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Abstract

We study the Bottleneck Tower of Hanoi puzzle posed by D. Wood
in 1981. There, a relaxed placement rule allows a larger disk to be
placed higher than a smaller one if their size difference is less than a
pregiven value k. A shortest sequence of moves (optimal algorithm)
transferring all the disks placed on some peg in decreasing order of size,
to another peg in the same order is in question. In 1992, D. Poole sug-
gested a natural disk-moving strategy for this problem, and computed
the length of the shortest move sequence under its framework. How-
ever, other strategies were overlooked, so the lower bound/optimality
question remained open. In 1998, Benditkis, Berend, and Safro proved
the optimality of Poole’s algorithm for the first non-trivial case k = 2.
We prove Poole’s algorithm to be optimal in the general case.

1 Introduction

The classical Tower of Hanoi (ToH) puzzle is well-known. It consists of three
pegs and disks of sizes 1,2,...,n arranged on one of the pegs as a “tower”,
in decreasing order of size, from bottom to top. The goal of the puzzle is
to transfer all disks to another peg, placed in the same order. At each step,
a single disk is moved from (the top of) one peg to (the top of) another,
subject to the “divine” rule: to never have a larger disk above a smaller one.
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The goal of the corresponding mathematical problem, which we denote
TH = TH,, is to find a sequence of moves (algorithm) of minimal length
(optimal), solving the puzzle. We refer to the pegs naturally as source,
target, and auxiliary, while the name of a disk is identified with its size.
The following algorithm ~y,, = ~,(source, target) is taught in introductory
CS courses as a basic example of a recursive algorithm. It is known and easy
to prove that it solves T'H,, in 2" — 1 disk moves and is the unique optimal
algorithm for it.

o Ifn>1:

— recursively perform v, _1(source, auziliary);
— move disk n from source to target;

— recursively perform v, _;(auxilary, target).

Over the last two decades, there has been an increasing interest in Tower
of Hanoi problems (see bibliography in [7]). As usual, the most difficult task
is to show that a suggested algorithm is optimal. A distinguished example is
the Frame-Stewart algorithm (1941), solving the generalization of the ToH
problem to four or more pegs. It is simple, and extensive research was con-
ducted on its behavior. However, its optimality remains an open question;
in 1999, the algorithm was proved to be “approximately optimal” [8], which
was considered a breakthrough.

In 1981, Wood [9] suggested a generalization of T H, characterized by the
k-relaxed placement rule, k > 1: If disk j is placed higher than disk i on the
same peg (not necessarily neighboring it), then their size difference j — i is
less than k. In this paper, we refer to it as the Bottleneck Tower of Hanot
problem (following Poole [5]) and denote it BT H,, = BTH,, ;. If k is 1, we
arrive at the classical ToH problem, so we restrict our attention to the case
k > 2. Note that this rule offers more than one legal way to place a given
set of disks on the same peg. Refer to Figure 1 for an illustration.

In 1992, Poole [5] suggested a natural algorithm for solving BT H,, and
declared its optimality. However, his (straightforward) optimality proof is
made under the naive assumption that disk n mowves just once, thus leaving
a substantial gap. To be more precise, he implicitly assumed that before
the last move of disk n to the (empty) target peg, all other n — 1 disks are
gathered on the spare peg. His proof is therefore incomplete, since during



Figure 1: On the left, the decreasing arrangement of the disk set [1..12] is shown.
On the right, the arrangement (12, 11, 10, 8, 9, 6, 3, 5, 4, 7, 1, 2) is presented; it
is legal for BT H13 ), in the case k > 5 only, as disk 7 is placed higher than disk 3.

that move the k—1 disks n—k+1,...,n—2,n—1 may be dispersed arbitrarily
on source and auxiliary.

Benditkis, Berend, and Safro have reinvented Poole’s algorithm for BT H,,
and gave a (rather involved) proof of its optimality for the first non-trivial
case k = 2 [1].

We prove optimality of Poole’s algorithm in the general case.

