A Scalable Content-Addressable Network
Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, Scott Shenker

Written by Vladimir Eske
Saarland University, Department of Computer Science

Contents
1 Motivation

2 Basic CAN architecture
2.1 Introduction.
2.2 DataModel,
2.3 AccessModel
24 CANrouting
2.4.1 Average path length

3 CAN construction
3.1 Node’sarrival
3.2 Node’s departure
3.3 Node’scrash

4 Advanced CAN architecture
4.1 Path latency improvement
4.1.1 Multiple dimensions
4.1.2 Multiple realities
4.2 Hop latency improvement
4.3 Overloading coordinate zones
4.4 Construction improvement - Uniform partitioning

5 Summary

12
12
12
12
13
13
14

16

1 Motivation

Internet population explosion promotes different peer to peer systems. Sev-
eral millions of users are connected to the P2P system at the same time is an
everyday occurrence. There are two key pieces in a P2P system: the lookup
mechanism used to locate a desired file and the actual file downloading. The
decentralized storage in P2P systems makes the file transfer process inher-
ently scalable; the hard part is finding the peer(s) from which to retrieve the
file. Lookup solutions in deployed systems to date fall into two categories
centralized like Napster and decentralized like Gnutella. Centralized solu-
tions are typically cited as being vulnerable due to a single point of failure
and being hard to scale for many millions of users.

2 Basic CAN architecture

2.1 Introduction

CAN is a distributed system that provides hash table functionality - mapping
"keys” onto ”value” on Internet-like scale. The basic operation in CAN is
a lookup(key) which returns the corresponding ”value” for the given "key”.
In spite of work on CAN was motivated by the P2P file sharing systems, the
utility of CAN is not limited to them. There are many other directions in
which CAN can be used: application layer multicast [5], event notification
services [4], chat services [3] and others. Also there are a lot of similar
to CAN projects - DHT (distributed Hash Table) systems like Chord [6].
The main difference between them is the routing algorithm which is used to
provide a lookup operation.

The CAN’s routing algorithm is designed to provide the following fea-
tures:

e Scalability - every part of the system maintains only a small amount
of control state and is independent of the number of parts

e Distributivity - the system does not require any centralized control

e Efficiency and fault-tolerance - a routing should be optimal and be
provided even when some parts of DHT are crashed

e Balanced load

2.2 Data Model

CAN’s design centers around the virtual d-dimension Cartesian coordinate
space on d-torus. It is completely logical coordinate space which is cyclical
in every dimension. However we can use the following example to illustrate
it. We consider 1-dimension [0,1] coordinate space. The space can be rep-
resented as a circle, see figure 1. The perimeter of the circle equals to the
size of space (length of interval [0,1]). The distance between two points in
such a space equals to the length of the shortest arc between them.

CAN resembles a hash table and provides three basic operations: in-
sertion, deletion and lookup. The system is composed of many individual
nodes which store a chunk of the entire hash table. A node is not a peer, it
is more like a dedicated server which basically should provide only indexing
of information. A chunk of the hash table is called ”Zone” in CAN. On the
figure 2 there is an example of 2d coordinate space split on several zones.
Zones in CAN can have different size like three gray zones on the picture,
however they must have a squared shape.

Every node owns only one distinct zone and provides direct access to
the stored zone for all users connected to this node. However, it is more

likely that most of requested data is out of the current node; to provide
user’s queries on the entire DHT a node has to forward user’s queries to
one of its partner nodes. In CAN node can forward a query only to its
"neighbor” and two nodes are neighbors if their coordinate spans overlap
along d-1 dimensions and abut along one dimension. The figure 3 shows an
example of neighbors in CAN. The node which owns the green zone has five
nodes, they own light green zones. The green zone and red zone owners are
not neighbors because they don’t abut.

This neighbor relationship creates a virtual grid and allows to forward a
query rationally using some simple metrics, for example cartesian distance.
A node in CAN stores also a list of its neighbors which contains neighbors’
IP addresses and their zones’ coordinate.

