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Problem Definition

Input:

Square matrix, A, of order n

Output:

A set of an n elements (cells), exactly one in each row and each
column, such that the sum of these elements is minimal with
respect to all such sets.
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So what is a solution?

A permutaion β over the set {1, ..., n}
such that for any permutation λ:∑n

i=1 ai ,β(i) ≤
∑n

i=1 ai ,λ(i).

In which cases is it easy to find the solution?

Example
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Definition

Let some vector ∆ = (∆1, .....,∆n) be given.
An element, ai j , of the matrix A is called ∆-minimal if

∀1≤k≤n ai j −∆j ≤ ai k −∆k

Example:

1 2 3 4

1 2 5 4 1

2 9 8 10 2

3 12 15 7 4

4 7 8 9 3

∆ 3 7 3 1

→

1 2 3 4

1 2 5 4 1

2 9 8 10 2

3 12 15 7 4

4 7 8 9 3
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Let some vector ∆ = (∆1, .....,∆n) be given.
An element, ai j , of the matrix A is called ∆-minimal if

∀1≤k≤n ai j −∆j ≤ ai k −∆k

Lemma

For any ∆ let there be given a set of n ∆-minimal elements:
a1j1 , a2j2 , ...., anjn , one from each row and each column.
Then this set is an optimal solution for the Assignment Problem.

Proof

1 For some vector ∆ = (∆1, .....,∆n) .
A set of n ∆-minimal elements has the minimal sum
among all sets of n elements one from each column.

2 A set of n ∆-minimal elements one from each row and each column
is a minimal and valid solution.

E.A Dinic and M.A Kronrod
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For some vector ∆ = (∆1, .....,∆n) .
A set of n ∆-minimal elements has the minimal sum
among all sets of n elements one from each column.

Proof:

Let there be a set of n elements a1j1 , a2j2 , ...., anjn
we can write the sum of the set as:∑n

i=1 ai ji =
∑n

k=1 ∆k +
∑n

i=1(ai ji −∆ji )

Let there be a set of n ∆-minimal elements a∗1c1 , a
∗

2c2 , ...., a
∗
ncn∑n

i=1 a∗i ci =
∑n

k=1 ∆k +
∑n

i=1(a∗i ci −∆ji )

⇓ ∀1≤k≤n ai j −∆j ≤ ai k −∆k∑n
k=1 ∆k +

∑i=1
n (a∗i ci −∆ci ) ≤

∑n
k=1 ∆k +

∑i=1
n (ai ji −∆ji )

⇓∑n
i=1 a∗i ci ≤

∑n
i=1 ai ji
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More definitions

Given a vector ∆, an element ai j is a basic if it is a
∆-minimal element of the row i.

A set of basics is a set of n basics, one from each row.

Deficiency of a set of basics is the number of free columns,
i.e. columns without a basic.

1 2 3

1 2 5 4

2 9 8 10

3 12 15 7

∆ 1 1 5

deficiency=2

.
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Redfenition of problem

Input:

Square matrix, A, of order n

Output:

vector, ∆, of size n

a set of an n basics, with deficiancy 0.
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Integer linear programming problem

Given the n ∗ n matrix C we will define an n ∗ n matrix X of
integer variables. The following constraints define the equivalent
linear programming problem.

linear constraints:

1 All the variables of X are 0 or 1:
∀i , j xi ,j ∈ {0, 1}.

2 In each row and column the sum of variables is 1:
∀i

∑n
j=0 xi ,j =

∑n
j=0 xj ,i = 1.

Goal function:

minimize
∑n

i=0

∑n
i=0 xi ,jci ,j .

E.A Dinic and M.A Kronrod
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Primal-dual method

In the primal-dual method we generate a dual linear programing
problem such that for every variable in the original problem we
have a constraint in the dual problem, and for every constraint in
the original we have a variable in the dual.
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Primal-dual method

We iterate on the pairs: primal and dual solutions. At any time we
have a NON-FEASIBLE primal solution S to the primal problem,
while the dual solution PROVES that S is OPTIMAL among the
”similarly non-feasible” primal solutions. In the end of the process
we have a feasible, and thus optimal solution to the original
problem.

