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Abstract

Real Scaled Matching is the problem of finding all locations in the text where
the pattern, proportionally enlarged according to an arbitrary real-sized scale, ap-
pears. Real scaled matching is an important problem that was originally inspired
by Computer Vision.

In this paper, we present a new, more precise and realistic, definition for one
dimensional real scaled matching, and an efficient algorithm for solving this prob-
lem. For a text of length n and a pattern of length m, the algorithm runs in time
O(n log m +

√
nm3/2

√
log m).

1 Introduction

The original classical string matching problem [10, 14] was motivated by text searching.
Wide advances in technology, e.g. computer vision, multimedia libraries, and web searches
in heterogeneous data, have given rise to much study in the field of pattern matching.

Landau and Vishkin [16] examined issues arising from the digitization process. Once
the image is digitized, one wants to search it for various data. A whole body of literature
examines the problem of seeking an object in an image.

In reality one seldom expects to find an exact match of the object being sought,
henceforth referred to as the pattern. Rather, it is interesting to find all text locations
that “approximately” match the pattern. The types of differences that make up these
“approximations” are:

1. Local Errors — introduced by differences in the digitization process, noise, and
occlusion (the pattern partly obscured by another object).

2. Scale — size difference between the image in the pattern and the text.

3. Rotation — angle differences between the pattern and text images.
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Some early attempts to handle local errors were made in [15]. These results were
improved in [8]. The algorithms in [8] heavily depend on the fact that the pattern is a
rectangle. In reality this is hardly ever the case. In [6], Amir and Farach show how to
deal with local errors in non-rectangular patterns.

The rotation problem is to find all rotated occurrences of a pattern in an image.
Fredriksson and Ukkonen [12], made the first step by giving a reasonable definition of
rotation in discrete images and introduce a filter for seeking a rotated pattern. Amir et
al. [2] presented an O(n2m3) time algorithm. This was improved to O(n2m2) in [7].

For scaling it was shown [5, 9] that all occurrences of a given rectangular pattern in a
text can be found in all integer scales in linear time. The first result handling real scales
was given in [3]. In that paper, a linear time algorithm was given for one-dimensional
real scaled matching. In [4], the problem of two-dimensional real scaled matching was
defined, and an efficient algorithm was presented for the problem.

The definition of one-dimensional scaling in [3] has the following drawback: For a
pattern P of length m and a scale r, the pattern P scaled by r can have a length which
is far from mr. In this paper, we give a more natural definition for scaling, which has
the property that the length of P scaled by r is mr rounded to the nearest integer. This
definition is derived from the definition of two-dimensional scaling which was given in [4].
We give an efficient algorithm for the scaled matching problem under the new definition
of scaling: For a text T of length n and a pattern P of length m, the algorithm finds in
T all occurrences of P scaled to any real value in time O(n log m +

√
nm3/2

√
log m). In

the design of the algorithm we use some ideas from [4], together with some new ones.

2 Scaled Matching Definition

Let T and P be two strings over some finite alphabet Σ. Let n and m be the lengths of
T and P , respectively.

Definition 1. A pixel is an interval (i − 1, i] on the real line
�

, where i is an integer.
The center of a pixel (i − 1, i] is its geometric center point, namely the point i − 0.5.

Definition 2. Let r ∈ �
, r > 1. The r-ary pixel array for P consists of m intervals of

length r, which are called r-intervals. The i-th r-interval is ((i− 1)r, ir]. Each interval is
identified with the value from Σ: The i-th interval is identified with the i-th letter of P .
For each pixel center that is inside some r-interval, we assign the letter that corresponds
to that interval. The string obtained by concatenating all the letters assign to the pixel
centers from left to right is denoted by P r, and called P scaled to r.

The scaled matching problem is to find all the locations in the text T in which there
is an occurrence of P scaled to some r ≥ 1.

