
An O(|V ||E|) Algorithm for

Scheduling with AND/OR Precedence Constraints

Yefim Dinitz∗ Paz Carmi∗ Shahar Golan Omri Liba∗

Guy Rozenwald

April 19, 2011

Abstract

The paper studies scheduling with AND and OR precedence con-
straints. The events are vertices of a non-negatively weighted digraph
G = (V, E, d); the precedence relation is defined by its edges, whose
weights represent delays. An event of type AND may be scheduled
only after all its preceding events, with the corresponding delays af-
ter them. An event of type OR may be scheduled only after at least
one of its preceding events, with the corresponding delay after it. The
early schedule is in question. A few algorithms solving various cases
of this problem are known. We present an algorithm for the general
case, where the precedence graph may have an arbitrary structure and
zero weight cycles are allowed. It runs in time O(|V ||E|). In addition,
we present a necessary and sufficient condition for infeasibility of a
problem instance, in structural terms of graph G.

∗Dept. of Computer Science, Ben-Gurion University of the Negev, POB 653, Beer-

Sheva 84105, Israel. E-mail:{dinitz,carmip,liba}@cs.bgu.ac.il .

1

1 Introduction

The classic PERT scheduling problem is defined by a directed graph G =
(V,E, d), d : E → R+. (In what follows, we say “graph” meaning a directed
graph with non-negatively weighted edges.) Its vertices represent events,
while its edges represent the precedence relation between them: if there is an
edge from vertex u to vertex v (we say: u precedes v), the event v may happen
not earlier than by delay of d(u, v) after u happens. The problem goal is
finding the earliest non-negative time-schedule, which obeys the precedence
relation (i.e., finding early times for events). It is accepted that if for some
event no feasible time exists, then the time infinity is assigned to it. The
classic motivation for PERT is finding the early time-schedule for a large
project, where vertices are intermediate events (e.g., the starting or finishing
time of a project component).

The linear time algorithm for the basic case of positive weights, using
topological sorting of vertices, is one of the classic optimization algorithms;
we will refer to it by name PERT. (Here and on, see e.g., [3] for a description
of classic algorithms.) We say that a problem instance is feasible if there
exists a finite solution, for it. For the basic case, it is known that this is
the case if and only if the precedence graph is acyclic. For a graph with
cycles, all vertices lying on a cycle, together with vertices reachable from
them, should be assigned the early time infinity. The same holds for the
case, when edge weights may be zero, but each cycle has a positive weight.
For the general non-negative weight case, when cycles consisting of zero
weight edges only (henceforth called “zero cycles”) are allowed, the classic
algorithm should be extended (see Section 4.3.1).

The common sense of a zero delay precedence is “not earlier than”.
Such a precedence often happens in human interaction. In particular, it is
usual announcing events in groups. In physical macro-world, a precedence
with zero delay is not so natural. However, it may be quite appropriate
to a micro-world description, since quantum events naturally happen in
groups. In particular, in future, quantum computation may become a source
of precedence relations with zero delays.

The AND/OR setting of PERT with non-negative delays is defined in
[5, 4] as follows. The precedence graph, henceforth called AND/OR graph,
has vertices of two types. A vertex with precedence conditions as above is
considered as an AND vertex. For an OR vertex v, its time should be not
earlier than by d(u, v) after at least one vertex u preceding v. In this paper,
this problem is referred to as the AND/OR problem, for short. The graph

2

may be general: containing cycles and not necessarily bipartite.

A motivation given to the AND/OR problem in [5, 4] is the following
New-Product-New-Technology problem. Certain new technologies, which
supply certain new products to the market and which need certain new
products, are considered. An AND vertex corresponding to a new technol-
ogy represents the event of its launching. At that time, each new product
required by it should be already present at the market for a certain time
period. A new technology supplies each product produced by it to the mar-
ket after a certain delay after its launching. An OR vertex corresponding
to a new product represents the event of its first appearance at the mar-
ket. The early schedule of this technology-product system is in question.
(The assumption relaxing the motivating problem is that the amount of any
new product at the market is not taken into account.) For example, see
Figure ??.

A priory lower time bounds for new technologies are modeled as follows.
An auxiliary AND vertex origin is introduced; it has no predecessors, and
thus its early time is 0. For each AND vertex v with an a priory bound t, an
edge (origin, v) with delay t is added. Suppose now that some new products
can be obtained without a help of any new technology (e.g., by exporting it),
from a certain time moment and on. This is modeled by using edges from
origin to the OR vertices corresponding to the products as above. Note that
in New-Product-New-Technology problem, the precedence graph is almost
bipartite, where only vertex origin is an exception.

More motivation and applications can be found in [8, 2, 9]. Paper [9]
presents an extensive study of the AND/OR problem.

By definition, the pure case of AND vertices only is the classic PERT
problem. It is interesting that the case of OR vertices only, except for
the source AND vertex s without incoming edges, is essentially equivalent
to another corner-stone optimization problem: finding the shortest path
lengths from s to other vertices. The basic variant of the classic Dijkstra
algorithm solves it in time quadratic in |V |, while using appropriate data
structures provides time bounds almost linear in the size of G (see a review
in, e.g., [3]).

The algorithms PERT and Dijkstra, studied in the basic courses on algo-
rithms, are of somewhat similar and of somewhat different nature. Surpris-
ingly, for the hybrid AND/OR problem as above, there exists an algorithm,
which is combined of these two classic algorithms and runs in their summary
time. It works if there is no cycle consisting of edges with zero delays only,

3

5 3

0

0

Figure 1: Circles are AND vertices, while squares are OR vertices. No one out of
the two upper vertices cannot be assigned the time label 3 separately, only both of
them together.

in the precedence graph. (Henceforth, such a cycle is called zero cycle.)

The above-mentioned hybrid algorithm was suggested independently in
[8] and in [5, 4]. The problem considered by Knuth in [8] is presented in
another language, and is equivalent to a particular case of the AND/OR
problem. A reduction of the general AND/OR problem to the problem of
[8] is also possible, but it does not preserve neither the correctness proof,
given in [8], nor the algorithm running time bounds. The correctness proof of
the algorithm [5, 4], though given at its presentations, was never published.
It is provided in this paper.

The general (non-negative weight) case of the AND/OR problem, which
allows zero cycles, is more involved. From the algorithmic point of view,
the nature of the precedence with zero cycles does not allow extending the
self-supporting set of vertices with optimal labels (S) vertex by vertex, as in
algorithms Dijkstra, PERT, and the above-mentioned hybrid algorithm for
the restricted AND/OR problem. It may happen that some vertices with
the same early time support each other, and hence could be added to S only
together. For an example, see Figure 1. After initializing S by {s}, with the
early time label 0, and scanning s, OR vertex a may be labeled by 5 and
AND vertex b by 3. The only possible single vertex extension of S is by a

with the final label 5, and after that also b gets the final label 5. However,
adding both vertices a and b to S with time 3 is also feasible, which forms
the optimal solution.

