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Abstract

Sequencing by Hybridization is a method for reconstructing a DNA
sequence based on its k-mer content. This content, called the spectrum of
the sequence, can be obtained from hybridization with a universal DNA
chip. However, even with a sequencing chip containing all 49 9-mers and
assuming no hybridization errors, only about 400 bases-long sequences can
be reconstructed unambiguously.

Drmanac et al. suggested sequencing long DNA targets by obtaining
spectra of many short overlapping fragments of the target, inferring their
relative positions along the target and then computing spectra of subfrag-
ments that are short enough to be uniquely recoverable. Drmanac et al.
do not treat the realistic case of errors in the hybridization process. In this
paper we study the effect of such errors. We show that the probability of
ambiguous reconstruction in the presence of (false negative) errors is close
to the probability in the errorless case. More precisely, the ratio between
these probabilities is 1 + O(p/(1 − p)4 · 1/d) where d is the average length
of subfragments, and p is the probability of a false negative.

We also obtain lower and upper bounds for the probability of unam-
biguous reconstruction based on errorless spectrum. For realistic chip sizes,
these bounds are tighter than those given by Arratia et al. Finally, we re-
port results on simulations with real DNA sequences, showing that even
in the presence of 50% false negative errors, a target of cosmid length can
be recovered with less than 0.1% miscalled bases.

1 Introduction

One of the main current endeavors in Life Sciences and Medicine is efficient se-
quencing of very long DNA molecules. The prevalent sequencing technologies are
currently gel-based. Sequencing by Hybridization (SBH) [3, 11] was proposed in
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the late Eighties as an alternative way to DNA sequencing. In this method, the
target sequence is hybridized to a universal chip containing all 4k sequences of
length k. For each k-long sequence (or probe) in the chip, if its reverse comple-
ment appears in the target, then the two sequences will bind (or hybridize), and
this hybridization can be detected. Thus, from the above experiment one can
obtain the multi-set of all k-long subsequences of a target sequence (all subse-
quences referred to in this paper will be contiguous). This multi-set is called the
k-spectrum of the target, or simply its spectrum. We note that in reality, only
the set of all k-subsequences of the target can be obtained, but many studies on
SBH (including this work) assume that the multi-set is known, as this assumption
simplifies the analysis. This assumption is justified since the missing multiplic-
ity data in the hybridization result can be considered as false negative errors.
Pevzner has shown that reconstructing a sequence from its spectrum is polyno-
mial [15]. Since copies of the universal chip can be economically produced and
used to sequence any DNA target, and the computational reconstruction task is
efficiently handled, this seems as a promising alternative to standard sequencing
techniques.

Unfortunately, sequence reconstruction is often not unique: Other sequences
can have the same spectrum as the target’s. Therefore, we are interested in
telling how likely this event is as a function of the length of the target. We say
that a sequence is uniquely recoverable from its spectrum if there is no other
sequence with the same spectrum. By assuming a distribution on the sequences
of a certain length, one can compute the probability that a random sequence
is not uniquely recoverable from its k-spectrum. We refer to this as the failure
probability. Denote the failure probability for the uniform distribution over N -
long sequences by P (n, k), where n = N − k + 1 (n is the number of k-tuples in
the sequence). An asymptotically exact formula for P (n, k) was given by Dyer
et al. [7] and Arratia et al. [2].

The main shortcoming of classical SBH is ambiguous solutions: The maximum
length n = n(k, ε) for which P (n, k) ≤ ε, is rather small. For example, n(8, 0.1)
is about 200 [17]. Several methods for overcoming this limitation were proposed:
alternative chip designs [3, 10, 17, 19, 20], interactive protocols [8, 12, 21], using
location information [1, 4, 5, 9], and using a known homologous sequence [14].
Currently, SBH is not considered competitive in comparison with standard gel-
based sequencing technologies.

