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In VLSI layout of interconnection networks, routing two-point nets in some restricted area
is one of the central operations. The main aim is usually minimization of the layout area,
while reducing the number of wire bends is also very useful. In this paper, we consider
connecting a set of N inputs on a line to a set of N outputs on a perpendicular line inside
a right triangle shaped area, where the order of the outputs is a given permutation of the
order of the corresponding inputs. Such triangles were used, for example, by Dinitz, Even,
and Artishchev-Zapolotsky for an optimal layout of the Butterfly network. That layout was
of a particular permutation, while here we solve the problem for an arbitrary permutation
case. We show two layouts in an optimal area of %N 2 4 o(N?), with O(N) bends each. We
prove that the first layout requires the absolutely minimum area and yields the irreducible
number of bends, while containing knock-knees. The second one eliminates knock-knees,
still keeping a constant number, 7, of bends per connection. As well, we prove a lower
bound of 3N — o(N) for the number of bends in the worst case layout in an optimal area
of N2 4 o(N?).
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1. Introduction
1.1. Problem Background

The construction of efficient VLSI layouts for interconnection networks is important,
since it improves performance of the resulting parallel architecture, both by reducing
its cost (fewer chips, boards, and assemblies) and by lowering various performance
impacts, such as signal propagation delay, drive power, and fraction of data transfers
to off-chip destinations. Routing two-point nets in some restricted area is one of the
central operations in the above problem class. A vast amount of work has been done
on routing in a channel (usually, a rectangular area), where the net terminals are
placed on the channel boundary (see e.g. [1, 4, 5]). The main aim of these works is
minimization of the layout area, while other aspects (as a number of bends, a wire
length, etc.) are also taken into account as secondary, but still important, parameters
for optimization.

Although the most popular channel shape is a rectangle, different forms are also
of substantial interest. For example, triangular, staircase, and L-shaped channels
are discussed in [2]. There, this is done in the 2-layer Manhattan-diagonal layout
model.

In this paper, we consider a right triangle shaped channel under the Thompson
layout model [6]. The net terminals are placed on the legs (non-hypotenuse sides)
of the right triangle: inputs on one side and outputs on the second one. The order
of the outputs is a certain permutation of the order of the corresponding inputs.
Our aim is to find such a layout for which the area of the encompassing triangle is
minimum.

Such a triangle is used, for example, in [3], for an optimal layout of the Butterfly
network — see Figure 1(a). The optimality in that work is obtained by using the
triangular layout — as shown in Figure 1(b) — that allows to reduce the whole layout
area from N? + o(N?) to 3N? + o(N?). However, that layout is of a particular
permutation — the transpose bijection. In contrast, our aim is a universal solution
for an arbitrary permutation.

Another natural application of wiring permutations in triangles arises in VLSI
technology as follows: Assume there are four subsystems, A, B, C and D, arranged
as in Figure 2, where terminals of A must be wired to terminals of B, and terminals
of C must be wired to terminals of D, while all these terminals are on the boundary
of a square wiring area W. By using two wirings of permutations in two triangles,
the desired wiring can be implemented efficiently.

1.2. Our Main Results

We present here a universal solution, which works for every permutation. In addition
to the generation of a layout which is essentially of minimum area, our solution
aims to reduce the total number of bends in the connecting paths. The motivation
of reducing the number of bends arises from the fact that in chip manufacturing
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Fig. 1. The optimal Butterfly network layout: (a) The whole layout for N = 32, (b) A part of the
layout in (a) as an example of the triangular layout of a permutation.
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Fig. 2. A VLSI layout case, which uses two wirings of permutations in triangles.

each bend requires a transition hole. A high number of such holes may increase the
layout area and the cost of the chip.
We show two solutions:

(1) A layout with knock-knees in a minimal area of %(N + 1)2, for an arbitrary
permutation P. The layout contains 3N —2¢(P) bends, where ¢(P) is the number
of cycles in P. We prove that the above bend number is the irreducible minimum
(given the minimal area), for any permutation. Hence, the layout is optimal
w.r.t.? area and bend number.

(2) A layout without knock-knees in an area of 1N? + o(N?). We prove that it

2with respect to
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contains less than 7N bends in the worst case, i.e. there is still a constant
number (in average) of bends per connection. In what concerns the optimality
of the bend number, we prove the lower bound of 3N — o(NN) (given the area of
N2 + o(N?)), for the worst case over all permutations.

