r.t. A) periodic y-wave. This establishes Property 4.7. Now, we may 29

arrive at the Main Algorithm, in the same way as given in the proof of Theorem 4.2. Note that the Main Algorithm is 30

optimal for n = 8, but is not optimal for n = 4, 6. 31

The following Proposition settles the case when the above assumption does not hold, thus finishing the proof of 32

Theorem 4.11. � 33

Proposition 4.12. In the case n = 4, 6, 8, if A generates halting waves only, then it either coincides with one of 34

Algorithms 4, 6, and 8, or sends more bits, than those algorithms, in the worst case. 35

Proof. In further main constructions, we restrict ourselves by using only ids other than ex-id1; that is, no wave halts 36

before P0. The behavior of ex-id1 is considered separately. Note that a wave may halt at a 0-processor only. Recall, 37

besides, that at any execution, any 0-processor receives at least two bits, as was shown in the proof of Theorem 4.2. 38

Let us prove the Proposition for the case n = 4. Since A sends four bits, it follows that there is exactly one bit at 39

each link. Hence, the two waves halt at P0, which receives 0 on both sides. By Observation 4.4, there must be at least 40

two one-entries, which should be the two other internal processors, both 1-processors. Any terminal decides based on 41

its id only; the decision should be “non-leader” for almost all ids. Thus, P0 should decide “leader”, after receiving 42

one or two 0’s. Thus we arrive at the unique optimal algorithm, except for possible specifics for ex-id1. It should 43

send something, otherwise the next processor would not decide. It cannot send 0, since then the next processor and P0 44

would finish in the same state, so that there would be either two undecided processors or two leaders. So, ex-id1 must 45

send 1, and thus has no specifics. 46
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Lemma 4.13. In MSC, for n = 6, 8, any 0-processor waits for exactly one more bit, before it sends bits forward.1

Proof. By definition of MSC, any 1-processor relays 0 forward. So, there are 0-processors other than P0, in any half-2

wave. Assuming to the contrary that at some execution, a 0-processor waits for at least three bits, before propagating3

the wave, let us count a lower bound for the number of bits received, totally. Let n be 6: 3 (that processor) + 2 (another4

0-processor) +2(P0) + 2 ∗ 1 (one-entries) = 9 bits—a contradiction to optimality.5

For n = 8: No half-chain may contain two one-entries, since then we would be able to show a periodic, and hence6

a non-halting wave, contradicting the assumption of the proposition. So, there are at most two one-entries (which are7

1-processors) in the entire execution, implying at least 3+3 ·2+2+2∗1 = 13 bits sent—a contradiction to optimality8

of A. �9

In fact, the proof of this Lemma shows that the bit count, for A, is very tight, and thus the algorithm should be very10

definite:11

• any wave propagates forward only;12

• there are exactly two 1-processors, one in each half-chain, and any one of them receives just the single bit 1 waking13

it;14

• any 0-processor, except for P0, receives exactly two consecutive bits, b1b2, from the previous processor, and only15

then sends something; it is never activated, after that (we call it b1b2-processor);16

• P0 receives exactly two bits, both 0’s, from both sides, without sending anything, and then decides.17

Moreover, similarly to the case of n = 4, the decision of P0 must be “leader”, and thus decisions of the terminals18

must be “non-leader”, including ex-id1, if any. Notice that any wave must reach P0, since otherwise the latter would19

not decide. In other words, ex-id1 does not exist, according to its definition.20

Also, one-directional wave propagation implies that no two processors, in the same half-chain, receive the same21

bits. Indeed, if so, we would be able to build a legal periodic, and thus non-halting wave, similarly to the proof of22

Theorem 4.2, thus arriving at a contradiction to the assumption of the proposition. In other words, the only freedom,23

for A in any half-chain, is:24

• to choose dispersion of distinct sendings, out of 1, 00, and 01, on the links, and25

• to assign these sendings to the processor types: 1-, 00-, and 01-processor, and a terminal given a certain id.26

We now finish to prove Proposition by case analysis. In what follows, * means any bit value, b denotes a certain27

bit value, while b̄ the other value.28

Let n be 6. First, assume that there exists some id, such that a terminal given it sends 1. Hence, any 1-processor29

sends forward 0b. This implies that no id sends 0* forward; indeed, then the next processor should send 1 and the30

1-processor after it 0b, not a single 0, as needed. In other words, all terminals send 1 forward. Therefore, any (1-31

)processor adjacent to a terminal sends 0b, and the next processor sends a single 0 forward. The result is one variation32

of Algorithm 6.33

The remaining case is that all terminals send 0*, depending on their id. Then, a 0-processor relays 1, while a34

1-processor sends 0 forward. We arrived at the two possible variations of Algorithm 6.35

Let now n be 8. We begin once more with the assumption that some id sends 1. Then, any 1-processor sends 0b,36

any processor receiving 0b relays 0b̄, and any processor receiving 0b̄ relays 0. This once more implies that no id sends37

0* forward; indeed, then the wave from that id would halt before P0, by the rule as above. So, all terminals send 138

forward, implying a variation of Algorithm 8.39

Otherwise, let us consider an id sending 0b. Then, either receiving 0b causes sending 0b̄, 0b̄ causes 1, and 1 causes40

