The Assignment Problem

E.A Dinic, M.A Kronrod

Moscow State University
Soviet Math.Dokl. 1969
January 30, 2012
(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Outline

(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Find the best way to assign each constructor with a job, paying the minimal cost.

Find the best way to assign each constructor with a job, paying the minimal cost.

Valid solution 2082\$

Find the best way to assign each constructor with a job, paying the minimal cost.

Valid solution 2081\$

Find the best way to assign each constructor with a job, paying the minimal cost.

Optimal solution 1912\$

Outline

(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Problem Definition

Input:

Square matrix, A, of order n

Output:

A set of an n elements (cells), exactly one in each row and each column, such that the sum of these elements is minimal with respect to all such sets.

So what is a solution?

A permutaion β over the set $\{1, \ldots, n\}$ such that for any permutation λ :

$$
\sum_{i=1}^{n} a_{i, \beta(i)} \leq \sum_{i=1}^{n} a_{i, \lambda(i)}
$$

In which cases is it easy to find the solution?
Example

4	6	2	2
3	1	3	1
5	3	4	3
2	5	2	5

Outline

(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Definition

Let some vector $\Delta=\left(\Delta_{1}, \ldots ., \Delta_{n}\right)$ be given.
An element, $a_{i j}$, of the matrix A is called Δ-minimal if

$$
\forall_{1 \leq k \leq n} a_{i j}-\Delta_{j} \leq a_{i k}-\Delta_{k}
$$

Example:

	1	2	3	4
1	2	5	4	1
2	9	8	10	2
3	12	15	7	4
4	7	8	9	3
Δ	3	7	3	1

Definition

Let some vector $\Delta=\left(\Delta_{1}, \ldots ., \Delta_{n}\right)$ be given.
An element, $a_{i j}$, of the matrix A is called Δ-minimal if

$$
\forall_{1 \leq k \leq n} a_{i j}-\Delta_{j} \leq a_{i k}-\Delta_{k}
$$

Example:

	1	2	3	4
1	2	5	4	1
2	9	8	10	2
3	12	15	7	4
4	7	8	9	3
Δ	3	7	3	1

$\rightarrow \quad$| | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 5 | 4 | 1 |
| 2 | 9 | 8 | 10 | 2 |
| 3 | 12 | 15 | 7 | 4 |
| 4 | 7 | 8 | 9 | 3 |

Let some vector $\Delta=\left(\Delta_{1}, \ldots ., \Delta_{n}\right)$ be given.
An element, $a_{i j}$, of the matrix A is called Δ-minimal if

$$
\forall_{1 \leq k \leq n} a_{i j}-\Delta_{j} \leq a_{i k}-\Delta_{k}
$$

Lemma

For any Δ let there be given a set of $n \Delta$-minimal elements: $a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{n j_{n}}$, one from each row and each column.
Then this set is an optimal solution for the Assignment Problem.

Let some vector $\Delta=\left(\Delta_{1}, \ldots ., \Delta_{n}\right)$ be given.
An element, $a_{i j}$, of the matrix A is called Δ-minimal if

$$
\forall_{1 \leq k \leq n} a_{i j}-\Delta_{j} \leq a_{i k}-\Delta_{k}
$$

Lemma

For any Δ let there be given a set of $n \Delta$-minimal elements:
$a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{n j_{n}}$, one from each row and each column.
Then this set is an optimal solution for the Assignment Problem.

Proof

(1) For some vector $\Delta=\left(\Delta_{1}, \ldots \ldots, \Delta_{n}\right)$.

A set of $n \Delta$-minimal elements has the minimal sum among all sets of n elements one from each column.
(2) A set of $n \Delta$-minimal elements one from each row and each column is a minimal and valid solution.

For some vector $\Delta=\left(\Delta_{1}, \ldots . ., \Delta_{n}\right)$.
A set of $n \Delta$-minimal elements has the minimal sum among all sets of n elements one from each column.