In particular, the above example shows that Bellman-Ford algorithm
applied to an AND/OR problem might converge to a non-optimal solution.
Indeed, after relaxations on edges (s, a), (s, b), and (a, b), we arrive at the
non-optimal solution considered above, where no relaxation is possible. The
specifics as above makes development of an effective algorithm managing

4

the general case a new challenge.

The question of existence of a polynomial time algorithm for the general
non-negative weight AND/OR problem, when zero cycles are allowed, was
open for about a decade. Adelson-Velsky and Levner suggested an algorithm
solving it in time O(|E|2) = O(|V |4) [2]. Moehring et al. suggested an
algorithm running in time O(|V ||E|) for a special case of the AND/OR
problem [9]. In addition, a reduction from the general case to that case is
provided in [9]. However, it increases the number of vertices from |V | to
Ω(|V | + |E|). As a result, the running time bound increases to O(|E|2) =
O(|V |4), in the terms of the original AND/OR precedence graph.

Two algorithms solving the AND/OR problem in time O(|V ||E|) =
O(|V |3) were announced in 2001: our algorithm, first presented in [6], and
that of Adelson-Velsky et al. [1], which is more complicated than our one.
The correctness proof was a real problem for both of them. The proof pro-
vided in [1] has essential gaps. Also for our algorithm, the correctness proof
remained ugly for years. The algorithm presentation and the proof presented
in this paper, which seem to us natural, were found only in 2011.

In addition, this paper presents a necessary and sufficient condition for
infeasibility of an AND/OR problem instance, in structural terms of graph
G (see Section 5).

2 Definitions and the Zero-Cycle-Free Case

An AND/OR problem instance is a directed weighted AND/OR graph G =
(V,E, d), where d : E → R+ is the delay function, so that the vertex set V

is divided into two disjoint subsets V AND and V OR. A non-negative (time)
function T on E (a solution) is feasible if it satisfies the following constraints:

T (v) ≥ max
(u,v)∈E

{0, T (u) + d(u, v)}, for all v ∈ V AND, (1)

T (v) ≥ min
(u,v)∈E

{∞, T (u) + d(u, v)}, for all v ∈ V OR. (2)

It is easy to check that the minimum of a set of feasible solutions is
a feasible solution as well. Let us define function T ∗ by assigning to each
vertex v ∈ V the infimum of T (v) over the set of all feasible solutions T .
Note that this set is non-empty, since T ≡ ∞ is feasible.

Claim 2.1 (i) The solution T ∗ is feasible.
(ii) The solution T ∗ satisfies all conditions (1) and (2) as equalities.

5

Proof sketch: Item (i) is valid since the minimum of a set of feasible
solutions is feasible. If item (ii) is wrong at a vertex v, then we can decrease
T ∗(v) by a small amount without violating any constraint,—a contradiction
to T ∗ being the infimum. 2

The solution T ∗ will be referred to as optimal, the value T ∗(v) as the
early time of v, and constraints (1) and (2) w.r.t. T ∗ as equalities. The
problem goal is, given a graph G, to find the optimal solution T ∗, that is
the vertex early times.

An edge (u, v) with T ∗(v) = T ∗(u) + d(u, v) will be referred to as a tight
edge. For an edge (u, v), we call u its tail, and v its head.

In the remainder of this section, we consider the case when G has no
zero cycle. Let us first remind the classic algorithms for the pure AND or
OR cases, mentioned in Introduction.

Algorithm AND(G) /* PERT */
compute vertex in-degrees indeg(v), for all v ∈ V

T (v)← 0, T ∗(v)←∞, for all v ∈ V

while (there is a vertex u ∈ V with indeg(u) = 0)
T ∗(u)← T (u)
for each edge (u, v) ∈ E

indeg(v) ← indeg(v) − 1
T (v)← max{T (v), T (u) + d(u, v)}

Algorithm OR(G,s) /* Dijkstra */
T ∗(v)← T (v)←∞, for all v ∈ V

T (s)← 0
S ← ∅; m← 0
while (m 6=∞)

set m to minv∈V \S{T (v),∞}
if m 6=∞

choose u : T (u) = m

T ∗(u)← T (u); S ← S ∪ {u}
for each edge (u, v) ∈ E

T (v)← min{T (v), T (u) + d(u, v)}

The algorithm of [8, 5, 4] solving the no-zero-cycle AND/OR problem is
as follows:

Routine Scan(u)

6

for each edge (u, v) ∈ E

indeg(v) ← indeg(v) − 1
if v ∈ V AND

T (v)← max{T (v), T (u) + d(u, v)}
else T (v)← min{T (v), T (u) + d(u, v)}

Algorithm AND/OR(G)
compute vertex in-degrees indeg(v), for all v ∈ V

T (v)← 0, for all v ∈ V AND; T (v)←∞, for all v ∈ V OR

T ∗(v)←∞, for all v ∈ V

S ← {∅}; m← 0

while (m 6=∞)
/* Phase AND */
/* comment: works for both vertex types AND and OR */
while (there is a vertex u ∈ V with indeg(u) = 0)

T ∗(u)← T (u), S ← S ∪ {u}
Scan(u)

/* Phase OR */
set m to minv∈V OR∩(V \S){T (v),∞}

if m 6=∞
choose u : T (u) = m

T ∗(u)← T (u), S ← S ∪ {u}
Scan(u)

Theorem 2.2 For any AND/OR graph G = (V,E, d) without zero cycles,
algorithm AND/OR correctly computes the early times. It can be imple-
mented in time O(|E| + |V OR| log |V OR|).

Proof: Note that updating at routine Scan maintains the properties:

T (v) = max
(u,v)∈E,u∈S

{0, T (u) + d(u, v)}, for all v ∈ V AND, and (3)

T (v) = min
(u,v)∈E,u∈S

{∞, T (u) + d(u, v)} ≥ 0, for all v ∈ V OR. (4)

We prove, by induction on the moments of adding vertices v to S, that
T ∗(v) is assigned the correct value. If v is added to S during some Phase
AND, then all its predecessors, if any, are already in S, with the correct T ∗

labels. Hence, by equalities (1) and (3), it is correct also at v.