0, or 0b̄ and 1 exchange, in such a sequence. In any case, no id may send 0b̄, since then the wave from it would41

not reach P0. In other words, all ids create the same wave of the type as above, and we arrive at other variations of42

Algorithm 8. �43

4.4. Small values of M, with n ≥ 444

Results of this section are less important, and are presented as a sketch.45

For the case M ≥ 4, we conjecture that the result of Theorem 4.2 holds. We have a draft of its proof; however, it is46

technical and does not add much to our understanding.47
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For the case M = 3, the following algorithm AM=3 is, clearly, correct: One of the ids decides “leader”, propagates 1

1, 1, . . . wave and halts. Some other id decides “non-leader”, propagates 0, 0, . . . wave and halts. The third id is silent 2

and waiting; when receiving a bit, it decides according to its value. Internal processors have built-in decision “non- 3

leader”. They propagate 1’s and 0’s, deciding on the direction to the leader accordingly; they do not react to the second 4

bit received. Clearly, the number of bits sent is n + 1. The bit values 0 and 1 may be flipped. 5

Proposition 4.14. For M = 3 and n = 4, Bit C equals 4, and the unique optimal algorithm is Algorithm 4. 6

For M = 3 and n ≥ 6, Bit C equals n + 1, and the unique optimal algorithm is AM=3. 7

Proof. The case M = 3 and n = 4 : Optimality is clear from Lemma 4.3. For making the proof of uniqueness of 8

Algorithm 4, given in the proof of Proposition 4.12, work here, we should release it from the assumption of MSC. In 9

other words, from the assumption that a 1-processor relays a bit immediately, while a 0-processor halts. Notice that 10

pairing two distinct ids, other than ex-id1, in an execution under S, proves that either a 0-processor or a 1-processor 11

halts. Indeed, otherwise, P0 would not halt, and more than 4 bits would be sent totally. So, we may assume, up to 12

symmetry of 0 and 1, that a 0-processor waits for another bit. By the bit counting, a 1-processor must propagate the 13

wave immediately, as required. Therefore, the proof of uniqueness given there, is valid in our case as well. 14

The case M = 3 and n ≥ 6: Let us prove optimality of AM=3. Let us consider some id, x , different from ex-id1,2. 15

By Lemma 4.5, we can pair it with some other id, different from ex-id1, say y, in an execution E , under S, so that 16

E contains at least two one-entries in the x-half-wave. This implies that the x-wave may be continued to reach the 17

other terminal, by the following reasons. Either those two one-entries are of the same type, implying the existence of 18

a periodic wave in the “usual” way, given in the proof of Theorem 4.2. Or there are two one-entries, such that one is 19

a 1-processor and the other a 0-processor. This implies that both 1-processors and 0-processors do not halt, and so we 20

may continue the wave to be non-halting, giving preference to its propagation. If the scheduler begins with waking 21

both x and y, then y sends a bit, since it is distinct from ex-id1. If the scheduler then gives preference to the x-wave, 22

it reaches y, sending at least n bits. Totally, there are at least n + 1 bits. 23

Let us now prove the uniqueness of AM=3. The above analysis presents the full bit count. Hence, the x-wave is 24

one of the following two waves: either the alternating 0–1 wave, or the constant 1- or 0-wave. The former option may 25

be disregarded, since in E , both waves reach P0, and there is no way, for internal processors, to decide the direction 26

to the leader. 27

The latter option is indeed that used in AM=3. By symmetry, it is sufficient to set the wave from x be the constant 28

1-wave. Consider now the y-wave in E , which as we know, does not halt before P0. If y sends 1, it is also the constant 29

1-wave, and again internal processors would not know the direction to the leader. Hence, y must send the bit 0, to its 30

adjacent processor. If a 0-processor waits for more bits, then more than n +1 bits would be sent in the entire execution 31

E : the two half-waves (remembering that the processor adjacent to y receives at least two bits) plus the bit 1 relayed 32

by P0 after being awaken by the x-wave. So, a 0-processor sends immediately something. If it sends 1 forward, then 33

its neighbor would be a one-entry and a 1-processor (again from the tight counting of bits). But also, on the other 34

side of the chain, we have such processors, and so, they will not be able to determine the direction to the leader. So, 35

the only option is that any 0-processor immediately sends 0 forward, and hence y generates the constant 0-wave (by 36

tightness of bit counting), which is again the option given in the description of AM=3. The “decision properties” of 37

internal processors and terminals are obviously immediate, again from the tightness of the above bit counting. Hence, 38

the only freedom is the assignment between “leader/non-leader” decisions and constant 0/1-waves. � 39

For the case M equals 2, the optimal algorithm is as follows: One of the ids decides “leader”, while the other 40

decides “non-leader”. All internal processors are non-leaders. For setting the direction to the leader, the leader (another 41

version: the non-leader) propagates either 0, 0, . . . , or 1, 1, . . . . The bit complexity is n. If the direction to the leader 42

is not required, there is no such wave, and the bit complexity is zero. 43
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