The suggested knock-knee elimination method is a general one, and may be
applied to any monotonic layout of a permutation in a right triangle, while keeping
the area essentially the same and increasing the number of bends quite modestly.

2. Problem Description

Given aset N = {1,2,..., N} and a permutation P : N — N, we want to find a lay-
out of P on the square grid, for which the following properties hold (see Figure 3(b),
for illustration):

e There is a set X = {z; | ¢ € N} of vertices positioned in the natural order,
ascending from left to right, on distinct integral points of the z-axis. There
may be gaps (vacant integral points in between the vertices). Let us denote the
interval which includes all the vertices on the z-axis by =.

e There is a set Y = {y; | ¢ € N} of vertices positioned in the natural order,
ascending from bottom up, on distinct integral points of the y-axis. Again,
there may be gaps. Let us denote the interval which includes all the vertices on
the y-axis by T.

e = is located on the Lh.s.” and below Y, and the two intervals are disjoint.

e For every i € N, there is a grid path, called a wire, connecting vertex z; with
vertex yp(;). No edge on the axes is used in these wires. No two wires share a
grid edge.

o [f two wires intersect at a grid point, they cross each other or both of them bend
at this point. The latter case is called a knock-knee.

e The layout area is restricted by a right angled triangle such that = is on its
horizontal leg and Y is on its vertical leg, i.e. all points of the wires are inside
the triangle or on its boundary.

Our aim is to find such a layout for which the area of the encompassing triangle
is minimum.

3. Layout with Knock-Knees

Given a permutation P : N — N a cycle of length k is an ordered subset of N,
(i1,%2,...,1x), such that for every 1 < j <k, P(i;) = 141, and P(ig) = i;. Clearly,
the cycles are disjoint and the union of all of them is A/. Let us denote the number
of cycles of P by ¢(P). If k =1 then the cycle is called a singleton.

bLeft hand side; similarly, r.h.s. is for right hand side.
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In this section we allow knock-knees. We describe a simple algorithm for a layout
of a given P in a right angled isosceles triangle of area %(N + 1)2. The number of
bends is 3N — 2¢(P), so that N bends occur at the hypotenuse, and there are
(N —¢(P)) knock-knees. The area of the encompassing triangle is minimum, and we
show that the number of bends and knock-knees in our layout is minimum for any
layout within that triangle.

3.1. Layout Algorithm

We start by putting z1,zs,...,Zn, in this order, on the horizontal side, from left
to right, and y1,¥s,...,yn on the vertical side, from bottom up, and there are no
gaps in either case. Since no edges of the axes are allowed to be used by the wires,
the (possibly minimal) length of each leg of the triangle is N + 1, and consequently
its area is 1(IV + 1)? (also the minimum).

We wire each cycle (i1,is,...,1) separately. We use only the columns where
Tiy, Tigy - -+, Ty, are located and the rows where y;,, ys,, ..., ¥;, are located, so sepa-
rate wiring is legal. The wiring of a cycle is done by recursion on the cycle length.
The recursive step is described in the following two paragraphs.

If the cycle is a singleton, (i1), then we start at vertex z;;, go up to the hy-
potenuse, turn right, and go all the way to y;,.

If £ > 1, let i, be the least integer in the cycle. Start a wire at z;, ,, go up to
the row of y;, (the lowest output in the cycle), turn right and continue all the way
to y;,. Since ¢, < 941, this wire does not reach the hypotenuse. Next, start a wire
at x;,, go up to the hypotenuse (this will occur at the row of y;, ), turn right and go
to the column of z;, ;. At this point, turn up, creating a knock-knee, and stop the
wire, temporarily. For every j # a, (a — 1) start a wire at z;; and go up, crossing the
horizontal wire at the row of y;_, and stop temporarily. Looking at the k — 1 open
ends, sticking up from the row of y; , and all their destinations, we are left with
the job of wiring the same cycle, with ¢, omitted, in a smaller right angled isosceles
triangle whose legs are of length N 4+ 1 — 4,.