7

Let us now consider the moment of assigning early time m to an OR
vertex u. We first prove that T ∗(u) ≤ m. Let T ′ be equal T ∗ at S and at u,
and be ∞ at (V \ S) \ {u}. Solution T ′ is feasible at (V \ S) \ {u} trivially,
at any AND or OR vertex v ∈ S by the algorithm, and at u by equality (4).
By feasibility of T ′, holds T ∗(u) ≤ m, as required.

We now prove that for any vertex v0 in V \ S (including v0 = u), holds
T ∗(v0) ≥ m, which will suffice. Assume, to the contrary, that T ∗(v0) <

m ≤ ∞. If v0 is an OR vertex, by equality (2), there exists a vertex v1,
such that T ∗(v1) + d(v1, v0) = T ∗(v0). Since T ∗(v0) < m, edge (v1, v0) does
not participate in computing m in the Phase OR; therefore, v1 ∈ V \ S.
By non-negativity of d, we have T ∗(v1) < m. If v0 is an AND vertex, by
the finishing condition of the while loop at the previous Phase AND, there
exists its predecessor v2 in V \S. By inequality (1) and non-negativity of d,
T ∗(v1) ≤ T ∗(v1) + d(v1, v0) ≤ T ∗(v0) < m.

That is, in both cases, v1 is as v0: belongs to V \ S and has the early
time less than m. We continue to build, as above, a sequence v0, v1, v2, . . .

in V \ S with non-increasing values of T ∗(vi). Since V is finite, we must
arrive at a cycle. Evidently, T ∗ is a constant on this cycle. Hence, all its
edges have weight zero,—a contradiction to the assumption of the theorem.
(See Figure ?? for illustration.)

Let us turn to the running time analysis. We denote by EAND and
EOR the sets of edges incoming AND and OR vertices, respectively. Initial-
ization is done in a linear time. The algorithm operations at its Phases
AND require time O(|EAND|), similarly to algorithm PERT. The oper-
ations at Phases OR are similar to those of algorithm Dijkstra, as well
as the specification for a data structure: to answer Extract-Min query
|V OR| times, while updating by Decrease-Key query |EOR| times. Choos-
ing the Fibonacci heap implementation, we obtain the running time bound
O(|EAND|) + O(|EOR|+ |V OR| · log |V OR|) = O(|E|+ |V OR| · log |V OR|). 2

Since T ∗ is at least m at V \ S, as proved, the following property holds:

Corollary 2.3 For any AND/OR graph without zero cycles, Algorithm AND/OR
assigns early times to OR vertices in a non-decreasing order.

3 Algorithm AND/OR Unweighted

Let us pass to the general case, where zero cycles are allowed. In this section,
we suggest a linear time algorithm for an auxiliary unweighted AND/OR

8

problem. That algorithm serves as a sub-routine in our main algorithm. The
problem and the algorithm may also be of a certain interest by themselves.

Let us extend a bit the notion of an AND/OR problem. Suppose that, in
addition to its regular instance, a priory time bounds b(v) are given: lower
ones to (some of) AND vertices v, and upper ones to (some of) OR vertices v

(the lower bound 0 and the upper bound∞ are equivalent to the absence of a
bound). Note that the arising problem (G, b) is straightforwardly equivalent
to the following AND/OR problem (G, b)origin: We add to G a new AND
vertex origin without in-coming edges (hence, its final label is 0); for any
original vertex v with a given time bound, we add a new edge (origin, v)
with delay b(v). Henceforth, we will identify (G, b) with (G, b)origin, referring
to it as to an AND/OR problem.

Consider an AND/OR graph G, whose all edges have zero delays; that
is, the edges provide an unweighted precedence relation. Assume that in
addition, a priory time bounds b(v) are given to some vertices v. We call
this setting an unweighted AND/OR problem.

In order to “vizualize” solving this problem and facilitate the algo-
rithm correctness proof, let us consider the following auxiliary unweighted
AND/OR problem instance (G, b)ruler, equivalent to (G, b). Let B be the
set of distinct values of the partial function b : V → R+, together with the
value ∞. For each t ∈ B, we add to G an auxiliary AND vertex zt, with the
a priory time bound t. Clearly, the early time of zt is t. For every original
vertex v with the given bound b(v), we cancel its bound, replacing it by an
additional edge (zb(v), v) with a zero delay. Besides, for any OR vertex v,
we add edge (z∞, v) with a zero delay. The equivalence is easy.

Remark : This construction may be thought of as creating a sort of ruler,
whose vertices have fixed early times; unweighted precedence edges from
those vertices provide the time bounds as required.

In the following algorithm, we assume that set B is given sorted in the
decreasing order. At any algorithm moment, vertices not given T ∗ label yet
are referred to as unlabeled.

AND/OR Unweighted(G, b,B)

construct (G, b)ruler

compute indeg(v), for all v ∈ V OR

for each vertex zt, t ∈ B, in the decreasing order of t

T ∗(zt)← t; Q← {zt}
while (Q is non-empty)

9

pop vertex u from Q

for each edge (u, v) ∈ E

if v is an unlabeled AND vertex
T ∗(v)← t; add v to Q

if v is an OR vertex /* always unlabeled */
indeg(v)← indeg(v) − 1
if indeg(v) = 0

T ∗(v)← t; add v to Q

for each unlabeled vertex v

T ∗(v)← 0

Remark : Early time zero may be given partly at the last main for-each
iteration and partly after it. After the main for-each loop, it is given, in
particular: (i) to all AND vertices without in-coming edges and (ii) to all
OR vertices lying on cycles consisting of OR vertices and zero edges only.

Proposition 3.1 Algorithm AND/OR Unweighted correctly computes early
times, in a time linear in the graph size.

Proof: The proof is by induction on the iterations of the main for-each
loop.

Basis: We prove for the first iteration (that using z∞) by induction on
vertex labeling in it. Giving T ∗ label ∞ to the AND vertices is obviously
correct. Labeling by ∞ an OR vertex is also correct, since all edges in-
coming it are from z∞ or vertices given label ∞ previously.

Induction step: Suppose that T ∗ labels are given correctly at some first
iterations. Consider the state at the beginning of the next iteration, which
uses vertex zt. By the algorithm, the following property (*) holds:

• There is no edge from a labeled vertex to an unlabeled AND vertex.

• There is at least one edge to any unlabeled OR vertex from another
unlabeled vertex.

Let us prove that at the beginning of the iteration using vertex zt, T ∗(v)
is at most t for any unlabeled vertex v. Let us label by t all unlabeled
vertices. By the sorting of B, the a priory time bounds of vertices zx are
satisfied. By property (*) and the assumption that all edges are zero ones,
the current labeling satisfies inequalities (1) and (2). That is, we arrived

10

at a feasible solution. Hence, it is an upper bound to the early times, as
required.