Example 1. Let P = aabccc then P
3

2 = aaabbcccc, and let T = aabdaaaabbcccccb. There
is an occurrence of P scaled to 3

2
at text location 6.

Let x ∈ �
. ‖x‖ denotes the rounding of x, i.e.

‖x‖ =

{

bxc if the fraction part of x is less than .5

dxe otherwise.
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We need the following technical claim.

Claim 1. Let k, k′, and l be some positive integers.

1. {r| ‖rk‖ = l} = [ l−0.5
k

, l+0.5
k

).

2. {r| ‖r(k + k′)‖ − ‖rk′‖ = l} ⊆ ( l−1

k
, l+1

k
).

Proof. The first part follows immediately from the definition of rounding. To prove the
second part, note that x − 0.5 < ‖x‖ ≤ x + 0.5, so

‖r(k + k′)‖ − ‖rk′‖ < r(k + k′) + 0.5 − (rk′ − 0.5) = rk + 1

and
‖r(k + k′)‖ − ‖rk′‖ > r(k + k′) − 0.5 − (rk′ + 0.5) = rk − 1.

Hence, the r’s that satisfy ‖r(k+k′)‖−‖rk′‖ = l are those that satisfy rk−1 < l < rk+1,
which implies l−1

k
< r < l+1

k
.

3 A Local Verification Algorithm

One possible straightforward approach to solving the scaled matching problem is to ver-
ify for each location of the text whether the scaled occurrence definition holds at that
location. However, even this verification needs some clarification. To simplify, we split
the input strings into two parts, the symbol part and the run length part (defined below),
and then handle each part separately. An additional benefit is that this representation
also compresses the text and pattern and hence will lead to faster algorithms.

Definition 3. Let S = σ1σ2 · · ·σn be a string over some alphabet Σ. The run-length
representation of string S is the string S ′ = σ′r1

1 σ′r2

2 · · ·σ′rk

k such that: (1) σ′

i 6= σ′

i+1 for
1 ≤ i < k; and (2) S can be described as concatenation of the symbol σ ′

1 repeated r1

times, the symbol σ′

2 repeated r2 times, . . . , and the symbol σ′

k repeated rk times. We
denote by SΣ = σ′

1σ
′

2 · · ·σ′

k, the symbol part of S ′, and by c(S) = r1r2 · · · rk, the run-length
part of S ′ (c(S) is a string over the alphabet of natural numbers).

The locator function between S and S ′ is locS(i) = j, where j is the index for which
∑j−1

l=1
rl < i ≤

∑j
l=1

rl.
The center of S, denoted CS, is the substring of S that contains all the letters of S

except the first r1 letters and the last rk letters.

Example 2. Let S = aaaaaabbcccaabbbddddd then S ′ = a6b2c3a2b3d5, SΣ = abcabd
and c(S) = 623235. The locator function is locS(1) = 1, locS(2) = 1, . . . , locS(6) =
1, locS(7) = 2, . . . , locS(21) = 6. The center of S is bbcccaabbb.

Scaled matching requires finding all scaled occurrences of P in T . To achieve this goal
we will use P ′ and T ′. There are two requirements for a scaled occurrence of P at a given
location of T . The first is that P Σ matches a substring of T Σ beginning at location locT (i)
of T . This can be verified in linear time with any classical pattern matching algorithm,
e.g. [14]. The second requirement is that there is a scale r for which P scales properly
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to match at the appropriate location in T . For this we will use c(P ) and c(T ). Since the
first requirement is easy to verify, from here on we will focus on the second requirement.

Denote m′ = |c(P )| and n′ = |c(T )|. We also denote c(P ) = p1, . . . , pm′ and c(T ) =
t1, . . . , tn′ . We assume that m′ ≥ 3 and n′ ≥ 3 otherwise the problem is easily solvable in
linear time. When a scaled match occurs at location i of T the location in the compressed
text that corresponds to it is j = locT (i). However, only part of the full length of tj may
need to match the scaled pattern. More precisely, a length t̂i =

∑j
l=1

tl + 1− i piece of tj
needs to match the scaled pattern. The full set of desired scaling requirements follows.