Remark: Chen et al. [2] considered a few ToH problems independently,
including BT H,,. They also reinvented Poole’s algorithm and suggested a
proof of its optimality, based on another technical approach.

A preliminary version of this paper is presented in [3].

2 Definitions and Notation

A configuration is a specification of the arrangement of all the disks in con-
sideration on the three pegs; in this paper we restrict our attention to config-
urations legal w.r.t. the k-relaxed placement rule. A configuration is called
gathered if all disks are gathered on a single peg; if they are also in decreasing
order of size, we call it perfect.

Let D be a disk set and D' C D. For any configuration C' of D, the
restriction of C to D', denoted C|p, is the configuration of D’ obtained by
removing all disks in D\ D' from C. Similarly, for any sequence of moves S
of D, its restriction to D', denoted S|pr, is the result of omitting all moves
of disks in D\ D’ from S. Note that restrictions of legal configurations and
move sequences are legal as well. If (] is the initial configuration and Cj is
the final one with respect to S, then S|p/ is a move sequence transforming
Ci|pr to Ca|pr. The length |S| of a move sequence S is the number of moves in



it; to avoid ambiguity in formulae, the length of S|p is denoted |(S|pr)|. We
say that a move sequence S of D contains a move sequence S’ of D' if D' = D
and S’ is an interval of S or if D' C D and S’ is the restriction of an interval
of S to D'. Move sequences contained in S are called disjoint if the respective
intervals are disjoint. We say that a move sequence S = Si||Ss||...||S; is
composed of the move sequences 51,5, . .., S;.

A move sequence P of a disk set D is called a packet-move of D if it
transfers the entire set D from an initial gathered configuration on one peg
to a final gathered configuration on another peg. With respect to P, the
former peg is called source = source(P), the latter target = target(P), and
the third auxiliary = auxiliary(P). Clearly, for any D' C D, the restriction
of a packet-move of D to D' is a packet-move of D’. Note that if D is
partitioned into D' and D", then |P| = |(P|p)| + |(P|p~)|.

We say that P is a perfect-to-perfect (p.t.p.) packet-move if both its initial
and final configurations are perfect. We define D, = [1..n], and if n > £k,
we partition it into Big(n) = [(n — k + 1)..n] and Small(n) = D,,_j. Thus,
BTH, concerns finding the shortest p.t.p. packet-move of D,,.

A move of disk ¢ from peg X to peg Y is denoted by the triplet (i, X,Y).
For any disk set D, the configuration of D \ {7} is the same before and after
such a move; we refer to it as the configuration during (i, X,Y).

Consider a sequence of moves S containing two consecutive moves of the
same disk: (i, X,Y) and (4,Y, Z). Their replacement by the single move
(1,X,Z) if X # Z, or the deletion of both if X = Z is called a pruning of
S. We denote by Prune(S) the result of all possible prunings of S; it is easy
to see that such a result is independent on the order of particular prunings
and is legal, so the sequence of moves Prune(S) is well-defined.

3 Shortest Packet-Moves

In both [5] and [1], a shortest possible packet-move of D, (among general,
not necessarily p.t.p. packet-moves) is found and used for solving BT H,,. We
denote it £, = B(source, target) (for illustration see Figure 2):

e If n < k, move all disks from source to target one by one.

e Otherwise:
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Figure 2: Illustration of (a) G, and of (b) ay,.

— recursively perform (3, _x(source, auziliary);
— move disks in Big(n) from source to target one by one;
— recursively perform 3, i (auziliary, target).
It is easy to prove, by induction on the depth of recursion, that 3, is legal
if D,, is placed initially in decreasing order or in the order differing from it

by the inverse arrangement of the k lowest (largest) disks (or of all disks if
n < k). To see this, note that (3, applied to each of these orders transforms

it to the other one.
Let b, denote the length of 5,. By definition of (3,:

n ifn<k
b"_{ Wy +k ifn >k (1)

In [5], the recurrence relation (1) is shown to imply the explicit formula:

by=4k- 2% —1)+r .28 = (k+7)- 28] —k, wherer =nmod k. (2)
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Note that b, +1—b, = 2L%]: therefore, the sequence {b;} is strictly monotonous.