We now prove that the early time is at least t for any vertex v labeled at
the current iteration, by induction on vertex labeling in it. This is straight-
forward by the algorithm if v is an AND vertex. This is correct if v is an
OR vertex, since by the algorithm, all edges in-coming v are from vertices
given previously T ∗ labels greater or equal than t. This is the end of the
induction step.

Now we finish the correctness proof by showing that at the end of the
main for-each loop, for any unlabeled vertex v, holds T ∗(v) = 0. Let us
label all unlabeled vertices by zero. Notice that after the last iteration of
the while loop, property (*) holds. By property (*) and the assumption that
all edges are zero ones, the current labeling satisfies inequalities (1) and (2).
That is, we arrived at a feasible solution. It is optimal, since labels should
be non-negative.

The linear running time bound, if B is given sorted, is evident. 2

4 Algorithm for the General Case

Now we pass to the general AND/OR scheduling problem. Let us define a
vertex layer Lt as the set of vertices v with the early time T ∗(v) = t. In the
following discussion, we consider the set of layers as their sequence sorted
by t. In this sense, we will use notions of the next and previous layers, a
layer prefix/suffix, meaning a prefix/suffix of the layer sequence, resp., etc.
For a layer set L, we denote V (L) = ∪L∈LL. Algorithm AND/OR General
presented below works in iterations. In its basic version, each iteration
provides the early times exactly to the entire next layer. Note that also
algorithm AND/OR Unweighted provides early times layer by layer, but in
the opposite order: from later to earlier ones.

At each iteration, AND/OR General executes AND/OR Unweighted on
an auxiliary graph on the set of unlabeled vertices. The construction of
that graph guarantees that its first layer inherits the early time of the first
unlabeled layer of G, while the early times in the following layers may only
grow. As a result, the last, earliest layer discovered by AND/OR Unweighted
in the auxiliary graph is the next layer of G, with the same early time. The
extended version of AND/OR General uses, in addition, another way to
provide T ∗ labels to vertices, similar to that used by algorithm PERT; that
version has a lower running time bound.

11

In Section 4.1, we give an abstract algorithm. Its correctness is proved
in Section 4.2. In Section 4.3, we give an extended version of the abstract al-
gorithm and prove its correctness. An implementation and the running time
analysis are provided in Section 4.4. Some additional fastening is suggested
in Section 4.5.

4.1 Algorithm

Let Ezero be the set of zero edges in G, and Gzero = (V,Ezero). For a
graph H, we denote by H(U) the subgraph of H induced by its vertex sub-
set U . Given a vertex subset S, let b∗S(v) be the function on V \ S equal
maxu∈S, (u,v)∈E{0;T

∗(u)+d(u, v)} for AND vertices and minu∈S, (u,v)∈E{∞;T ∗(u)+
d(u, v)} for OR vertices. (The sense of b∗S(v) is the time bound implied on
v by the edges in-coming it from S.) The following is the basic version of
the algorithm.

AND/OR General(G)
S ← ∅
while (S 6= V)

for each vertex v ∈ V \ S

b(v)← b∗S(v)
for each AND vertex v in V \ S with in-coming non-zero edges from V \ S

b(v)←∞

AND/OR Unweighted(Gzero(V \ S), b, B)

for each vertex u that got the minimal early time m in Gzero(V \ S)
T ∗(u)← m /* in G */
S ← S ∪ {u}

4.2 Correctness Proof

Let us establish a few auxiliary properties:

Lemma 4.1 For any AND/OR problem instance, if delays of some edges
are increased, then:

1. Early times nowhere decrease.

12

2. Assume that delays were increased for non-zero edges only, connecting
between vertices in some layer suffix L. In the layers before L and in
the first layer of L, the early times remain the same.

Proof: Item 1 is straightforward. Indeed, any solution feasible w.r.t. the
new instance is feasible also w.r.t. the original one. Therefore, the early
times at the new instance are at least those at the original one.

Item 2: Denote the first layer of L by Ltmin
, and (V \ V (L)) ∪ Ltmin

by
V ′. Let T ′ be equal T ∗ at V ′ and ∞ at the rest of the vertices. If v ∈ V ′

is an AND vertex, by feasibility of T ∗, no edge in-comes v from vertices in
V \V ′, and any edge in-coming v from Ltmin

is a zero one (then, v ∈ Ltmin
).

Hence, the state at v is the same w.r.t. T ′ and w.r.t. T ∗, that is T ′ satisfies
equality (1) at v. By feasibility of T ∗, for any OR vertex v in V ′, there
exists a tight edge, which either in-comes it from a vertex in V \ V (L), or
in-comes it from Ltmin

and is a zero one (then, v ∈ Ltmin
). Similarly, T ′

satisfies equality (2) at v.

Solution T ′ is obviously feasible for the new instance in V \ V ′. Sum-
marizing, T ′ is a feasible solution. By item 1, the early times for the new
instance should be between their T ∗ and T ′ labels. Since T ∗ and T ′ coincide
at V ′, there is no change in early times at V ′. 2

For any instance A of the AND/OR problem and any vertex subset S, let
AS denote the instance with S removed and time bounds b∗S added at V \ S.
(Equivalently, AS is obtained by contracting S to origin, with replacing the
bunch of edges from S to v by edge (origin, v) with delay b∗S(v), for every
v ∈ V \ S.)

Lemma 4.2 The early times of A and AS coincide on V \ S.

Proof: Let us denote the early times of AS by T ∗
S . It is straightforward

that the restriction of T ∗ to V \ S is a feasible solution to AS , and hence
T ∗ ≥ T ∗

S . Consider the extension of T ∗
S to V , denoted T ∗′, as T ∗ on S and

min{T ∗
S , T ∗} on V \ S. T ∗′ is feasible w.r.t. A at vertices in V \ S as the

minimum of two feasible solutions. It is feasible also at vertices in S, since
for any edge (u, v) in-coming S from V \ S, T ∗′(u) is at most T ∗(u). Its
feasibility implies T ∗

S ≥ T ∗, and this suffices. 2

We base on the following statement:

13

Lemma 4.3 For any set S of labeled vertices, with correct T ∗ labels, let
Ltmin

be the first layer that is not contained in S entirely. Then, by apply-
ing the while iteration of algorithm AND/OR General to S, T ∗ labels are
assigned to all vertices in Ltmin

\ S and only to them, and those labels are
correct.