1,0
I

o @
09 01

® 0.75 0.25' ¢

0.5
i

Figure 1: 1d Cartesian coordinate space on 1-torus

0,1 1,1
[0.5-1,0.5-1]
0,0 1,0

Figure 2: Zones example

2.3 Access Model

The first step of interaction between user and P2p system is getting an access
to the system. CAN provides the following bootstrap mechanism which

A NODE (ZONE)

A NODE NEIGHBORS

NOT A NODE NEIGHBORS

Figure 3: Zones example

provides this functionality. Assume CAN has an associated DNS domain
name which is resolved to the IP address of one of the CAN bootstrap
nodes. A bootstrap node maintains a partial list of CAN nodes which are
currently in the system. A user in this model sends a request, using CAN’s
domain name. His client gets an answer from one of the bootstrap nodes
and automatically establishes the connection to any available CAN node. In
details the bootstrapping mechanism is described in [7].

2.4 CAN routing

The routing algorithm is very important for DHT systems because it defines
the response time for the query and it means data availability. A wrong
routing algorithm in the distributed system will grade all advantages of such
a system, like it happened with Gnutella. CAN routing algorithm uses the
greedy search on the node-graph, nodes are connected by the neighborhood
relation. In the best case, when every node has exactly 2 neighbors in each
dimension, this graph is a d-dimensional grid structure.

The cartesian distance is used as a routing metrics. CAN routing algo-
rithm basically consists of 3 main steps:
First, the destination point should be defined: a user sends a request (add,
delete, or lookup) to the CAN node which he is connected to. The CAN node
maps the requested key using a hash function into a point in the Cartesian
coordinate space. Than the request is forwarded to the node which owns
the zone containing the destination point. The current node in the trace
checks whether it owns the destination point:

1. If it owns, this node performs the requested action and establishe a
direct connection with the user to send a result.

2. If not, the request is forwarded to the neighbor node of the current one
which is the closest one to the destination point due routing metrics -
cartesian distance.

Fault tolerance routing

If node loses all its neighbors in an optimal direction defined by routing
metrics and the repair mechanism described later have not build the void
zone, then greedy forwarding may fail. To prevent this situation the basic
routing algorithm should be extended by the following rule: before forward-
ing the request the current node checks for its neighbors availability. The
request is forwarded to the closest available node. In this case the path may
be nonoptimal, but the data is still available. The figure 4 shows an example

of fault tolerance routing.
. destination zone

start zone(node)

. failed node

opfimal path

— real path

Figure 4: Fault tolerance routing

2.4.1 Average path length

It is important to estimate an average path length to be able to manage
the CAN. Assume that we have a perfect situation, when every node has
2 neighbors in each dimension and, as said before, node graph becomes a
d-dimension grid. The number of zones per dimension is the same for all
dimensions and it equals ¢/n, where n is the total number of zones and d is
the number of dimensions. The maximal path length in each dimension is
? because CAN uses a cartesian space on d-torus which is cyclical. The
maximal path length for the CAN is the sum of the maximal path lengths
in each dimension and it equals d * @ The average path length [1] is not
greater than the maximal one.

O(d+ ¢n) (1)

There is a 2-dimension example on the figure 5. The number inside square
(zone) means a path length from the square marked up with 0 to this one.

The total number of zones is 64, 8 zones per dimension, the maximal path
length in each dimension is 4 and the total one is 8 = 2*4. However for this
kind of examples the exact average path length can be computed and it is

4% ¢n.

Figure 5: An average path length example

3 CAN construction

In this part we consider how CAN can be constructed. We assume that there
is at least one node in the system. In this case it is important to handle 3
different situations:

1. A new node wants to join the system
2. A CAN node wants to leave the system

3. A CAN node crashes or leaves the system without any notification.

3.1 Node’s arrival

A new node arrives and we need first to find a zone for it and move it onto
a new place. A priori there are no free zones and a zone for the new node
should be taken from the node are already in the system. The easiest way
to do it is to split a zone of some CAN node in half. The next step is when a
new node got a zone and should be included in ”"routing” network to provide
all CAN’s services.

Now consider all step in details:

Finding a Zone A new node first connects to any CAN node using the
access mechanism described before. Then it sends a join request to the
randomly chosen node, the CAN node randomly chooses a point in the
coordinate space. The zone which contains this point should be split in half.
The join request is forwarded due normal CAN routing procedure.