Proof:

Let there be a set of n elements $a_{1 j_{1}}, a_{2 j_{2}}, \ldots, a_{n j_{n}}$ we can write the sum of the set as:

$$
\sum_{i=1}^{n} a_{i j_{i}}=\sum_{k=1}^{n} \Delta_{k}+\sum_{i=1}^{n}\left(a_{i j_{i}}-\Delta_{j_{i}}\right)
$$

Let there be a set of $n \Delta$-minimal elements $a^{*}{ }_{1 c_{1}}, a^{*}{ }_{2 c_{2}}, \ldots, a^{*}{ }_{n c_{n}}$

$$
\begin{gathered}
\sum_{i=1}^{n} a^{*}{ }_{i c_{i}}=\sum_{k=1}^{n} \Delta_{k}+\sum_{i=1}^{n}\left(a^{*}{ }_{i c_{i}}-\Delta_{j_{i}}\right) \\
\Downarrow \forall_{1 \leq k \leq n} a_{i j}-\Delta_{j} \leq a_{i k}-\Delta_{k} \\
\sum_{k=1}^{n} \Delta_{k}+\sum_{n}^{i=1}\left(a^{*}{ }_{i c_{i}}-\Delta_{c_{i}}\right) \leq \sum_{k=1}^{n} \Delta_{k}+\sum_{n}^{i=1}\left(a_{i j_{i}}-\Delta_{j_{i}}\right) \\
\Downarrow \\
\sum_{i=1}^{n} a^{*}{ }_{i c_{i}} \leq \sum_{i=1}^{n} a_{i j_{i}}
\end{gathered}
$$

More definitions

- Given a vector Δ, an element $a_{i j}$ is a basic if it is a Δ-minimal element of the row i.
- A set of basics is a set of n basics, one from each row.
- Deficiency of a set of basics is the number of free columns, i.e. columns without a basic.

	1	2	3
1	2	5	4
2	9	8	10
3	12	15	7
Δ	1	1	5

More definitions

- Given a vector Δ, an element $a_{i j}$ is a basic if it is a Δ-minimal element of the row i.
- A set of basics is a set of n basics, one from each row.
- Deficiency of a set of basics is the number of free columns, i.e. columns without a basic.

	1	2	3
1	2	5	4
2	9	8	10
3	12	15	7
Δ	1	1	5

deficiency $=2$.

Redfenition of problem

Input:

- Square matrix, A, of order n

Output:

- vector, Δ, of size n
- a set of an n basics, with deficiancy 0 .

Integer linear programming problem

Given the $n * n$ matrix C we will define an $n * n$ matrix X of integer variables. The following constraints define the equivalent linear programming problem.

linear constraints:

(1) All the variables of X are 0 or 1 :
$\forall i, j x_{i, j} \in\{0,1\}$.
(2) In each row and column the sum of variables is 1:
$\forall i \sum_{j=0}^{n} x_{i, j}=\sum_{j=0}^{n} x_{j, i}=1$.

Goal function:

 $\operatorname{minimize} \sum_{i=0}^{n} \sum_{i=0}^{n} x_{i, j} c_{i, j}$.
Primal-dual method

In the primal-dual method we generate a dual linear programing problem such that for every variable in the original problem we have a constraint in the dual problem, and for every constraint in the original we have a variable in the dual.

Primal-dual method

We iterate on the pairs: primal and dual solutions. At any time we have a NON-FEASIBLE primal solution S to the primal problem, while the dual solution PROVES that S is OPTIMAL among the "similarly non-feasible" primal solutions. In the end of the process we have a feasible, and thus optimal solution to the original problem.

Intuition continues

We would want a function f such that for a matrix A with a soultion $\beta, f(A)$ is a matrix for which β is a row minimal soultion.

Example: f-function

Notice: $f(A)$ is obtaind by substracting 1 from all the elemnts of the first column of A.

The function f

Input:

$\Delta=\left(\Delta_{1}, \ldots ., \Delta_{n}\right)$, A an $n * n$ matrix

Output: $f_{\Delta}(A)=B=\left(b_{i, j}\right)$

for every indice $(i, j) \in\{1, \ldots, n\}^{2} b_{i, j}=a_{i, j}-\Delta_{j}$.

A			
7	8	4	2
6	3	5	1
8	5	6	3
5	7	4	5

$f_{\Delta}(A)$			
4	6	2	2
3	1	3	1
5	3	4	3
2	5	2	5

$3|2| 2 \mid 0$

Redfenition of problem

Input:

- Square matrix, A, of order n

Output:

- vector, Δ, of size n
- a set of an n basics, with deficiancy 0 .

Deficiency reduction

We will solve this in an iterative maner, such that in each itration we will reduce the deficiency by 1.

Input:

- Square matrix, A, of order n
- vector, Δ, of size n
- a set of n basics, with deficiancy m.

Output:

- vector, Δ^{\prime}, of size n
- a set of n basics, with deficiancy $m-1$.

In the first itration we start with $\Delta=(0, \ldots, 0)$, finding the basics and the deficiancy takes $O\left(n^{2}\right)$.