Consider the following example:

5 7 9
4 9 5

oo WO

8

1

This permutation has two cycles: (1,2,7,9,5,4,8) and (3,6). The wiring after the
first recursive step, applied to (1,2,7,9,5,4,8), is shown in Figure 3(a), and the
complete wiring is shown in Figure 3(b).

In each step of the recursion, a bend is created on the hypotenuse. In addition,
in each step of the recursion, except the last of the cycle, one knock-knee is created.
Thus, in the wiring of a cycle of length k, the number of bends on the hypotenuse is &
and the number of knock-knees is (k—1). Summing these values over all ¢(P) cycles
yields that the total number of bends on the hypotenuse is NV and the total number
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(a) (b)

Fig. 3. Wiring of the permutation from the example: (a) wiring the cycle (1,2,7,9,5,4,8) after
the first recursive step; (b) the complete wiring.

of knock-knees is N — ¢(P). Thus, the total number of bends is N 4+ 2(N — ¢(P)) =
3N — 2¢(P).

Proposition 1. The above algorithm works for any given permutation in a right
isosceles triangle of area %(N + 1)2. The area of the encompassing triangle is irre-
ducible minimum. The number of bends is 3N — 2¢(P).

In the next subsection, we show that the number of bends is irreducible minimum
too (given the minimal area).

3.2. Optimality of the Number of Bends

Before we prove the optimality of the layout our algorithm produces, let us make
several simple observations:

Lemma 2. In any wiring of any permutation P : N +— N, in a right angled isosce-
les triangle whose legs are of length N + 1, all grid-edges inside the triangle are used
in the wiring.

Proof. Any wiring of a connecting path from z; to y; must have at least N —¢+1
horizontal grid edges in order to reach the y-axis. Thus, the entire wiring of P
uses at least %N (N + 1) horizontal grid edges. However, this is the total number of
horizontal grid edges inside the triangle. Hence, every horizontal grid edge is used.

The argument for the vertical grid edges is similar. |

A wire from z; to y; is said to be monotonic if it goes up and/or right (perhaps
several times), but it never goes down or to the left. The number of edges in each
such path is, therefore, N — ¢+ 1+ 4.
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Corollary 3. In a wiring of a permutation, as in Lemma 2, the following three
facts hold:

e All wires are monotonic.

e Fuery grid-point on the hypotenuse, except its two ends, is used by some wire to
bend.

o If an internal grid-point is used by any wire to bend, then it is a knock-knee.

Now, let us prove that the bend number obtained by the algorithm in Section 3.1
is the irreducible minimum.

Theorem 4. In any layout of a permutation P : N +— N in a right triangle whose
legs are of length N + 1, the number of knock-knees is at least N — ¢(P).

Proof. The proof is by induction on N. For N =1 the theorem is trivial.
Suppose the theorem holds for N —1 terminal pairs and any c(P). For N terminal
pairs, consider the routing on the lowest row, R, i.e. that of ;.
Let ¢ = P71(1). By the monotonicity (see Corollary 3), the wire from z, to y;
goes up one grid edge and then to the right, ending in 4;. There are two cases to be

considered.
If ¢ =1, i.e. (1) is a singleton, the wiring on R has no knock-knees. The wires
from all other terminals, zs, x3,...,Tn start with at least two grid edges upward,

crossing R, and must be wired to their destinations within the remaining right angled
isosceles triangle whose sides are of length N. The permutation P’ : {2, 3,...,N} —
{2, 3,..., N}, which remains to be wired, consists of the same cycles as P, with
the exception of (1). By the inductive hypothesis, its layout has at least (N — 1) —
(¢(P) — 1) = N — ¢(P) knock-knees, proving the theorem.

Thus, assume ¢ > 1. In this case, there is a knock-knee in R, at the column of
z4. There are no knock-knees in R on the r.h.s. of x4, but there may be some on its
Lh.s. Assume that there are altogether ¢ > 1 knock-knees on R. Let P’ denote the
permutation to be wired above R. We make the following claim:

Claim 5. The number of cycles c(P') satisfies c(P') < ¢(P)+1t¢— 1.

Once Claim 5 is proven, the theorem follows: The total number of knock-knees
is at least t + (N — 1) — ¢(P’): ¢ on R and at least (N — 1) — ¢(P’) above R, by the
induction assumption. By the claim,

t+(N—-1)—c(P)Y>t+(N—1)—(c(P)+t—1)= N —¢(P) .