E.A Dinic and M.A Kronrod
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Intuition continues

We would want a function f such that for a matrix A with a
soultion β, f (A) is a matrix for which β is a row minimal soultion.

Example: f-function

Notice: f (A) is obtaind by substracting 1 from all the elemnts of
the first column of A.

E.A Dinic and M.A Kronrod
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The function f

Input:

∆ = (∆1, .....,∆n), A an n ∗ n matrix

Output: f∆(A) = B = (bi ,j)

for every indice (i , j) ∈ {1, ..., n}2 bi ,j = ai ,j −∆j .

E.A Dinic and M.A Kronrod
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Redfenition of problem

Input:

Square matrix, A, of order n

Output:

vector, ∆, of size n

a set of an n basics, with deficiancy 0.
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Deficiency reduction

We will solve this in an iterative maner, such that in each itration
we will reduce the deficiency by 1.

Input:

Square matrix, A, of order n

vector, ∆, of size n

a set of n basics, with deficiancy m.

Output:

vector, ∆′, of size n

a set of n basics, with deficiancy m-1.

In the first itration we start with ∆ = (0, ..., 0), finding the basics
and the deficiancy takes O(n2).

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

We begin with vector ∆ and a set of basics a1,j(1), ..., an,j(n)

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

Let s1 be the index of a free column.
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Phase 1 - Finding alternative Basics

We will increase ∆s1 with maximal δ1 such that all basics remain
∆-minimal elements (lets assume we have a function which finds
such a δ).

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

We obtain that for some row index i1 ai1,s1 −∆s1 = ai1,j(i1)−∆j(i1).
ai1,s1 is called an alternative basic.

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

We define s2 = j(i1).

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

We now increase ∆s1 , ∆s2 with maximal δ2 such that all basics
remain ∆-minimal.

E.A Dinic and M.A Kronrod
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Phase 1 - Finding alternative Basics

Again for same row index i2 6= i1 ai2,sk −∆sk = ai2,j(i2) −∆j(i2)

were k ∈ {1, 2}. ai2,sk is an alternative basic.
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Phase 1 - Finding alternative Basics

We define s3 = j(i2). We will continue this process until we find an
alternative basic in a column with 2 or more basics.

E.A Dinic and M.A Kronrod
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Phase 1 - Pseudo Code

Input:

(ax,y ) nxn matrix

∆ n long vector

j(i) function such that for each row ai,j(i) is a basic

S = {chooseEmptyColumn(j)}
R = {}
do:
δ = findMaxPreserving∆Minimalty(R, S , (ax ,y ),∆, j(i))
for s ∈ S do: ∆s = ∆s + δ
let i ∈ {1, ..., n} \ R such that ∃s ∈ S ai ,j(i) −∆j(i) = ai ,s −∆s .
R = R ∪ {i}
S = S ∪ {j(i)}

while every column in S has 1 or 0 basics.

E.A Dinic and M.A Kronrod
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Phase 1 - Complexity Analysis

In each step of phase 1:

δ is found - O(n2)

∆ is updated - O(n)

A new alternative basic is found (during the search of δ)- O(1)

In each round the size of S increses by 1, and S is bounded by n
⇓

There are at most n − 1 steps in phase 1.

Total complexity: O(n)x [O(n2) + O(n) + O(1)] =

O(n3)

E.A Dinic and M.A Kronrod
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Phase 2 - Change of basics

Now as we mark a column (s3) with 2 or more basics.
This is the end of phase 1.
We start changing our basics.

E.A Dinic and M.A Kronrod
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Phase 2 - Change of basics

We reduce the number of basics for our last marked column by
one.

E.A Dinic and M.A Kronrod
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Phase 2 - Change of basics

In total we reduce the deficiency by 1.
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Phase 2 - Complexity Analysis

The complexity of this step is O(n) as the number of basics.
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Example continues

We start phase 1 again and choose a column s1 with no basics.
S = {s1}. ∆ remains as it was built at the previous iteration
⇒ all basics remain ∆-minimal.

E.A Dinic and M.A Kronrod
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Example continues

We find a maximal δ to add to ∆s were s ∈ S , such that it
preserves ∆-minimality.