Outline

(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Phase 1 - Finding alternative Basics

We begin with vector Δ and a set of basics $a_{1, j(1)}, \ldots, a_{n, j(n)}$

7	8	4	2
6	3	5	1
8	5	6	3
5	7	4	5

Phase 1 - Finding alternative Basics

Let s_{1} be the index of a free column.

Phase 1 - Finding alternative Basics

We will increase $\triangle_{S_{1}}$ with maximal δ_{1} such that all basics remain Δ-minimal elements (lets assume we have a function which finds such a δ).

S1

$\delta=1$

Phase 1 - Finding alternative Basics

We obtain that for some row index $i_{1} a_{i_{1}, s_{1}}-\Delta_{s_{1}}=a_{i_{1}, j\left(i_{1}\right)}-\Delta_{j\left(i_{1}\right)}$. $a_{i_{1}, s_{1}}$ is called an alternative basic.

Phase 1 - Finding alternative Basics

We define $s_{2}=j\left(i_{1}\right)$.

Phase 1 - Finding alternative Basics

We now increase $\Delta_{s_{1}}, \Delta_{S_{2}}$ with maximal δ_{2} such that all basics remain \triangle-minimal.

Phase 1 - Finding alternative Basics

Again for same row index $i_{2} \neq i_{1} \quad a_{i 2}, s_{k}-\Delta_{s_{k}}=a_{i 2}, j\left(i_{2}\right)-\Delta_{j\left(i_{2}\right)}$ were $k \in\{1,2\} . a_{i 2, s_{k}}$ is an alternative basic.

Phase 1 - Finding alternative Basics

We define $s_{3}=j\left(i_{2}\right)$. We will continue this process until we find an alternative basic in a column with 2 or more basics.

Phase 1 - Pseudo Code

Input:

- ($a_{x, y}$) $n x n$ matrix
- Δn long vector
- $j(i)$ function such that for each row $a_{i, j(i)}$ is a basic
$S=\{$ chooseEmptyColumn $(j)\}$
$R=\{ \}$
do:
$\delta=$ findMaxPreserving Δ Minimalty $\left(R, S,\left(a_{x, y}\right), \Delta, j(i)\right)$
for $s \in S$ do: $\Delta_{s}=\Delta_{s}+\delta$
let $i \in\{1, \ldots, n\} \backslash R$ such that $\exists s \in S a_{i, j(i)}-\Delta_{j(i)}=a_{i, s}-\Delta_{s}$. $R=R \cup\{i\}$
$S=S \cup\{j(i)\}$
while every column in S has 1 or 0 basics.

Phase 1 - Complexity Analysis

In each step of phase 1:

- δ is found $-O\left(n^{2}\right)$
- Δ is updated $-O(n)$
- A new alternative basic is found (during the search of δ)- $O(1)$

In each round the size of S increses by 1 , and S is bounded by n \Downarrow
There are at most $n-1$ steps in phase 1 .
Total complexity: $O(n) \times\left[O\left(n^{2}\right)+O(n)+O(1)\right]=$
$O\left(n^{3}\right)$

Phase 2 - Change of basics

Now as we mark a column (s_{3}) with 2 or more basics. This is the end of phase 1.
We start changing our basics.

Phase 2 - Change of basics

We reduce the number of basics for our last marked column by one.

Phase 2 - Change of basics

In total we reduce the deficiency by 1 .

Phase 2 - Complexity Analysis

The complexity of this step is $O(n)$ as the number of basics.

Example continues

We start phase 1 again and choose a column s_{1} with no basics. $S=\left\{s_{1}\right\} . \Delta$ remains as it was built at the previous iteration \Rightarrow all basics remain Δ-minimal.

Example continues

We find a maximal δ to add to Δ_{s} were $s \in S$, such that it preserves \triangle-minimality.

$$
\delta=2
$$

Example continues

For some row index $i_{1} a_{i_{1}, s_{1}}-\Delta_{s_{1}}=a_{i_{1}, j\left(i_{1}\right)}-\Delta_{j\left(i_{1}\right)}$. $a_{i_{1}, s_{1}}$ is an alternative basic.

Example continues

We end phase 1 as we found a column $j\left(i_{1}\right)=s_{2} \in S$ with more then one basic.

Example continues

Changing our basics leads us to a set of basics with deficiency $m=0$. Therefor it is a optimal solution. $B=\left(a_{i, j}-\Delta_{j}\right)$.