It is essentially proved in [5] (with minor details left out) that 3, is a
shortest possible packet-move of D,,; we provide such a proof for complete-
ness. Notice that by the k-relaxed placement rule, during any move (i, X,Y)
all disks in Small(i) are gathered on the spare peg Z # X, Y. We will use
the following observation in the sequel.

Fact 3.1 Forn > k, if some sequence of moves begins from a configuration,
where disk n and Small(n) are gathered on peg X, and finishes at a con-
figuration, where disk n and Small(n) are gathered on another peq Y, then
it contains two disjoint packet-moves of Small(n): one (from X) before the
first move of disk n and another (to Y') after its last move.

Theorem 3.2 Under the k-relazed placement rule, the length of any packet-
move of D,, is at least b,,.

Proof: By a complete induction on n. Basis: The case n < k is trivial.
Induction step: For any n > k, we consider an arbitrary packet-move P of D,,,
assuming the statement holds for all lesser values of n. By Fact 3.1, P|gmau(n)
contains two disjoint packet-moves of Small(n); by the induction hypothesis,
their total length is at least 2 - b, . Every disk in Big(n) must move at
least once, which sums to at least £ moves. Hence, |P| = |(P|smauem))| +

Poole’s algorithm for solving BT H,,, henceforth denoted «,, is as follows:
e perform (3,_1(source, auzxiliary);

e move disk n from source to target;

e perform G, 1(auzilary, target).

Recall that the gap in Poole’s proof of optimality was in overlooking
algorithms containing more than one move of disk n. Let us show that there
are reasonable strategies for solving BT H,, while moving disk n twice. Notice
first that 3, (source, auziliary) followed by 3, (auzilary,target) is a feasible
solution to BT H,,. Another (generic) strategy is as follows:

e move D, _; from source to target somehow;
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Figure 3: A distinguished move of disk n. Disks in [(n — k + 1)..(n — 2)] can be
dispersed on all pegs; on auziliary they, as well as disk n — k, may be below or
above disk n — 1 and may be interleaved with disks in Small(n —1).

e move disks n — k+1,...,n from source to auzxilary one by one;
e move D, _; from target to source somehow;
e move disks n,...,n — k + 1 from auzxilary to target one by one;

e move D, _, from source to target somehow.

Clearly, the disks n—k—+1, ..., n arrive on target in decreasing order. So, aim-
ing to overperform «,,, it would be enough to find a sufficiently short triplet
of consecutive packet-moves of D,, ,, which results in the perfect configura-
tion of D,_j on target. Notice that o, contains four shortest packet-moves
of D,,_;_1, so this task does not seem hopeless.

4 Optimality of Poole’s algorithm for BT H,,

In this section, we prove that «,, is optimal for BT H,,.

For any packet-move, we call a move of the largest disk distinguished if
it is from source to target or from target to source and if the second largest
disk resides on auziliary during that move (for illustration see Figure 3).

Lemma 4.1 Any packet-move P of D, which preserves the initial order
between disks n and n — 1 and such that disk n never moves to auxiliary,
contains a distinguished move of disk n.



Proof: Define P' := Prune(P|{;—1,,}). Note that P’ preserves the initial
order between disks n and n — 1, since P preserves it. Furthermore, a move
of n is distinguished w.r.t. P’ if and only if it is distinguished w.r.t. P. By
the definition of Prune, the moves of disks n and n — 1 must alternate in P'.

We claim that the first move of disk n — 1 in P’ should be from source
to auxiliary. Indeed, otherwise it is from source to target. Then, by the
second condition of the lemma, the first two moves in P’ transfer both disks
to target. This should be the end of P’, since the existence of a third move
would contradict the alternation of moves of disks n and n — 1 in P'. It
follows that the final order of n and n — 1 is inverse w.r.t. their initial order,
yielding a contradiction.