When the CAN node gets a join request it splits its zone in half according
the following rule. Assume there is a certain ordering of the dimensions and
the node always splits the zone in half along only one dimension in which the
zone has largest size and the smallest order of the dimension. Figure 6 gives
an example: in the first case the zone has the same size in both dimensions
and should be split along the dimension #1 and in the second case the zone
is larger in the dimension #2 and should be split along it. After splitting
one half of the zone is replaced into the new node.

The next step is to run the new node. First the new node gets a neighbor
list together with its half of zone. Then it should notify all its neighbors
about the new state of the system. In results the neighbor lists of the new
node, of their neighbors and also of the old node, that owns the split zone,
should be updated.

3.2 Node’s departure

When a node leaves the system in a normal way, it tells the system about
its leaving. In this case it is necessary to hold physical integrity, to replace

D1 =D2 D2 > DIl

Figure 6: Splitting zone in half

leaving node’s zone and logical integrity, to support a routing under this
zone. CAN offer the following algorithm to do it:

e The leaving node finds such a neighbor which zone can be merged
with it and forms a proper zone - squared shaped. Figures 7 a and b
illustrate examples of appropriate and unappropriate merging.

If such a neighbor does not exist the leaving node chooses any its
neighbor, in this case a node covers two different zones in the same
time. However CAN has an inconsistent state, one node owns 2 zones
and it should be fixed by additional algorithm.

e The leaving node’s zone is replaced to the chosen neighbor, physical
integrity is held.

e To provide a routing under this zone the system should update its
state. Leaving node’s neighbors are notified that another node is now
their neighbor instead of the leaving one. The node which receives the
zone changes its neighbor list and notifies all its neighbors.

3.3 Node’s crash

In this case the node does not notify the system about its departure. This
is handled through an takeover algorithm which ensures that one of failed
node’s neighbors takes over the zone. However the data, (key, value) pairs,
owned by the failed node would be lost until the state is refreshed by data
owners, in the case of P2P file distributed system users will connect to the
CAN and share their files again.

Under normal conditions a node sends periodic update messages to each
of its neighbors giving its zone coordinates and a list of its neighbors and
their zone coordinates. The prolonged absence of an update message from a

Invalid Neighbor's Zone Invalid Neighbor's Zone
. Depating Node's Zone . Depating Node's Zone

Valid Neighbor's Zone Valid Neighbor's Zone

a. Appropriate zones merging b. Unappropriate zones merging

Figure 7: zone merging

neighbor signals its failure. If some node has decided that its neighbor has
failed it initiates a TAKEOVER mechanism. Note that several neighbors
can start a TAKEOVER mechanism independently.

TAKEOVER mechanism:

1. The node initializes a timer in proportion to its zone volume

2. If a timer is expired it sends a TAKEOVER message to all failed node’s
neighbors which contains the volume of its sender zone

3. A neighbor which gets a TAKEOVER message compares its own zone
volume to the sender zone volume and if its zone is smaller then this
node sends a new TAKEOVER message as described above

4. A failed node’s neighbor which did not get a TAKEOVER message
with smaller zone should take the zone of the depastured node.

The two main advantages of this mechanism are that

1. it allows to assign a failed node’s zone to the smallest node (balanced
load

10

2. it works without any centralized control

Finally, both the normal leaving procedure and the immediate takeover
algorithm can result in a node holding more than one zone. To prevent re-
peated further fragmentation of the space, a background zone-reassignment
algorithm described in [2] (Appendix A).

11

4 Advanced CAN architecture

The basic CAN architecture described above provides a balance between low
per-node state (every node has O(d) neighbors for a d dimensional space)
and short average path length with O(d * /n) hops. However they are
application level hops. In real life all ”application” hops are different: nodes
are located in different parts of networks and at least ping time is different
for different hops. Moreover the basic architecture does not provide any
additional mechanism to increase data availability, in the case when some
nodes crashed the data is lost.

This part of the report presents, first, different techniques whose primary
goal is to reduce the latency of CAN routing:

1. Per path latency: reduction of the average number of hops per path
2. Per hop latency: reduction of average time needed to make one hop.