Outline

(1) Introduction

- Motivation
- Problem Definition
(2) Algorithm
- Basic Idea
- Deficiency reduction
- Finding Maximum delta

Naive computation

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i, s}-\Delta_{s}\right)-\left(a_{i, j(i)}-\Delta_{j(i)}\right)\right]
$$

Where:

- R-set of row indices which do not contain alternative basics
- S-set of potential alternative basics column indices
- ($a_{x, y}$) -nxn matrix
- $\Delta-n$ long vector
- $j(i)$-function such that for each row $a_{i, j(i)}$ is the basic in row i

Computing δ in a strightforward manner takes $O\left(n^{2}\right)$

Total Complexity Analysis

- The maximum deficiency is $n-1$.
- In each itration we preform phase $1+$ phase 2: $O\left(n^{3}\right)+O(n)$

Total complexity: $O(n) \times\left[O\left(n^{3}\right)+O(n)\right]=O\left(n^{4}\right)$

First improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i}}-\Delta_{j_{i}}\right)\right]
$$

- For each k, let $b_{k}=\left(b_{1 k}, \ldots, b_{n k}\right)$ be a column of the values:

$$
b_{i k}=\left[\left(a_{i k}-\Delta_{k}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]
$$

- Let B be the $n x n$ matrix: $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$, where $b_{k}^{*}=\operatorname{Sort}\left(b_{k}\right)$

Example

	1	2	3
1	2	5	4
2	9	8	10
3	12	15	7
Δ	0	0	0

First improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i}}-\Delta_{j_{i}}\right)\right]
$$

- For each k, let $b_{k}=\left(b_{1 k}, \ldots, b_{n k}\right)$ be a column of the values:

$$
b_{i k}=\left[\left(a_{i k}-\Delta_{k}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]
$$

- Let B be the $n x n$ matrix: $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$, where $b_{k}^{*}=\operatorname{Sort}\left(b_{k}\right)$

Example

	1	2	3
1	2	5	4
2	9	8	10
3	12	15	7
Δ	0	0	0

b_{1}	b_{2}	b_{3}
0	3	2
1	0	2
5	8	0

First improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i}}-\Delta_{j_{i}}\right)\right]
$$

- For each k , let $b_{k}=\left(b_{1 k}, \ldots, b_{n k}\right)$ be a column of the values:
$b_{i k}=\left[\left(a_{i k}-\Delta_{k}\right)-\left(a_{j j_{i}}-\Delta_{j i}\right)\right]$
- Let B be the $n \times n$ matrix: $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$, where $b_{k}^{*}=\operatorname{Sort}\left(b_{k}\right)$

Example

	1	2	3
1	2	5	4
2	9	8	10
3	12	15	7
Δ	0	0	0

b_{1}	b_{2}	b_{3}
0	3	2
1	0	2
5	8	0

B		
b_{1}^{*}	b_{2}^{*}	b_{3}^{*}
0	0	0
1	3	2
5	8	2

First improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]
$$

- For each k , let $b_{k}=\left(b_{1 k}, \ldots, b_{n k}\right)$ be a column of the values: $b_{i k}=\left[\left(a_{i k}-\Delta_{k}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]$
- Let B be the $n x n$ matrix: $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$, where $b_{k}^{*}=\operatorname{Sort}\left(b_{k}\right)$

What is the compexity of the construction of B ?

First improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]
$$

- For each k , let $b_{k}=\left(b_{1 k}, \ldots, b_{n k}\right)$ be a column of the values: $b_{i k}=\left[\left(a_{i k}-\Delta_{k}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]$
- Let B be the $n x n$ matrix: $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$, where $b_{k}^{*}=\operatorname{Sort}\left(b_{k}\right)$

What is the compexity of the construction of B ?

$$
\begin{gathered}
n \times O(n \log (n)) \\
\downarrow \\
O\left(n^{2} \log (n)\right)
\end{gathered}
$$

First improvement

- As preprocessing phase of an iteration build matrix B $O\left(n^{2} \log n\right)$.
In each succeeding step of phase 1 :
- clear the matrix from items of rows which are not in R .

$$
n \times O(1)=O(n)
$$

- find $\min _{k \in S} b_{k} O(n)$

First improvement

- As preprocessing phase of an iteration build matrix B $O\left(n^{2} \log n\right)$.
In each succeeding step of phase 1 :
- clear the matrix from items of rows which are not in R .

$$
n \times O(1)=O(n)
$$

- find $\min _{k \in S} b_{k} O(n)$

What is the total complexity?

First improvement

- As preprocessing phase of an iteration build matrix B $O\left(n^{2} \log n\right)$.