Now, if at the initial configuration of P’ disk n — 1 is placed above
disk n, then the first two moves should be (n — 1, source, auxiliary) and
(n, source, target); the latter is distinguished. Otherwise, disk n — 1 is ini-
tially placed below disk n. Then, the first three moves should be (n, source, target),
(n—1, source, auziliary), and (n,target, source); the latter is distinguished.
O

Corollary 4.2 For any n > k + 1 and any packet-move P of D,, which
preserves the initial order between disks n and n—1 and such that disk n never
moves to auxiliary, P contains four disjoint packet-moves of Small(n — 1).

Proof: By Lemma 4.1, there exists at least one distinguished move of disk n
in P. During the first such move, all disks in Small(n — 1) are on auziliary
together with disk n — 1; by the k-relaxed placement rule, they are placed
above disk n — 1. By Fact 3.1, the parts of P before and after that move
contain two disjoint packet-moves of Small(n — 1) each, which totals to four
disjoint packet-moves. O

Lemma 4.3 For any n > k, if a packet-move P of D, contains a move of
disk n to auxiliary, then P contains three disjoint packet-moves of Small(n).

Proof: Suppose first that P contains a move (n,source,auziliary). By
the k-relaxed placement rule, Small(n) is gathered on target during that
move, and it is gathered on another peg X # target during the last move of
disk n. Hence, P contains the following disjoint packet-moves of Small(n):
source — target, target — X, and X — target.



If disk n never moves from source to auxiliary during P, then the first
move of disk n is (n, source,target), and at some later point disk n moves
from target to auziliary. During the former move, Small(n) is gathered on
auxiliary, and it is gathered on source during the latter. Therefore, P con-
tains the following disjoint packet-moves of Small(n): source — auxiliary,
auziliary — source, and source — target. O

Lemma 4.4 The length of any p.t.p. packet-move of D composed of 21 + 1
packet-moves of D is at least (21 + 2)|D| — 1.

Proof: We call a disk cheap w.r.t. some packet-move P’, if it does not move
to auziliary(P') during P’. We claim that at most one disk is cheap w.r.t.
each one of the 2/ + 1 contained packet-moves. Assume to the contrary that
there are two such disks, 7 and j. Then, after each one of the contained
packet-moves, their order is reversed. Since there is an odd number of such
packet-moves, the order of 7 and j at the final configuration is inverse w.r.t.
their order at the initial configuration—a contradiction.

It follows that there are |D| — 1 disks which make at least 2] + 2 moves
each, and a single disk which makes at least 2/ + 1 moves. Altogether, at
least (20 + 2)|D| — 1 moves are made. a

Following is the central statement. Note that the length of «,,, denoted
by a,, equals 2 - b,_; + 1 by definition.

Proposition 4.5 For anyl >0 andn > 1, let P be a p.t.p. packet-move of
D,, containing 21 + 1 disjoint packet-moves of D,. Then, |P| > 2l - b, + 2 -
bp_1+1=2l-b, + a,, and this bound is tight.

Proof: The lower bound proof is by a complete induction on n, for all [.

We first claim that P is composed of at least 2] + 1 packet-moves of
D,,. Consider the non-empty intervals of P (if any) before the first, between
the ith and the (i + 1)st, 1 < 4 < 2l, and after the last one out of the
2l + 1 contained packet-moves. For any such interval I, if the gathered
configurations of D,, at its beginning and end are on the same peg, we extend
one of the neighboring packet-moves with the moves in I; otherwise, we define
I as an additional packet-move of D,,. As a result, P is composed of at least
2l + 1 packet-moves of D,,, as required.



If there are at least 2] 4+ 2 such packet-moves, then by Theorem 3.2 and
the strict monotonicity of (b;), |P| > (214+2)-b, > 2l -b, +2-b, 1 +2. We
henceforth suppose that P is composed of exactly 2l +1 packet-moves of D,,.

Basis: n < k.

Since b, = r for any r < k, we conclude by Lemma 4.4 that |P| >
20+2n—1=2ln+2n—-1)+1=2l-by, +2 b1 + 1.

Induction step: We suppose that the claim holds for all lesser values of n
and for all [, and prove it for n and all (.