In the end several approaches which increase data availability and balanced
load will be presented.

4.1 Path latency improvement

4.1.1 Multiple dimensions

The simplest way to improve path latency is to increase the number of
dimensions. The average path length is O(d x &/n), formula 1. Assume n is
constant, it is easy to find such value of d which minimizes the average path
length. You can see an example in table 4.1.1.

d | Average Path length
2 200

3 30

6 18.973

7 18.778

8 18.970

10 19.952
20 28.250

Table 1: an optimal number of dimension, n = 1000

4.1.2 Multiple realities

This approach is based on the idea to maintain multiple, independent coor-
dinate spaces. Each such coordinate space is called "reality”. The content
of the hash table is physically replicated on every reality. Each node owns a

12

different zone in each coordinate space that means it stores several different
chunks of hash table independently. When a new node joins the system it
sends r (number of realities) join-requests, one for one reality. As was said
before a zone is assign to the node randomly, by choosing a random point
in the coordinate space. Using this mechanism the new node gets r zones
which should be mostly different (random assign). However the important
thing is that the CAN still uses one hash function to map real objects onto
coordinate space for all realities. Add and delete operation are performed
on all realities independently using the basic routing mechanism that holds
data consistency for all realities. However every node should store r different
neighbor lists: one for one reality. Such an architecture uses an advanced
routing algorithm: now node checks for destination point in all realities and
forwards the request to such its neighbor which is the closest one to the
destination point over all realities. All realities use the same hash function
that is why the coordinate of the destination point is the same for all of
them but every node owns different zones and it means that the average
path length should be decreased with a factor of r.

This CAN architecture requires much more space than the original one,
it grows in r times. However it strongly reduces the average path length and
in the same time increases the data availability with a factor of r.

4.2 Hop latency improvement

Usually there are several paths from the current zone to the destination
point which have minimal distance. The basic routing chooses one, prob-
ably randomly (the original paper does not say anything about this). To
improve a per hop latency for a given destination, a message is forwarded to
the neighbor with the maximum ratio of progress to RTT, round-trip-time -
some kind of ping time. Such a metric is called RTT metrics. Also the num-
ber of different optimal paths grows together with the number of dimensions
or realities that makes using RTT metrics especially effective together with
two approaches described before.

The table 4.2 shows the results of performing experiments under the
CAN containing from 2% to 2!8 nodes. As can be seen using the RTT
metrics archives 24-40% of per hop latency decrease in average.

4.3 Overloading coordinate zones

Unlike all previous approaches the ”overloading coordinate zones” approach
modifies the basic CAN rule: one zone - one node. Assume now that every
zone can be owned by several nodes and the constant MAXPEERS defines
the maximum number of allowable peers per zone. With the following CAN
architecture, a node maintains a list of its peers in addition to its neigh-
bor list, which still contains only the node’s neighbors but not its peer’s

13

number of | routing without RTT | routing with RTT
dimensions (ms) per hop (ms) per hop

2 116.8 88.3

3 116.7 76.1

4 115.8 71.2

5 115.4 70.9

Table 2: Per-hop latency using RTT weighted routing

neighbors. Each zone is replicated among all nodes assigned to it.

Such architecture needs a new construction algorithm. Consider a new
join mechanism. When a new node joins a system it discovers a zone which
is used to be split in half, using the basic approach described before, and
checks whether this zone has not more than MAXPPERS peers. If so the
new node becomes a new peer, replicates a data and send an update request
to all its peers, otherwise the zone is split into half as before, the peer list
is also split in half. The half nodes from the peer list own one half of this
zone, another half and the new node owns the second half zone. All nodes
should update their neighbor and peer lists.

Periodically, a node sends each of its neighbors a request for its list
of peers, then estimates the RT'T (round-trip-time) to all the nodes from
this peer list and replaces the current neighbor to the node which has the
minimal RTT among all peers. After all updates it may happen that some
nodes will not occur in other’s neighbor lists, they will have no in-link in
the CAN graph, however they will have an out-links and can be used as a
start search point and recovery data storage.