Proof of Claim 5. The proof of the claim is by induction on ¢. If £ = 1, every
cycle of P that does not include 1, remains intact in P’. The cycle C, which includes
1 and ¢ is affected. In this cycle, 1 is dropped, P'(¢) = P(1) and for any other 4,
P'(i) = P(4). Thus, ¢(P’) = ¢(P), satisfying the claim.
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Assume t > 1 and that for ¢ — 1 the claim holds. Let a be the least integer for
which there is a knock-knee on R at the column of z,; call the grid point of this
knock-knee, A. By our assumption, a # q.

Let Py : N +— N be the permutation defined by the wiring of P, if A is
changed to be a cross point, instead of a knock-knee. It follows that Py(a) = P(1),
Py(1) = P(a), while for every j # 1,a, By(5) = P(j)-

If 1 and a are not in the same cycle of P then c¢(Fy) satisfies ¢(Py) = ¢(P) — 1,
since the two cycles in P, the one in which 1 is and the one in which ¢ is, are now
changed into one cycle, and no other cycle is affected.

If 1 and a are in the same cycle C' of P then in Py the cycle changes into two
cycles, but again, no other cycle is affected. Therefore, in this case, ¢(Py) = ¢(P)+1.
Thus,

c(Py) <c(P)+1 (3.2)

always holds.
Both in the case of P and Py, the permutation P’ : {2, 3,..., N} —
{2, 3,..., N}, wired above R, is the same. Since Py has ¢ — 1 knock-knees on

R, by the inductive hypothesis (of the claim), the number of cycles of P’ ¢(P’),
satisfies

co(P)y<c(Py)+(t—1)—1.
By Equation 3.2,
c(PY<c(P)+1+4+t—1—-1=c(P)+t—1. a

Theorem 6. In any layout of a permutation P : N +— N in a right triangle whose
legs are of length N + 1, the number of bends is at least 3NV — 2¢(P).

Proof. According to Corollary 3, there are exactly N bends on the hypotenuse.
Each knock-knee adds two bends to the layout. According to Theorem 4, the
number of knock-knees is at least N — ¢(P), therefore the number of the bends
created by the knock-knees is at least 2(N — ¢(P)). Thus, the total bend number is
3N — 2¢(P). a

By Theorem 6 and Proposition 1, the algorithm of Section 3.1 provides the
irreducible minimum.

4. Knock-Knee Elimination

In this section, we show how all knock-knees of any monotonic layout, in a right
triangle, can be removed. This removal increases the area, but we show that the
area remains essentially the same. In the case when the original layout is of area
%N 2 + o(N?), as that of the previous section, the area of the fixed layout remains
the same, except that the o(IV?) expression hides a higher value.



Layout of an Arbitrary Permutation in a Minimal Right Triangle Area 109

Suppose we are given a monotonic layout L of a permutation P : N — N in
a right triangle, and L contains knock-knees. Qur aim is to show how to rewire the
connections, so that there will be no knock-knees, preserving P and keeping the area
essentially the same. Our approach is to divide the triangle into blocks, and to define
a rewiring, which keeps the macro-structure. That is the sequence of blocks passed
by each wire will be the same, but wires change their way through each block, so
that to avoid creating knock-knees. The arising “local” non-exactness at outputs is
fixed by adding small channel routers (blocks performing channel routing).

In the rest of the section, we first consider the layout produced in Section 3.1. In
Section 4.1, we describe the knock-knee elimination algorithm and study its prop-
erties. Since our method enlarges the layout area, we state and prove a lower bound
on the bend number for the case of a “non-tight” area, in Section 4.2. Finally, in
Section 4.3, our knock-knee elimination method is generalized to any monotonic
layout in a right triangle.

4.1. Rewiring in Blocks

In Sections 4.1-4.2, we deal with layout L produced by the algorithm of Section 3.1.
For simplicity of presentation, we first assume that N = n?, for some natural n.

First, divide the input vector into n small vectors, each consisting of n input
terminals. Next, introduce a gap between every two small vectors. This introduces
n — 1 new columns; none of its grid edges is used, but the horizontal wires crossing
such a column are extended by one unit. Similarly, introduce gaps in the output
vector, and their new rows.