Scaling requirements at text location i, where locT (i) = j

‖p1 · r‖ = t̂i

‖(p1 + p2) · r‖ = t̂i + tj+1

...

‖(p1 + · · · + pk) · r‖ = t̂i + tj+1 + · · · + tj+k−1

...

‖(p1 + · · ·+ pm′−1) · r‖ = t̂i + tj+1 + · · · + tj+m′−2

‖m · r‖ ≤ t̂i + tj+1 + · · ·+ tj+m′−1

The following claim follows from the discussion above and its correctness follows
directly from the definition.

Claim 2. Let P be a pattern and T a text. There is an occurrence of P r at location i of
T iff PΣ matches at location locT (i) of T Σ and the scaling requirements for location i are
satisfied.

Claim 3. Let i be a location of T . The scaling requirements for i can be verified in O(m′)
time.

Proof. The scaling requirements are verified by finding the set of all scales r that satisfy
requirements. By Claim 1, for each of the first m′ − 1 scaling requirements, the set of
all r’s that satisfy the requirement is an interval of length 1. Moreover, the last scaling
requirement demands that r ∈ [1, (t̂i + tj+1 + · · ·+ tj+m′−1 + 0.5)/m). The intersection of
these intervals is set of all r’s for which P r appears in location i. This intersection can
be found in O(m′) time.

The following straightforward algorithm can now be devised: The algorithm checks
the scaling requirements for every location i of T .

Running time: There are n − m + 1 locations in T . For each location the existence
of a scaled match can be checked in O(m′) time by Claim 3. So the overall time of the
algorithm is O(nm′).
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4 A Dictionary Based Solution

A different approach for solving the scaled matching problem is to create a dictionary
containing the run length part of P scaled at all possible scales. Substrings of the com-
pressed text can then be checked for existence in the dictionary. The problem with this
solution is that there may be many scales and hence many different strings in the dictio-
nary. In fact, the dictionary to be created could be as large as, or larger than, the running
time of the naive algorithm. To circumvent this problem we will keep in the dictionary
only scaled instances of the pattern with a scale at most α, where the value of α will be
determined later. Checking for occurrences of the pattern with a scale larger than α will
be performed using the algorithm from the previous section.

To bound the number of strings in the dictionary, we use the following lemma, which
is a special case of Lemma 1 in [4].

Lemma 4. Let pattern P be scaled to size l ≥ m. Then there are k ≤ m′ intervals,
[a1, a2), [a2, a3), . . . , [ak, ak+1), where a1 < a2 < · · · < ak+1 for which the following hold:

1. P r1 = P r2 if r1 and r2 are in the same interval.

2. P r1 6= P r2 if r1 and r2 are in different intervals.

3. P r has length l if and only if r ∈ [a1, ak+1).

Proof. By Claim 1, if the length of P r is l, then r belongs to the interval I = [ l−0.5
m

, l+0.5
m

).
Consider the r-ary pixel array for P when the value of r goes from r = l−0.5

m
to r = l+0.5

m
.

Consider some value of r in which a new scaled pattern is reached, namely P r 6= P r−ε for
every ε > 0. By definition, this happens when some pixel center changes its r-interval, or
in other words, when a pixel center coincides with the right endpoint of some r-interval.
The right endpoint of the rightmost r-interval moves a distance of exactly 1 when r goes
over I, and each other endpoint moves a distance smaller than 1. Thus, each endpoint
coincides with a pixel center at most one time.