Note that disk n is placed below disk n—1 at both the initial and the final
configurations of P. Since P is composed of an odd number of packet-moves
of D, at least one of them, henceforth denoted by P, preserves the order
between disks n and n — 1. Note that |P| = [(P|smaum))| + |(P|Bigm))| and
that by Lemma 4.4 applied to Big(n), we have |(P|pigm))| > (20 +2)k — 1.

Case 1: During P, disk n never moves to auxiliary(ﬁ).

By Corollary 4.2, P contains four disjoint packet-moves of Small(n — 1)
(this holds vacuously in the case n = k + 1, as Small(n — 1) = () in that
situation). Disk n—k makes at least two moves during P: at least one before
the first move of disk n and at least one after its last move. By Theorem 3.2,
\(Plsmatim))| > 4+ bypg-1 +2 =2-b,_; — 2k + 2. By Fact 3.1, the other
21 packet-moves of D,, contain two disjoint packet-moves of Small(n) each;
their total length is at least 41 - b,_ = 2I(b, — k). Therefore, |(P|smau))| >
20-by, —2lk+2-b, 1 —2k+2=20-b,+2-b, 1 — (2l +2)k + 2. By adding
|(P|Bigny)| > (21 + 2)k — 1, we obtain the required bound for |P|.

Case 2: P contains a move of disk n to auziliary(P).

By Lemma 4.3, 15|5mau(n) contains three disjoint packet-moves of Small(n).
By Fact 3.1, the other 2/ packet-moves of D, contain two disjoint packet-
moves of Small(n) each. Thus, P|gpqun) contains 4/+3 disjoint packet-moves
of Small(n). By the induction hypothesis and the strong monotonicity of
(b3), [(Plsmaii(n))| = (40 +2) by p+2-bp p1+12>4l-by p+4-by 4 1+3=
20 by +2 b1 — (20 + 2)k + 3. By adding |(P|pigm))| > (20 +2)k — 1, we
establish that |P| strictly exceeds the required bound.

The bound for |P| is tight, since the sequence composed of 21 3, and one
oy, is a p.t.p. packet-move of D, of length as in the bound. O

Proposition 4.5 in the particular case [ = 0 implies:

Theorem 4.6 Algorithm «, is optimal for BT H,.
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The case analysis in the proof of Proposition 4.5 for [ = 0 (when P = P),
shows that it is impossible to reach the bound a,, in Case 2. Besides, in order
to attain this bound in Case 1, disk n should move exactly once. Indeed,
otherwise it should make at least three moves, which prevents attaining the
equality |(P|gig(n))| = (214-2)k—1. We deduce the following characterization:

Corollary 4.7 Any optimal algorithm for BT H, contains a single move of
disk n, from source to target, preceded by a packet-move of D,_1 of length
b,_1 from source to auxiliary, and followed by such a packet-move from
auxiliary to target.

5 Further Research

In [4, 6], we show that £, is not a unique shortest possible packet-move,
for any k& > 2, thus disproving Corollary 3 of [5]. As a consequence, «;, is
not a unique optimal algorithm for BT H,,. Further, we describe there the
family of all optimal solutions to BT H,,, and present a closed formula for
their number.

In the same paper, we present a pair of initial and final configurations of
BTH,, such that the shortest sequence of moves between them is of length
Q(k - ay,). Moreover, we establish there the tight ©(% - a,,) bound, asymptotic
w.r.t. n, for both the diameter of and the average distance between nodes in
the configuration graph of BT H,,.

In [3, 6], we generalize BT H,; by allowing the disk sizes to form any
set of n distinct integers. For this “subset” setting, we describe a family of
at most n algorithms, so that the best one among them is optimal. Poole’s
algorithm is the simplest one in this family; no other member obeys the single
move of disk n assumption made by Poole [5].

Following a suggestion of Berend, we define in [3, 6] the “ultimate” relaxed
placement rule, where the sets of larger disks allowed to be placed above each
disk may be arbitrary, obeying monotonicity only. We extend the results we
established for the “subset” setting to the “ultimate” setting.
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