What we have now is a division of the layout into blocks. Figure 4 gives an
example of such a division, for N = 16. There are n triangular blocks on the diagonal,
each has n inputs on its south side and n outputs on its east side. The remaining
%n - (n — 1) blocks are square shaped, with “local” inputs at the south and west
sides, and “local” outputs at the north and east sides. For each block, we define
a rewiring, keeping the sets of wires coming from south and from west, and those
leaving to north and to east, as they are in the original layout.

Let us consider a particular block, parametrized by the set of incoming wires and
just outcoming directions, for each one of them. Each wire comes at its particular
point on the south or west boundary (or south only, for triangular blocks) and aims
to the east or north (or east only, for triangles). First, we show a method of wiring in
a block, which produces a knock-knee free layout obeying these requirements. After
that, we show a block processing sequence, which provides the parametrization as
above, for each block processed. Finally, we adjust the placement of outputs.

4.1.1. Rewiring in a Triangular Block

The wiring of each triangular block is done simply by going up from each input
to the diagonal, bending right and going to the east terminal of the block (as in
Figure 4). This may not preserve the original (as in L) order of the outputs on the
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S Ak

V. LY
blocks N inputs gaps

Fig. 4. The division into blocks.

east boundary of this block, thus defining a new order of the inputs on the west
boundary of the next block of that horizontal layer. However, this ensures that all
the wires supposed to enter the next block from the west do so, despite a different
order (w.r.t. L).

4.1.2. Rewiring in a Square Block

The wiring of the connections through a block is described below. For illustration,
see in Figure 5 wiring of an example, where n equals 6, W1, W2, W5, W6 must
go north and S1, §3, 54, 56 must go east.

(1) Straight wires. Every wire which enters the block from the west, say at terminal
Wi, and is supposed to leave from the east, goes straight across to terminal E¢
(wires W3 — E3, W4 — E4 in Figure 5). Similarly, every wire which enters from
the south, say at terminal S, and is supposed to leave from the north, goes
straight up to terminal Nj (wires S2 — N2, §5 — N5 in Figure 5).

(2) Bending wires. If there are wires incoming from the west and supposed to leave
from the north, let a denote the number of these wires. Clearly, this is also the
number of wires entering the block on the south side to go east. The number of
currently unused terminals on each block side is also a.

e The detour wire. Let Wp1, Wpe,..., Wp, be the unused terminals on
the west side, in ascending order, and let Ngi, Ngs,..., Ng, be the un-
used terminals on the north side, in ascending order. The connection from
Wp1 bends up on the west boundary of the block, goes all the way up to
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Fig. 5. The wiring of the example square block.

the north-west corner of the block, bends right and goes along the north
boundary up to Ng, (wire W1 — N6 in Figure 5).

e West-north bending wires. For each 2 < { < a, the wiring from Wp; goes
horizontally until it reaches the column of terminal Ng; 1 (still unused).
It bends up and goes all the way to N¢;—1 (wires W2 — N1, W5— N3 and
W6 — N4 in Figure 5).

e South-east bending wires. Let Sq1, Sqo,..., Sq, be the terminals on the
south side, for which the connections (to the east side) have not yet been
wired, and Ep;, Eps,..., Ep, be the terminals on the east side, which
are yet unused, both in ascending order. For each 1 < ¢ < a, we wire the
connection from S¢; by going up p; units, bending right and going straight
to Ep; (wires S1 — E1, S3 — E2, S4 — E5 and S6 — E6 in Figure 5).

Lemma 7. For the above wiring in a square block, the following facts hold:

(1) There are no overlaps and knock-knees.
(2) The number of bends is bounded from above by 2a + 2, where 2a is the number
of all bending (west-north or south-east) connections.

Proof.

(1) Wiring of straight and west-north connections does not cause any wire con-
tentions, since the row/column used by each such a connection is not used
neither by other straight connections, nor by bending connections.

When wiring south-east connections, each wire from S¢; goes up p; units,
arriving at the row of Wp;. It does not reach the vertical section of the connection
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to Ng;, since the latter starts at the row of Wp,; 1, which is higher than the row
of Wp;. Thus, in the columns, no overlaps and knock-knees are created.

The situation with the rows is symmetric: the wire from Sg; uses row p;
starting from column ¢;, while the wire from Wp; goes just until the column of
Ng;—1. Since g;—1 < g;, this appears also to be legal and knock-knee free.