In each succeeding step of phase 1 :

- clear the matrix from items of rows which are not in R .

$$
n \times O(1)=O(n)
$$

- find $\min _{k \in S} b_{k} O(n)$

What is the total complexity?

First improvement

- As preprocessing phase of an iteration build matrix B $O\left(n^{2} \log n\right)$.
In each succeeding step of phase 1 :
- clear the matrix from items of rows which are not in R .

$$
n \times O(1)=O(n)
$$

- find $\min _{k \in S} b_{k} O(n)$

What is the total complexity?

$$
O\left(n^{3} \log n\right)
$$

Second Improvement

$$
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i}}-\Delta_{j_{i}}\right)\right]
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right] \\
\downarrow
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i}}-\Delta_{j i}\right)\right] \\
\downarrow=\min _{i \in R}\left[\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{j_{j}}-\Delta_{j i}\right)\right]\right]
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right] \\
\downarrow \\
\delta=\min _{i \in R}[\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)\right]-\underbrace{\left(a_{i j_{i}}-\Delta_{j_{i}}\right)}_{\text {const. for a row }}]
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right] \\
\downarrow \\
\delta=\min _{i \in R}[\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)\right]-\underbrace{\left(a_{i j_{i}}-\Delta_{j_{i}}\right)}_{\text {const. for a row }}] \\
\downarrow
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right] \\
\downarrow \\
\delta=\min _{i \in R}[\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)\right]-\underbrace{\left(a_{i j_{i}}-\Delta_{j_{i}}\right)}_{\text {const. for a row }}] \\
\downarrow \\
\delta=\min _{i \in R}\left[\min _{s \in S}\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right]
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)\right] \\
\downarrow \\
\delta=\min _{i \in R}[\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)\right]-\underbrace{\left(a_{i j_{i}}-\Delta_{j_{i}}\right)}_{\text {const. for a row }}] \\
\downarrow \\
\delta=\min _{i \in R}[\underbrace{\min _{s \in S}\left(a_{i s}-\Delta_{s}\right)}_{a_{i}}-\left(a_{i j_{i}}-\Delta_{j_{i}}\right)]
\end{gathered}
$$

Second Improvement

$$
\begin{gathered}
\delta=\min _{i \in R, s \in S}\left[\left(a_{i s}-\Delta_{s}\right)-\left(a_{i_{i} i}-\Delta_{j_{i}}\right)\right] \\
\downarrow=\min _{i \in R}\left[\begin{array}{c}
\min _{s \in S}\left[\left(a_{i s}-\Delta_{s}\right)\right]-\underbrace{\left(a_{i_{i}}-\Delta_{j_{i}}\right)}_{\text {const. for a row }}] \\
\downarrow \\
\delta=\min _{i \in R}[\underbrace{\min _{s \in S}\left(a_{i s}-\Delta_{s}\right)}_{q_{i}}-\left(a_{i_{j i}}-\Delta_{j_{i}}\right)]
\end{array} .\right.
\end{gathered}
$$

- At the begining of an iteration compute the column vector q_{i}

In each succeeding step of phase 1 :

- update the vector q :
$\forall i q_{i} \leftarrow \min \left[i_{i_{s_{m}}}-\Delta_{s_{m}} ; q_{i}-\delta\right]$

Second improvement

- At the begining of an iteration compute the column vector q_{i} $O(n)$

In each succeeding step of phase 1 :

- update the vector q :
$\forall i q_{i} \leftarrow \min \left[a_{i s_{m}}-\Delta_{s_{m}} ; q_{i}-\delta\right]$
$O(n)$
What is the total complexity?

Second improvement

- At the begining of an iteration compute the column vector q_{i} $O(n)$

In each succeeding step of phase 1 :

- update the vector q :

$$
\forall i q_{i} \leftarrow \min \left[a_{i s_{m}}-\Delta_{s_{m}} ; q_{i}-\delta\right]
$$

$$
O(n)
$$

What is the total complexity?

$$
n \times \underbrace{[\underbrace{O(n)}_{\text {phase0 }}+\underbrace{n \times O(n)}_{\text {phase1 }}+\underbrace{n}_{\text {phase } 2}]}_{\text {one iteration }}
$$

Second improvement

- At the begining of an iteration compute the column vector q_{i} $O(n)$

In each succeeding step of phase 1 :

- update the vector q :

$$
\begin{aligned}
& \forall i q_{i} \leftarrow \min \left[a_{i s_{m}}-\Delta_{s_{m}} ; q_{i}-\delta\right] \\
& O(n)
\end{aligned}
$$

What is the total complexity?

$$
O\left(n^{3}\right)
$$