Proof: Let us consider three AND/OR problem instances: the current one
A, AS , and A∞

S , obtained from AS by changing the delays of all the non-zero
edges between vertices in V \ S to∞. Their early times are denoted T ∗, T ∗

S ,
and T∞

S
∗, respectively. By Lemma 4.1(1), Lemma 4.2, and the definition of

the layers, T∞
S

∗ ≥ T ∗
S = T ∗ > tmin on (V \ S)\Ltmin

. By Lemma 4.1(2) and
Lemma 4.2, T∞

S
∗ = T ∗

S = T ∗ = tmin on Ltmin
. Therefore, exactly Ltmin

\ S

is the first layer of A∞
S , labeled by tmin.

Note that if an edge with the infinite delay in-comes an AND vertex,
then its early time is infinity. If it in-comes an OR vertex, then its early
time remains the same if that edge is removed. Therefore, the early times
and the layers are the same at A∞

S and at the instance (Gzero(V \ S), b) that
algorithm AND/OR Unweighted works on at the iteration.

By the above and since algorithm AND/OR Unweighted processes A∞
S

labeling layer by layer in the inverse order, it assigns, at its last iteration,
labels T∞

S
∗ = tmin exactly to the first layer Ltmin

\ S of A∞
S , as required. 2

Proposition 4.4 At the end of each iteration of the basic version of algo-
rithm AND/OR General, the early times are assigned exactly at the next
layer, and they are correct.

Proof: The proof is by induction on the iterations. The induction assump-
tion is that at the beginning of the current iteration, the set S is formed by
the vertices of some prefix of the layer sequence, with correct early times T ∗.
The basis S = ∅ is trivially correct. The induction step is straightforward
from Lemma 4.3. 2

4.3 Extended version

4.3.1 Handling Zero AND Cycles

Let us call a cycle consisting of AND vertices and zero edges only a zero
AND cycle. We begin with a reduction of the general AND/OR problem to
the case, where there is no zero AND cycle in the precedence graph. Note
that the same reduction works for the classic PERT problem.

14

Observe that all vertices laying on a zero AND cycle C should have the
same early time. Hence, we may contract them to a single AND super-vertex
vC , process the obtained graph, and then expand vC , copying its early time
to all original vertices lying on C.

Contraction as above should assign properly delays of edges incident to
vC . The bunch of the edges, if any, from vertex u to any v ∈ C is replaced
by a single edge (u, vC) with the maximal delay. The bunch of the edges, if
any, from all v ∈ C to an AND vertex u is replaced by a single edge (vC , u)
with the maximal delay. That of the edges to an OR vertex u is replaced
by (vC , u) with the minimal delay. Notice that if there are non-zero edges
between vertices on C, then all the vertices on C should have early time
infinity. We model this by adding a self-loop (vC , vC) with delay 1.

It is easy to see that the above holds not only for the vertices of any zero
AND cycle, but also for the vertices of any non-singleton strongly connected
component of Gzero(V AND). This is because two vertices lie on a cycle,
in a graph, if and only if they belong to the same its strongly connected
component.

The reduction first finds all strongly connected components of the graph
Gzero(V AND), e.g., by algorithm Kosaraju-Sharir. Then, all non-singleton
ones are processed as above. The reduction correctness and its linear running
time are obvious.

4.3.2 Algorithm and Its Correctness

The following is the extended version of the algorithm:

AND/OR General(G)

pre-process zero AND cycles
S ← ∅

/* Phase AND */
while (there is a vertex u ∈ V AND without in-coming edges)

T ∗(u)← T (u)
S ← S ∪ {u}

while (S 6= V)
for each vertex v ∈ V \ S

b(v)← b∗S(v)

15

for each AND vertex v in V \ S with non-zero in-coming edges from V \ S

b(v)←∞

AND/OR Unweighted(Gzero(V \ S), b, B)

for each vertex u that got the minimal T ∗ label m in Gzero(V \ S)
T ∗(u)← m /* in G */
S ← S ∪ {u}

/* Phase AND */
while (there is a vertex u ∈ V AND without in-coming edges)

T ∗(u)← T (u)
S ← S ∪ {u}

post-process zero AND cycles

Proposition 4.5 Each iteration of the extended version of algorithm AND/OR
General assigns the early times at least at the next layer not labeled entirely.
The assigned early times are correct.

Proof: The correctness of the first Phase AND is obvious. The same holds
for each next phase AND, assumed the previously given early times are
correct. A proof similar to that of Proposition 4.4 establishes that the part
of each main iteration preceding its Phase AND completes the correct early
times at the next layer not labeled entirely. The following Phase AND may
assign correct early times to more vertices. 2

4.4 Implementation and running time

4.4.1 Implementation

Following is the suggested implementation of the extended version of algo-
rithm AND/OR General. We denote by indeg+(v) the number of non-zero
edges in-coming v. Priority queue Q is implemented as a balanced tree.

Routine Scan(u)
for each edge (u, v) ∈ E

if v ∈ V AND

if T (v) < T (u) + d(u, v)
T (v)← T (u) + d(u, v)

16

ChangeKey(Q, v, T (v))
indeg(v) ← indeg(v) − 1
if indeg(v) = 0

V 0 ← V 0 ∪ {v}
if d(u, v) > 0

indeg+(v)← indeg+(v)− 1
if indeg+(v) = 0

V + ← V + \ {v}
else /* v ∈ V OR */ if T (v) > T (u) + d(u, v)

T (v)← T (u) + d(u, v)
ChangeKey(Q, v, T (v))

AND/OR General(G)

pre-process zero AND cycles
compute indeg(v) and indeg+(v), for all v ∈ V AND

V 0 ← {v ∈ V AND : indeg(v) = 0}
V + ← {v ∈ V AND : indeg+(v) > 0}
T (v)← 0, for all v ∈ V AND

T (v)←∞, for all v ∈ V OR

Q← (V, T)

/* Phase AND */
while (V 0 is non-empty)

choose a vertex u from V 0

T ∗(u)← T (u)
Q← Q \ {u}
Scan(u)

while (Q 6= ∅)
for each vertex v in Q

b(v)← T (v)
for each vertex v in V +

b(v)←∞

form B by passing on Q and V +

AND/OR Unweighted(Gzero(V \ S), b, B)

for each vertex u that got the minimal T ∗ label m in Gzero(V \ S)
T ∗(u)← m /* in G */

17

Q← Q \ {u}
Scan(u)

/* Phase AND */
while (V 0 is non-empty)

choose a vertex u from V 0

T ∗(u)← T (u)
Q← Q \ {u}
Scan(u)

post-process zero AND cycles

We now show that the above algorithm is a proper implementation of
algorithm AND/OR General. It is easy to see that V 0 is maintained as
the set of all AND vertices with no in-coming edge. Hence, the loop in each
Phase AND is arranged properly. In addition, V + is maintained as the set of
all AND vertices with at least one in-coming non-zero edge. For all vertices
v in V \ S, executions of Scan maintain the value T (v) be equal b∗S. Hence,
the bounds b are assigned the proper values.