(2) There is one bend for each bending connection, except for the detour wire,
which requires two more bends. So, in the case of 2¢ bending wires, the number
of bends is 2a + 2. O

4.1.3. Rewiring in the Entire Triangle

We begin rewiring by processing the lowest block row, starting from the leftmost
block and proceeding from left to right. For all blocks, the incoming points for
wires going from south are pregiven by the original layout. For the first, triangular
block, this information provides its full parametrization. For any other block, the
placement of wires going from the west is defined by wiring of the previous block. The
outcoming direction, north or west, for any wire, is pregiven by the original layout.
Since this parametrization is full, the blocks may be processed as in Sections 4.1.1
and 4.1.2. Once a layer is done, we proceed with the layer on top of it, in the same
fashion. The wires outcoming from the blocks of the previous layer to the north are
those incoming to the blocks above them from the south. Thus, each layer has a
similar initial information, sufficient for parametrizing its blocks.

The order of outputs, in each block, is not controlled by our approach. Therefore,
the resulting permutation of the wires may be not consistent with P. However, the
wire set of each small output vector is preserved. We rewire now the outputs in each
small vector to be according to P. Connecting the wires to their exact destinations
is done using Pinter’s algorithm for channel routing [5]. The width of such a channel
is bounded by 1.5n. The resulting layout looks like in Figure 6.

4.1.4. Knock-Knee Elimination for Non-Quadratic N

When /N is non-integer, let n be the least number such that n?> > N. Let d = (N
mod n) and D = N — d. Then, we suggest the following division into blocks: First
D inputs (in the natural order) are divided into small vectors of length n each, and
if d > 0, the additional, last small vector contains d vertices; it makes n — 1 or n
vectors. The same is done for outputs. For illustration see Figure 7.

Now, we have a number of triangular, square and rectangular blocks. All the
triangles are isosceles (just vary in size), therefore the rewiring algorithm for them
does not change.

Rectangular blocks may seem to cause a problem, but actually their rewiring
goes along the same lines, as for square ones. Notice, that if there are a wires that
enter some rectangular block from the west and go to the north, then exactly o
outputs on the east side are left for wires going from south inputs. Therefore, all the
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Fig. 6. The whole layout scheme based on the division into blocks.

I
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N inputs

Fig. 7. Non-equal division into blocks.

steps of the rewiring algorithm for square blocks will do well for the rectangles. Just
the number of horizontal straight wires will be greater than the vertical ones. Thus,
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the above rewiring algorithm for knock-knee elimination works for non-quadratic
values of NV as well.

4.1.5. Properties of the rewired layout

Let us examine the area and bend number of the new layout. From here on, we refer

as ¢

‘rectangular” both rectangular and square blocks.

Theorem 8. The suggested layout has the following properties:

(1)
(2)
(3)

It is legal w.r.t. the Thompson model and has no knock-knees.
The layout area is N2 + o(N?).
The number of bends is less than 7N.

Proof.

1)

By Lemma 7, there are no overlaps and knock-knees inside the blocks. In rewiring
of a rectangular block, only the north and west boundaries of each block may
be used by a wire (the detour one). Therefore, when two blocks are juxtaposed,
having a common side, no overlaps and knock-knees are created, since only one
of them uses the shared side. Thus, the entire layout does not contain overlaps
and knock-knees.

Obviously, the new layout is also encompassed by a right isosceles triangle. The
length of its leg is bounded by (N +1)4(n—1)+1.5n, where n < v N+1 = o(N),
(N +1) is the leg length of the original triangle (described in Section 3), at most
(n—1) is added by the gaps between the blocks, and 1.5n is the worst case width
of Pinter’s channel routers. Therefore, the overall area is %N 2+ o(N?).