4.1 Building the dictionary

Let P be a set containing c(CP r) for every scaled pattern P r with r ≤ α. By Lemma 4,
the number strings in P is O(αmm′). For each S ∈ P, let RS be the set of all values of r
such that c(CS) = S. Each set RS is a union of intervals, and let |RS| denote the number
the intervals in RS.
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Example 3. Let P = abcd and α = 2. Then,

c(P r) =















































































1111 for r ∈ [1, 1.125)

1112 for r ∈ [1.125, 7/6)

1121 for r ∈ [7/6, 1.25)

1211 for r ∈ [1.25, 1.375)

1212 for r ∈ [1.375, 1.5)

2121 for r ∈ [1.5, 1.625)

2122 for r ∈ [1.625, 1.75)

2212 for r ∈ [1.75, 11/6)

2221 for r ∈ [11/6, 1.875)

2222 for r ∈ [1.875, 2)

Thus, P = {11, 12, 21, 22}, R11 = [1, 7/6), R12 = [7/6, 1.25)∪[1.5, 1.75), R21 = [1.25, 1.5)∪
[1.75, 11/6), and R22 = [11/6, 2].

Lemma 5. For every S ∈ P, |RS| = O(m).

Proof. Let l be the sum of the characters of S, and let a be the number of characters
in CP , namely a = p2 + · · · + pm′−1. If r ∈ RS, then ‖rp1‖ = t̂i and ‖r(p1 + a)‖ = t̂i + l,
so ‖r(p1 + a)‖ − ‖rp1‖ = l. By Claim 1 we obtain that r ∈ ( l−1

a
, l+1

a
). For r ∈ ( l−1

a
, l+1

a
),

the length of P r is in the interval [ ‖ l−1

a
m‖, ‖ l+1

a
m‖ ]. From Lemma 4, it follows that

|RS| = O(m′ · m/a). We have assume that m′ ≥ 3, so a ≥ m′ − 2 ≥ 1

3
m′. Hence,

|RS| = O(m).

We now describe how to build the dictionary. Instead of storing in the dictionary the
actual strings of P, we will assign a unique name for every string in P using the naming
technique of Karp et al. [13] (see also [1]), and we will store only these names.

The first step is generating all the scaled patterns P r for r ≤ α in an increasing order
of r. This is done by finding all the different values of r in which some pixel center
changes its r-interval. These values can be easily found for each pixel center, and then
sorted using bin sorting. Denote the sorted list by L. We assume that for each value r
in L, only a single pixel center changes its r-interval (if k centers simultaneously change
their r-intervals for some value of r, we put k copies of this value in L).

Afterward, build an array A[1..m′ − 2] that contains the run length part of CP . For
simplicity, assume that m′− 2 is a power of 2 (otherwise, we can append zeros to the end
of A until the size of A is a power of 2). Now, compute a name for A by giving a name
for every sub-array of A of the form A[j2i + 1..(j + 1)2i]. The name given to a sub-array
A[j..j] is equal to its content. The name given to a sub-array A′ = A[j2i + 1..(j + 1)2i]
depends on the names given to the two sub-arrays A[2j2i−1 +1..(2j +1)2i−1] and A[(2j +
1)2i−1 + 1..(2j + 2)2i−1]. If the names of these sub-arrays are a and b, respectively, then
check whether the pair of names (a, b) was encountered before. If it was, then the name
of A′ is the name that was assigned to the pair (a, b). Otherwise, assign a new name to
the pair (a, b) and also assign this name to A′.

After naming A, traverse L, and for each value r in L, update A so it will contain
the run length part of CP r . After each time a value in A is changed, update the names
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of the log(m′ − 2) + 1 sub-arrays of A that contain the position of A in which the change
occurred.

During the computation of the names we also compute the sets RS for all S ∈ P.

Running time: Each value in L causes at most two changes in the array A, and thus
creates at most 2(log(m′ − 2) + 1) new names. Thus, the total number of distinct names
is O(m′ + |L| log m′). From Lemma 4 we have that |L| = O(αmm′), so the number of
distinct names is at most s = O(αmm′ log m′). We store the pairs of names in an s × s
table. Thus, the initial naming of A takes O(m′) time, and each update takes O(log m′)
time. Therefore, the time for computing all the names is O(αmm′ log m′). Using the
approach of [11], the space complexity can be reduced to O(s).