E.A Dinic and M.A Kronrod



Introduction
Algorithm

Basic Idea
Deficiency reduction
Finding Maximum delta

Example continues

For some row index i1 ai1,s1 −∆s1 = ai1,j(i1) −∆j(i1).
ai1,s1 is an alternative basic.

E.A Dinic and M.A Kronrod
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Example continues

We end phase 1 as we found a column j(i1) = s2 ∈ S with more
then one basic.

E.A Dinic and M.A Kronrod
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Example continues

Changing our basics leads us to a set of basics with deficiency
m = 0. Therefor it is a optimal solution. B = (ai ,j −∆j).

E.A Dinic and M.A Kronrod
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Naive computation

δ = mini∈R,s∈S [(ai ,s −∆s)− (ai ,j(i) −∆j(i))]

Where:

R -set of row indices which do not contain alternative basics

S -set of potential alternative basics column indices

(ax ,y ) -nxn matrix

∆ -n long vector

j(i) -function such that for each row ai ,j(i) is the basic in row i

Computing δ in a strightforward manner takes O(n2)

E.A Dinic and M.A Kronrod
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Total Complexity Analysis

The maximum deficiency is n − 1.

In each itration we preform phase 1 + phase 2: O(n3) + O(n)

Total complexity: O(n)x [O(n3) + O(n)] = O(n4)

E.A Dinic and M.A Kronrod
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First improvement

δ = mini∈R,s∈S [(ais −∆s)− (aiji −∆ji )]

For each k, let bk= (b1k , ..., bnk) be a column of the values:
bi k = [(aik −∆k)− (aiji −∆ji )]
Let B be the nxn matrix: (b∗1, ..., b

∗
n),

where b∗k = Sort(bk)

Example

1 2 3

1 2 5 4

2 9 8 10

3 12 15 7

∆ 0 0 0

b1

0

1

5

b2

3

0

8

b3

2

2

0

B
b∗1 b∗2 b∗3
0 0 0

1 3 2

5 8 2

n × O(n log(n))
↓

O(n2 log(n))
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First improvement

As preprocessing phase of an iteration build matrix B
O(n2 log n).

In each succeeding step of phase 1:

clear the matrix from items of rows which are not in R.
n × O(1) = O(n)

find mink∈Sbk O(n)

What is the total complexity?

O(n3 log n)
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First improvement

As preprocessing phase of an iteration build matrix B
O(n2 log n).

In each succeeding step of phase 1:

clear the matrix from items of rows which are not in R.
n × O(1) = O(n)

find mink∈Sbk O(n)

What is the total complexity?

n × [O(n2 log n)︸ ︷︷ ︸
phase0

+ n × (O(n) + O(n) + O(n))︸ ︷︷ ︸
phase1

+ n︸︷︷︸
phase2

]

︸ ︷︷ ︸
one iteration

O(n3 log n)
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Second Improvement

δ = mini∈R,s∈S [(ais −∆s)− (aiji −∆ji )]

↓
↓

At the begining of an iteration compute the column vector qi

In each succeeding step of phase 1:

update the vector q:
∀i qi ← min[aism −∆sm ; qi − δ]

E.A Dinic and M.A Kronrod
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δ = mini∈R,s∈S [(ais −∆s)− (aiji −∆ji )]
↓

δ = mini∈R [ mins∈S [(ais −∆s)]− (aiji −∆ji )︸ ︷︷ ︸
const. for a row

]

↓
δ = mini∈R [ mins∈S(ais −∆s)︸ ︷︷ ︸
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−(aiji −∆ji )]
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Second improvement

At the begining of an iteration compute the column vector qi

O(n)

In each succeeding step of phase 1:

update the vector q:
∀i qi ← min[aism −∆sm ; qi − δ]
O(n)

What is the total complexity?

O(n3)
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At the begining of an iteration compute the column vector qi

O(n)

In each succeeding step of phase 1:

update the vector q:
∀i qi ← min[aism −∆sm ; qi − δ]
O(n)

What is the total complexity?

n × [O(n)︸ ︷︷ ︸
phase0

+ n × O(n)︸ ︷︷ ︸
phase1

+ n︸︷︷︸
phase2

]

︸ ︷︷ ︸
one iteration

O(n3)
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