Let us compare the number of bends in the new layout with that of the optimal
layout suggested in Section 3. For convenience, let us imaginarily divide also the
optimal layout into blocks in the same fashion, as this is made in Section 4.1.
We consider 3 types of blocks:

o In the knock-knee free layout, each triangular block with [ inputs contains
exactly [ bends. The corresponding triangular block in the optimal layout
contains at least [ bends (there may be also knock-knees inside). Thus,
rewiring of triangular blocks does not add bends.

e Each rectangular block in the new layout preserves the number of connec-
tions that change the direction inside the block. Therefore, if the rewired
block contains 2a + 2 bends (see Lemma 7), then the corresponding rect-
angular block in the optimal layout contains at least 2a bends (there may
be wires that bend several times inside the block). So, rewiring of any rect-
angular block adds at most 2 bends. Let n’ denote the number of small
vectors subdividing inputs (n — 1 or n). The overall number of rectangular
blocks is w Therefore, the number of additional bends is at most
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n'(n —1) <N.°

o At last, the Pinter channel routers do not appear in the optimal layout, so
their bends make a pure addition to the optimal number of bends. By [5],
this is 3n per block (in the worst case), or at most 3N altogether.

Hence, the total number of additional bends is less than N + 3N = 4N
in the worst case. Therefore, number of bends in the new layout is less than
3N —2¢(P)+4N < 7N. O

So, the number of bends in the new layout is less than 7 per connection, in
average.

4.2. General Lower Bound on the Bend Number

Theorem 6 states the lower bound of 3N — 2¢(P) on the number of bends, in the
case of absolutely minimal area, i.e. area that equals exactly %(N +1)?; it is valid
for any permutaion P. While eliminating knock-knees, we extend the layout area to
%N 2 1 o(N?), by lengthening the triangle legs by o(N). The following study implies
the worst case lower bound of 3N — o(NN) on the number of bends, for any layout
in such an area. Therefore, the number of bends achieved in Section 4.1.3, while
eliminating knock-knees, has a bit more than twice the minimum possible bend
number for a layout with knock-knees permitted.

Besides, we make our lower bound more precise as related to the number of cycles.
Proposition 1 and Theorem 6 hint that the number of needed bends decreases, when
the number of cycles increases. For our hard permutation instances, the number of
bends depends on the number of cycles in the same form 3N — 2¢(P), as in those
Proposition and Theorem.

Note that if the leg of a right isoceles triangle is at least 2N, any input may be
wired to the corresponding output straightforwardly, with a single bend. Hence, in
what follows we do not consider this case.

Theorem 9. Forany N > 1, any v : 0 < v < N, and any c: v < ¢ < N, there
exists a permutation P : N — N, with ¢(P) = ¢, such that any layout of P in a
right isoceles triangle, whose legs are of length N + v, has at least 3N — 2¢ bends. 9

Proof. For any pair NV and v, consider the right triangle with the legs of length
N+v. Let C1,Cy,...,Cnyp—1 denote the grid columns inside the triangle, from the

¢This inequality can be trivially proven by examining two cases:

(@) f(n—1)*<N<n?—n,thenn’ =n—1.
(b) Ifn? —n < N < n?, then n/ =n.

dFor any ¢ < v, we can create a permutation with bend number at least 3N — v. It is obtained
by constructing a permutation like Py in the theorem proof and then exchanging targets for some
values greater than N — v.
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left to the right; and let R1, Ro,..., Ry4+,—1 denote the inner grid rows from the
bottom up.

Consider any layout in this triangle. Notice that any input-output connection
has at least one bend, since it starts with a vertical segment and finishes with a
horizontal one. Besides, any connection that starts at column C; and finishes at row
Rj;, with 7 < j, has to make at least 2 additional bends in order to keep itself inside
the triangle area (otherwise, it would stick out of the hypotenuse). Let A denote the
set of such connections. Then, the overall number of bends in the layout is at least
N +2|A].

Let us first ignore the requirement concerning the cycle number, for simplicity.
Consider the permutation Py : N +— N, where for every 1 < ¢ < N, Py(i) =
((i+v—1) mod N)+1. Consider any g: 1 <¢< N —v.Sinceg+v—1< N -1,
then Py(q) = ((¢+v—1) mod N)+1 = (g+v—1)+1 = g+v. Let C, be the column
where z, is placed, and R; be the row of yp(4). Since there are N — g terminals on
the r.h.s. of 24, thena < (N +v —1) = (N —¢) = ¢+ v — 1 < Py(g). On the other
hand, b is at least Py(q). Therefore, a < b, and, consequently, the connection from
T4 t0 Ypy(q) belongs to A. Thus, [A] > N — v, and the number of bends is therefore
at least N +2(N —v) = 3N — 2v.