4.2 Scanning the text

The first step is naming every substring of c(T ) of length 2i for i = 0, . . . , log(m′ − 2).
The name of a substring of length 1 is equal to its content. The name of a substring
T ′ of length 2i (i > 0) is computed from the names of the two substrings of length 2i−1

whose concatenation forms T ′. The naming is done using the same L×L array that was
used for the naming of A, so the names in this stage are consistent with the names in
the dictionary building stage. In other words, a substring of T that is equal to a string
S from P, will get the same name as S.

Now, for every location i of T , compute the range of scales r that satisfy the first and
last two scaling requirements. If this range is empty, proceed to the next i. Otherwise,
suppose that this interval is [r1, r2). If r2 > α, check all the other scaling requirements.
If r2 ≤ α, check whether the name of the substring of c(T ) of length m′ − 2 that begins
at locT (i)+ 1 is equal to the name of a string S ∈ P. If there is such a string S, compute
[r1, r2) ∩ RS, and report a match if the intersection is not empty.

Running time: Computing the names takes O(n′ log m′) time. By storing each set
RS using a balanced binary search tree, we can compute the intersection [r1, r2) ∩ RS in
time O(log |RS|) = O(log m) (the equality follows from Lemma 5). Therefore, the time
complexity of this stage is O(n log m + lm′), where l is the number of locations in which
all the scaling requirements are checked. Let Xj be the set of all such locations i with
locT (i) = j, and let X be the set of all indices j for which Xj is not empty. Clearly,
l =

∑

j∈X |Xj|. The following lemmas give an upper bound on l.

Lemma 6. For every j, |Xj| = O(1 + p1/m
′).

Proof. Fix some j. Let a = p2 + · · · + pm−1 and l = tj+1 + · · · + tj+m′−2. Suppose
that i ∈ Xj. As the first and second last scaling requirements are satisfied, we have that
‖r(p1 + a)‖− ‖rp1‖ = (t̂i + l)− t̂i = l. By Claim 1, r ∈ ( l−1

a
, l+1

a
), so rp1 ∈ ( l−1

a
p1,

l+1

a
p1).

Since i = t1 + · · ·+ tj + 1− t̂i = t1 + · · ·+ tj + 1−‖rp1‖ and this is true for every i ∈ Xj,
it follows that

|Xj| ≤
∣

∣

∣

∣

{

‖x‖ x ∈
(

l − 1

a
p1,

l + 1

a
p1

)}
∣

∣

∣

∣

≤ 2 +
2p1

a
≤ 2 +

6p1

m′
,

where the last inequality follows from the fact that m′ ≥ 3.
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Lemma 7. |X| = O( n
αp1

).

Proof. Suppose that j ∈ X, and let i be some element in Xj. Let [r1, r2) be the scales
interval computed for location i using the first and last two scaling requirements. By
the definition of the algorithm, r2 > α. The interval of r’s that satisfy the first scaling
requirement is [ t̂i−0.5

p1

, t̂i+0.5
p1

), so we obtain that t̂i+0.5
p1

≥ r2 > α. Thus, pj ≥ t̂i > αp1−0.5.

Since this is true for every j ∈ X, it follows that |X| ≤ n
αp1−0.5

.

By Lemmas 6 and 7, l = O( n
αp1

(1+ p1

m′
)) = O(n

α
). Therefore, the total time complexity

of the algorithm is O(αmm′ log m′ + n log m + nm′/α). This expression is minimized by
choosing α =

√

n/(m log m′). We obtain the following theorem:

Theorem 8. The scaled matching problem can be solved in O(n log m+
√

nmm′
√

log m′)
time.
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