The set of elements of Q is exactly V \ S, so also the main while loop is
as required. The set B may be made ordered by scanning the balanced tree
Q and by forcing the vertices in V + be at the beginning of B.

4.4.2 Running Time

In what follows, a linear time is a time linear in the size of the precedence
graph, that is in |V | + |E|. By Section 4.3.1, pre- and post-processing zero
AND cycles is done in a linear time. The rest of the initialization also can
be done in a linear time.

There are |E| executions of routine Scan. A ChangeKey operation costs
O(log |V |), while the rest of a routine Scan execution costs O(1). Hence, all
routine Scan executions cost O(|E| log |V |) in total.

The for-each and while iterations at the end of the main while iteration
happen once per vertex, so they cost O(|V |) in total, not including executions
of routine Scan.

Let us bound now the uncounted yet cost of a single main while iteration.
Setting b values costs O(|V \ S|) = O(|V |). In B, all vertices of V + are at the
beginning. Passing on the balanced tree Q in the sorted order of keys T may
be done in O(|V |) time. An execution of algorithm AND/OR Unweighted

18

costs a time linear in the size of the graph, that is O(|V | + |Ezero|), which
dominates the other addenda.

Clearly, there are no more than |V | main while iterations, since at
each iteration, at least one vertex is labeled. This implies the time bound
O(|E| log |V |)+|V |2+|V |·|Ezero|) of the basic version of algorithm AND/OR
General.

Lemma 4.6 At the extended version, at least one OR vertex is labeled at
each non-last while iteration.

Proof: Assume to the contrary that at some while iteration, the set V ′

of vertices given the minimal label m during the execution of algorithm
AND/OR Unweighted contains AND vertices only. Choose arbitrarily a
vertex v1 in V ′. By the stopping condition of the last Phase AND, there
exists an edge (v2, v1), where v2 is unlabeled. Since before the iteration of
AND/OR Unweighted localizing the layer V ′ property (*) holds, v2 belongs
to V ′. If d(v2, v1) is non-zero, then the inequality m = T ∗(v2) ≥ T ∗(v1) +
d(v2, v1) > T ∗(v1) = m implies m = ∞, that is the current iteration of
AND/OR General is the last one. So, at any its non-last iteration, (v2, v1)
is a zero edge. Similarly, there exists an edge in-coming v2 from a vertex in
V ′, and so on. Since V ′ is finite, the constructed vertex sequence repeats
its vertices, that is contains a cycle. By the above, that cycle is a zero
AND cycle, a contradiction to preprocessing zero AND cycles made at the
beginning of the algorithm AND/OR General. 2

We thus proved that the extended version of algorithm AND/OR General
has at most |V OR|main iterations. Hence, its running time is O(|E|·log |V |+
|V OR| · |V |+ |V OR| · |Ezero|)). We result in the following theorem:

Theorem 4.7 Algorithm AND/OR General (the extended version) solves
the AND/OR problem in time O(|E| · log |V |+ |V OR| · |V |+ |V OR| · |Ezero|) =
O(|V ||E|).

Let us consider |V OR| and |Ezero| as parameters of an AND/OR instance.
Their values may be small for certain sub-classes of the AND/OR problem,
which may decrease the running time bound as follows.

Corollary 4.8 • If |V OR| is O(|E|·log |V |
|V |) and |V OR| · |Ezero| is O(|E| ·

log |V |), then the running time is O(|E| · log |V |).

19

• If |Ezero| is O(|V |), then it is O(|E| · log |V |+ |V |2).

• If |V OR| is O(|E|·log |V |
|V |), then it is O(|E| · (|V OR|+ log |V |)).

4.5 More Fastening

This section shows that, under certain conditions, a single iteration of algo-
rithm AND/OR General provides the correct labels not only to the single
next layer, but also to a few following layers. The presentation in this section
is a kind of sketch.

We base on Lemmas in Section 4.2, see notation there. Let d1 denote
the minimal delay of a non-zero edge from Ltmin

to (V \S)\Ltmin
. Consider

the layer Ltmin2
next after Ltmin

, and assume that its early time tmin2 is
less than tmin + d1. Let us pass on the proof of Lemma 4.1(2) as applied
to vertices in Ltmin2

, instead of Ltmin
(for this, we replace V ′ by V ′

2 =
V \ V (L)) ∪ (Ltmin

∪Ltmin2
), V (L) \Ltmin

by V (L) \ (Ltmin
∪Ltmin2

), etc.),
while taking into account that the early times do not change at Ltmin

. It is
easy to check that it proves correctly that the early times do not change at
Ltmin2

as well. (For illustration, see Figure ??.)

Assume now that the early time at the next layer of the new instance
is less than tmin + d1. Then, by Lemma 4.1(1), also tmin2 < tmin + d1

holds, and the above proof leads to the same result. As a consequence,
we may extend the labeling phase of the iteration of algorithm AND/OR
General by: (i) checking whether the early time m2 at the layer computed
before the last by algorithm AND/OR Unweighted is less than tmin + d1,
and if so, (ii) copying also the labels m2 to G. Lemma 4.3 may be extended
correspondingly, implying the extended versions of Propositions 4.4 and 4.5.

We may continue in a similar way: After assigning early times to layers
Ltmin

and Ltmin2
, we compute also the minimal delay, d2, of a non-zero edge

from Ltmin2
to (V \ S) \ (Ltmin

∪ Ltmin2
), and check whether the following,

third layer of (Gzero(V \ S), b) has a “safe” early time tmin3 < min{tmin +
d1, tmin2 + d2}. If so, we assign also at that layer the early time tmin3, in
G, and so on up to the first “unsafe” layer. Then, we pass to the next main
iteration of the algorithm.

All the above is a heuristics, which may be more or less useful. However,
also a new worst case bound may be established, using the above approach.
Assume that some upper bound to the maximal finite early time, T̄ , is
available, and let dmin > 0 be the minimal delay of a non-zero edge, in G.
When using the above technique, we are sure that the minimal assigned early

20

time increases, from any iteration to the next one, at least by dmin. Hence,
there are at most T̄

dmin
+ 2 iterations, in any execution of the algorithm. As

a result, the factor |V OR| could be replaced by min{|V OR|, T̄
dmin

+ 2}, in the

running time bound of Theorem 4.7. Note that the value T̄
dmin

is scalable,
that is does not depend on the time unit.