We continue by constructing a bit different permutation P, with exactly c cycles
(for illustration see Figure 8):

A% A% Vv A% Vv c-V
I I I | I [t
c

Fig. 8. The cycles in the permutation P.

i +v f1<i<N-c¢
PH)=¢ ((i—1)modv)+1if N—c<i<N-—-c+v
1 ifN—-c+v<i<N

It is easy to see that all numbers up to N — ¢ + v form exactly v cycles, each
consisting of the set of numbers equal modulo v. The remaining ¢ — v numbers
form ¢ — v singletons, that is ¢(P) = ¢, as required. Similarly to the above, for any
number g up to N — ¢, the connection from z, to yp(g) belongs to A, for P. Hence,
|A| > N — ¢, and the number of bends is therefore at least N +2(N —¢) = 3N — 2¢.

a

Corollary 10. For any N > 1 and any positive ¢ < N, there exists a permutation
P : N — N, with ¢ cycles, such that any layout of P in a right isoceles triangle,
whose legs are of length N + ¢, has at least 3N — 2¢ bends.
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Corollary 11. For any N > 1 and any positive v = o(N), there exists a permuta-
tion P : N — N, such that any layout of P in a right isoceles triangle, whose legs
are of length N + v, has 3N — o(N) bends.

4.3. Rewiring Any Monotonic Triangular Layout

Let us consider an arbitrary ready monotonic layout with knock-knees, in a right
isoceles triangle, possibly containing gaps among its inputs and outputs. Let us
apply the above method in order to rewire this layout to make it knock-knee free.
The rewiring algorithm is similar to that described earlier. The only difference in the
situation is that blocks (both triangular and rectangular) may have unused inputs
and outputs.

Obviously, it is not a problem for a triangular block, since each connection inside
it is wired completely independently. Therefore, unused inputs just cause correspond-
ing columns and rows to be unused too, and the block becomes sparce.

Let us consider a rectangular block with m unused inputs (at the south and west
sides altogether). Naturally, it has also m unused outputs at the north and east sides.
Now, just complete the set of input-output pairs for this block by m virtual ones,
matching unused inputs with unused outputs in an arbitrary way. For this complete
case, we may apply the solution described in Section 4.1, as it is. Finally, erase from
the obtained layout the virtual connections to get the sparce block layout.

Theorem 12. For any layout of any permutation P : N — A in a right triangle,
whose legs are of length N7 + 1, Ny > N, and whose number of bends is By, the
layout corrected, as in this section, has the following properties:

(1) It is legal w.r.t. the Thompson model and has no knock-knees.
(2) The layout area is 3N1? + o(IV1?).
(3) The number of bends is less than B; + N7 + 3N.

The proof is similar to that of Theorem 8.

Acknowledgment

The authors thank Ami Litman for posing the question about a triangular layout
for an arbitrary permutation.

References

1. Bonnie Berger, Martin Brady, Donna Brown, and Tom Leighton. Nearly optimal algo-
rithms and bounds for multilayer channel routing. J. ACM, 42(2):500-542, 1995.

2. Sandip Das, Susmita Sur-Kolay, and Bhargab B. Bhattacharya. Routing of L-shaped
channels, switchboxes and staircases in manhattan-diagonal model. In VLSID ’98: Pro-
ceedings of the Eleventh International Conference on VLSI Design: VLSI for Signal Pro-
cessing, pages 65—70. IEEE Computer Society, 1998.



118 M. Artishchev-Zapolotsky et al.

3. Yefim Dinitz, Shimon Even, and Maria Zapolotsky. A compact layout of the butterfly.
J. of Interconnection Networks, 4(1):53-75, 2003.

4. S. Muthukrishnan, Mike Paterson, Siileyman Cenk Sahinalp, and Torsten Suel. Compact
grid layouts of multi-level networks. In STOC: ACM Symposium on Theory of Computing
(STOC), pages 455-463, 1999.

5. Ron Y. Pinter. On routing two-point nets across a channel. In ACM IEEE 19th Design
Automation Conference Proceedings, pages 894-902, Los Alamitos, Ca., USA, June 1982.
IEEE Computer Society Press.

6. C. D. Thompson. A complexity theory for VLSI. Technical Report CMU-CS-80-140,
Carnegie-Mellon University, 1980.