This approach archives many advantages:

e it reduces path latency, because placing of multiple nodes per zone has
the same effect as reducing the number of nodes in the system

e it reduces per-hop latency by periodical neighbor list updates which
select neighbors that are closer in term of RTT latency

e it increases a fault tolerance, because each zone is replicated several
times and it is vacant only when all peer nodes crashed. However
when the basic routing is used, there is no direction between peers,
only between neighbors and the CAN still requires the repair process
described in section ”Node’s crash”, otherwise some users don’t get an
answer.

4.4 Construction improvement - Uniform partitioning

The uniform partitioning is very important for CAN, the average path length
is minimal when the coordinate space is split into n equal zones. In basic

14

CAN architecture a new node gets a zone by splitting randomly chosen zone
in half. The node which own this zone also knows about its neighbor’s zones.
And in order to improve the partitioning this node can easily forward the join
request to the neighbor which zone is the largest one among all neighbors and
larger than its own. Note that this is not sufficient for true load balancing
because different key, value pairs has different popularity and even uniform
hash function does not distribute a real data perfectly. However this simple
technique archives a good results. Assume Vp is a total volume of the entire
coordinate space and n is a number of nodes then a perfect partitioning
would assign a zone of volume Vp/n to each node. The figure 8 shows that
using of uniform partitioning features increases the number of normal zones

(Vr/n) from 40 % to 90 %.
== without uniform partitioning feature
with uniform partitioning feature

90.00 A .
Y

80.00

o2} ~
o o
=} =}
S S

50.00

40.90 ,\
N EEYER
\

0.00 mgymmtii ? (OP s

viie vig via vi2 V 2V 4V 8V

number of nodes = 65,536
#dimensions = 3

w
o
o
o

Percentage of nodes

Figure 8: Effect of uniform partitioning feature

15

5 Summary

CAN is scalable, distributed Hash Table which can be used in many different

applications. It provides:

e Dynamical Zone allocation

e Fault Tolerance Access Algorithm

e Stable Fault Tolerance Routing Algorithm

There are many improvement techniques which

e Increase Routing Latency
e Increase Data availability

e Increase Fault Tolerance

The authors performed several experiments which goal was to value the
utility of several improvement techniques. There were built two different
CAN system called ”bare bone” which provides only basic CAN architecture
and "knobs on full” which uses many improvement techniques. See table 5.

Parameter

bare bones CAN RTT | knobs on full CAN

of dimensions

MAXPEERS

RTT weighted routing metrics
Uniform partitioning

2

0
OFF
OFF

10
4
ON
ON

Table 3: CAN parameters

Metric

Avg. Path length
of neighbors

of peers

Avg. Path Latency

bare bones | knobs on full
142.0 4.899
4.2 24.4
0 2.95
19671 ms 135 ms

Table 4: CAN metrics

The experiments were performed under CAN containing 2!7 nodes and
using the Transit-Stub topology. The results are in table 5. You can see a
great improvement in real path latency, more than 100 times. However it is
archived mostly by increasing of the number of dimensions. The ”knobs on
full” CAN also has a certain improvement in data availability and balanced

load.

16

References

1]

Gerhard Weikum: Introduction to P2P systems, http://www.mpi-
sb.mpg.de/units/agh/teaching/ws03.04 /p2p-data/10-21-intro.pdf,
2003.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, Scott Shenker: A Scalable Content-Addressable
Network, Proceedings of ACM SIGCOMM 2001.
http://citeseer.nj.nec.com/ratnasamy0lscalable.html

CAN based Chat. http://di.jxta.org/, 2001.

Luis Felipe Cabrera, Michael B. Jones, and Marvin Theimer. Herald:
Achieving a global event notification service. In Proceedings of the 8th
IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII),
Elmau/Oberbayern, Germany, May 2001.

Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Applicationlevel multicast using content-addressable networks. In Pro-
ceedings of NGC, London, UK, November 2001.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of SIGCOMM 2001, August 2001.

Paul Francis. Yoid: Extending the internet mul-
ticast architecture. Unpublished paper, available at
http://www.aciri.org/yoid/docs/index.html, April 2000.

17