5 Characterization of infeasible AND/OR Graphs

We call a scheduling instance feasible if it admits a finite schedule, and
infeasible otherwise. Recall that a PERT instance is infeasible if and only if
there exists a positive cycle, in G. This characterization may be formulated
in reachability terms as follows: There is a non-zero edge, whose tail is
reachable from its head, in G. In this section, we generalize this criterion to
AND/OR graphs.

Let W be an arbitrary set of edges and vertices of G, containing all
edges out-going its vertices. Vertices in W are said be AND/OR reachable
from W in no step. An AND vertex v is said be AND/OR reachable from
W in one step if at least one edge in-coming v is in W . An OR vertex v

is said be AND/OR reachable from W in one step if all edges in-coming
v are in W (note that in particular, this holds for any W if there is no
edge in-coming v, in G). A sequence (W,w1, w2, . . . , wk = w) is called an
AND/OR path from W to w in G if each wi, i = 1, 2, . . . , k, is reachable
from W ∪ {w1, w2, . . . , wi−1} ∪ {(u, v) ∈ E : u = wj , 1 ≤ j ≤ i − 1} in one
step. Vertex w is said to be AND/OR reachable from W if there exists an
AND/OR path from W to w.

Theorem 5.1 An AND/OR graph G = (V,E, d) is infeasible if and only if
there exists a subset W of its non-zero edges, such that all tails of edges in
W are AND/OR reachable from W .

Proof: If : Let W be an edge set as in the statement. Assume, to the
contrary, that no vertex has T ∗ label ∞. Denote the set of tails of edges
in W by V0, minv∈V0

T ∗(v) by t0 < ∞, and min(u,v)∈W d(u, v) by ∆ > 0.
Notice that for all vertices w AND/OR reachable from W , holds T ∗(w) ≥
t0 + ∆ > t0 (this is easy to prove by induction on the steps in an AND/OR
path). By the definition of W , this holds, in particular, for all vertices in
V0, a contradiction to the definition of t0.

Only if : Let G be an infeasible AND/OR graph. Consider the ex-
ecution of the basic version of algorithm AND/OR General on G. By

21

Proposition 4.4, its last iteration labels the entire V \ S 6= ∅ by ∞. By
the algorithm, in this case, all vertices in V \ S are AND/OR reachable in
(Gzero(V \ S), b)ruler from {z∞}. In other words, all vertices in V \ S are
AND/OR reachable in (Gzero(V \ S), b)origin from the set of AND vertices
v with b(v) =∞ (note that edges from z∞ to OR vertices do not matter for
their AND/OR reachability). By the definition of function b, those are the
AND vertices with at least one in-coming non-zero edge from V \ S. By the
definition of AND/OR reachability, all vertices in V \ S are AND/OR reach-
able in (G(V \ S), b)origin from the set W of non-zero edges of G(V \ S).

Observe that in G, no edge in-comes any OR vertex v ∈ V \ S from S,
since otherwise, T ∗(v) could not be ∞. Note also that origin cannot be
AND/OR reachable from W in (G(V \ S), b)origin, since it has no in-coming
edges.

Let us show that the AND/OR reachability of V \ S from W holds also
in G. Indeed, vertex origin is not in the game, while excluding it, AND/OR
reachability of a vertex in one step in G(V \ S) remains in G: for an AND
vertex straightforwardly and for an OR one by the above observation. In
particular, all tails of edges in W are AND/OR reachable from W in G, as
required. 2

An example see in Figure ??. Let us set W = {(d, c), (c, f), (c, g)}.
The set of the tails of its edges is {c, d}. Paths (W, c) and (W,f, g, d) are
AND/OR paths, and they reach set {c, d}. Hence, the presented AND/OR
instance is infeasible.

Note that the criterion of Theorem 5.1 is constructive: Suppose that
solving a given AND/OR problem instance, e.g., by algorithm AND/OR
General, revealed a non-empty set V ∞ of vertices with infinite early times.
By the theorem proof, an infeasibility certificate W as in the theorem can
be easily found as the set of non-zero edges between vertices in V ∞.

6 Discussion on Related Work

1. The AND/OR graph problem setting considered by Knuth in [8] arises
from a certain problem on grammars. Correspondingly, the AND/OR graphs
considered there are bipartite, where the parts are the sets of AND and OR
vertices, and such that there is a single out-going edge from each AND vertex.
The specifics of the motivation restricted the set of possible time-schedules
considered in the paper: the events in any solution are essentially ordered

22

by the causal relation. In addition, the problem setting implies absence of
zero cycles. The algorithm suggested in [8] is the same as in [5, 4].

Let us see how the above specifics restricts the generality of the arising
AND/OR problem. A simple transformation of a general graph to an equiv-
alent bipartite one, without enlarging the problem size, is suggested in [1].
Taking care of AND vertices with multiple out-going edges is more heavy.
The reduction from the general AND/OR problem to the case of [8], known
to us, leads to a substantial increase of the graph size, and thus of running
time bounds.

The reduction takes care of each AND vertex, as follows: Let v be an
AND vertex with out-going edges (v,w1), . . . , (v,wk). We add a new OR
vertex w and AND vertices v1, . . . vk, add a zero edge (v,w), and replace
each edge (v,wi) by the sequence of two edges: (w, vi), d(w, vi) = d(v,wi),
and a zero edge (vi, wi). For an illustration, see Figure ??.

As a result, the number of AND vertices, in the graph, increases by the
total number of edges out-going AND vertices in the original graph. Corre-
spondingly, any running time bound established for the AND/OR problem
of [8] converts to a bound for the general AND/OR problem, where each
|V | term is replaced by |E|. For example, the bound O(|E| + |V | log |V |)
of the algorithm of [8] (based on the bound of Dijkstra algorithm imple-
mented with Fibonacci heaps), converts to a worse bound O(|E| log |V |) for
the general case.

The property of events ordering by the causal relation is used in the
correctness proof in [8]. This prevents applying the proof to the general
AND/OR setting. That is, the algorithm correctness for the general case is
not established in [8].

Remark : It is worth to mention that the setting of Knuth is more general
than that in [5, 4] in the definition of the precedence restriction for an AND
vertex. Instead of the maximum function only, a more general class of so
called “superior” functions is considered in [8].

2. The class of AND/OR graphs considered by Moehring et al. in [9] is
symmetric, in a sense, to the class considered in [8]: there is a single edge
out-going each OR vertex. It is mentioned in [9] that this specifics does not
restrict the generality of the results established in [9], since there is a simple
reduction from the general case to that one. Indeed, a reduction similar to
that described above converts a general AND/OR graph to an AND/OR
graph in that class.

However, similarly to the case of [8], that reduction increases the number

23

of OR vertices by the number of edges out-going all OR vertices. Therefore,
using that reduction spoils the running time bounds of algorithms devel-
oped for the model of [9]. In particular, an algorithm solving the general
AND/OR problem (i.e., with zero cycles are allowed) is suggested in [9]. The
running time bound O(|V ||E|), established for it in [9], becomes O(|E|2),
when combined with the reduction from the general AND/OR problem.

3. Following paper [9], V. Kääb studied the influence of small changes
made to edge delays, in an AND/OR graph, to the schedule makespan [7,
Chapter 2]. Four types of critical sets were defined and thoroughly studied,
in this context.

In the model of [7], the AND/OR graph is general, but edge delays are
restricted be all positive. In what follows, we show that all propagation
properties of sufficiently small changes made to edge delays, in an AND/OR
graph, remain the same if zero edge delays are allowed, but zero cycles
are not. This equivalence extends the results of [7, Chapter 2] to this less
restricted model. It may be useful also in other contexts.

Recall that an edge (u, v) is said be tight if T ∗(v) = T ∗(u) + d(u, v). By
definition, non-tight edges do not matter for defining early times. As well,
sufficiently small delay changes at non-tight edges do not influence early
times ([7, Remark 2.2.6]). Based on this, we may remove all non-tight edges
from the AND/OR graph, while remaining with the same early times and
the same propagation properties of sufficiently small delay changes. Let the
resulting AND/OR graph be denoted Gtight = (V,Etight, d).

Notice that Gtight is acyclic. Indeed, since edge delays are non-negative,
early times may only grow along any path, and thus should be the same on
any cycle, a contradiction to the assumed absence of zero cycles. It is easy
to see that the delay values themselves do not matter at all, when studying
propagation of small delay changes, only the structure of Gtight. Indeed,
let ǫ(u, v) denote the increase of d(u, v), for any (u, v) ∈ Etight, and ∆∗(v)
denote the corresponding increase of T ∗(v), for any v ∈ V . Since for all
(u, v) ∈ Etight holds T ∗(v) = T ∗(u) + d(u, v), the inequality

(T ∗(v) + ∆∗(v)) = max
(u,v)∈Etight

{0, (T ∗(u) + ∆∗(u)) + (d(u, v) + ǫ(u, v))}

is equivalent to

∆∗(v) = max
(u,v)∈Etight

{0,∆∗(u) + ǫ(u, v)} ,

for any v ∈ V AND. A similar equivalence holds also for any v ∈ V OR. That

24

is, ∆∗(v) are the early times in the AND/OR graph (V,Etight, ǫ), irrelatively
to the original edge delays.

Therefore, we may ”play” with the original edge delays as we wish: No-
tice that any assignment of early times T ′∗ to the vertices defines the edge
delays of all edges of G: d′(u, v) = T ′∗(v)−T ′∗(u), so that set of tight edges
remains the same, and hence the change propagation properties remain the
same. In particular, we may assign early times so that a part of the result-
ing delays would be zero (and even negative, in general), retaining the same
propagation properties. As a boundary case, we may define all early times
and thus all edge delays of tight edges be zero, with the same result.

Probably, the study of delay change propagation properties of AND/OR
graphs, and thus of criticality in the sense of [7, Chapter 2], may be fa-
cilitated, or at least made easier to explain, by concentrating on acyclic
unweighted graphs (V,Etight).

Let us consider the opposite direction: Given any AND/OR problem
instance without zero cycles, we may compute the early times (e.g., by
algorithm AND/OR General), find all tight edges, and construct the sub-
graph Gtight. Let the vertices be numbered in a topological order of Gtight,
so that V = {vi}1≤i≤|V |. Let us change all edge delays: d+(vi, vj) ←
d(u, v) + (j − i) · δ, in the entire G. Note that the new AND/OR graph
G′ has positive edge delays only, as in [7, Chapter 2]. If δ is sufficiently
small, then (G′)tight remains the same as Gtight, and thus the delay change
propagation properties remain the same. Therefore, the results of [7, Chap-
ter 2] are valid also for the AND/OR problem with zero delays allowed but
without zero cycles.

Remark : Note that from the algorithmic point of view, computing a
concrete change propagation in Gtight is trivial. Computing early times
∆∗(v), given the delay changes ǫ(u, v), may be done by consequently apply-
ing equalities (1) and (2) in a topological order of Gtight, in a linear time,
with no relation to the original edge delays.

Acknowledgements

The authors are grateful to Eugene Levner for his permanent interest to the
work and useful discussions, and to Seth Pettie for his valuable comments.

25

References

[1] G. M. Adelson-Velsky, A. Gelbukh, and E. Levner. A fast scheduling
algorithm in AND-OR graphs. Mathematical Problems in Engineering,
Hindawi Publishing Corporation, 8 (4/5), pp. 283293 (2003).

[2] G. M. Adelson-Velsky, and E. Levner. Project Scheduling in AND-OR
Graphs: A Generalization of Dijkstra’s Algorithm. Mathematics of Op-
erations Research 27 (3), 504–517 (2002).

[3] T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to Algo-
rithms, McGraw-Hill, 2001.

[4] E. A. Dinic. The fastest algorithm for the PERT problem with AND-
and OR-vertices (the new-product-new technology problem). In Proc. of
the Mathematical Programming Society Conference on Integer Program-
ming and Combinatorial Optimization (IPCO’90), Waterloo, Canada,
R. Kannan and W. R. Pulleyblank eds., Univ. of Waterloo Press, 1990,
pp. 185-187.

[5] E .A. Dinic, A. B. Merkov, and I. A. Tejman. Coordination analysis and
computing of early periods of launching for a set of new technologies,
in: Models and Methods for Forecast of the Science-Technology Progress,
V. V. Tokarev ed., Moscow, 1984, 125–131 (in Russian).

[6] Y. Dinitz, P. Carmi, S. Golan, and G. Rozenwald. An O(|V ||E|) Algo-
rithm for Scheduling with AND/OR Precedence Constraints. A talk at
the Seminar of Dept. of Computer Science, Holon Institute of Technol-
ogy, Israel, January 2002.

[7] V. Kääb. Scheduling with AND/OR-Networks. Ph.D. thesis, Tech-
nical University of Berlin, 2003. Available at ftp://ftp.math.tu-
berlin.de/pub/Preprints/combi/dissertation-kaeaeb.pdf .

[8] D. E. Knuth. A generalization of Dijkstra’s algorithm. Information Pro-
cessing Letters 6 (1977), no.1, pp.1-5.

[9] R. H. Moehring, M. Skutella, and F. Stork. Scheduling with AND/OR
precedence constraints. SIAM J.of Computing 33 (2) pp. 393–415
(2004).

26