Drmanac et al. [6] proposed the following enhancement to SBH (compare Fig-
ure 1): Instead of reconstructing a single target sequence from its spectrum, one
can obtain the spectra of many short overlapping fragments (clones) of the target.
The larger the overlap between two clones, the more similar their spectra would
be. Using this similarity one can infer the position of clones along the target.
Moreover, the endpoints of the clones induce a partition of the target into even
shorter subfragments, and the spectrum of each of those can be computation-
ally inferred. The DNA stretches between consecutive clone endpoints are called
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Figure 1: Partitioning a target sequence into IFs. The target (top) is partitioned
into IFs by the endpoints of the clones (bottom). There are 13 clones and 25 IFs.

information subfragments (IFs). By obtaining clones at high redundancy, the
average length of an IF would be short enough to be uniquely recoverable from
its spectrum with high probability. When all IFs are uniquely recoverable, so is
the complete target. Drmanac et al. suggested sequencing a 106 bp long target by
obtaining the spectra of 25,000 500 bp-long clones. They provided some simple
computational arguments and performed error-free simulations to support their
suggestion.

In this paper we shall expand on the analysis of the Drmanac et al. strategy
and of Arratia et al. in several ways. First, we improve the estimate of Arratia
et al. on P (n, k) for small (and realistic) values of k: We show that if 5(k − 1) ≤
n ≤ 2k+1 + 4(k − 2), then P (n, k) = Θ(n4/42k). We then use this result in order
to investigate the Drmanac et al. strategy in the presence of hybridization errors:
Under some simplifying assumptions which will be described below, we prove that
the introduction of false negative errors has a very small effect on the probability
of unique recoverability. More precisely, the ratio between the failure probability
in the presence of errors, and in the errorless case, is 1+O(p/(1−p)4·1/d), where d
is the average IF length, and p is the probability of a false negative error. We also
perform simulations with real DNA sequences which show that the technique can
reconstruct a target longer than 30kb from 8-mer spectra containing 50% false
negative errors, with an average of less than one miscalled base in 1000 bases.

We need some notation in order to specify our assumptions: Denote the target
sequence by A. One first clones many short random subfragments C1, . . . , Cc of A,
and obtains the k-spectrum of each clone. We assume that the clones completely
cover A. The endpoints of the c clones form a partition of the target A into IFs
J1, . . . , Jl where l ≤ 2c− 1. We assume that the positions of the clones along the
target have already been inferred from the spectra. In the absence of errors, if a
k-tuple P is located in the IF Ji, then P will appear in the k-spectrum of each
clone Cj that contains Ji. Using this observation, one can compute the spectrum
of each IF.

Short probe hybridizations are error prone. In false positive errors, a certain
k-tuple appears in the experimental spectrum while in fact it does not appear
in the target. The converse occurs in a false negative error. By increasing the
hybridization stringency, the number of false positives can be decreased, at the
expense of increasing the false negatives rate, which as we shall show, has little
effect on the success of the strategy. Moreover, in our model, a false positive error
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that appears in the spectrum of some clone is unlikely to appear in the spectra of
the intersecting clones, while a real spectrum element is likely to appear in many
of the spectra of the intersecting clones. Therefore, a simple procedure can be
used to remove such false positives, perhaps at the expense of increasing the false
negative rate. Therefore, we will assume that there are no false positive errors.

For false negative errors, our probabilistic model assumes that each k-tuple
contained in some clone does not appear in its (experimental) spectrum with
probability p, independently of the other k-tuples in the clone and of its appear-
ance in other clones. False negative errors have two effects. First, it is possible
that some k-tuple P in the target sequence of A will not appear in the spectra of
any of the clones that contain P . Therefore, P will be missing from the spectrum
which is built for A. As we assume that the clones cover the target with high
redundancy, this effect has very low probability: If every point in the target is
covered by at least l clones, then that probability is at most npl. The second
type of effect is that the k-tuple P may appear in some, but not all, the spectra
of clones that contain it. Thus, when we decide which IF contains P , we may be
wrong. This is the effect that we shall study in detail.

For the theoretical analysis we make several simplifying assumptions: First,
we assume that clone positions are not random, but are spread uniformly across
the sequence, and we denote by d the distance between the left endpoints of
two consecutive clones. Second, for the partition into IFs, we ignore the right
endpoints of the clones, and only consider the partition of the sequence A derived
from the left endpoints of the clones. (Note that this assumption generates longer
and fewer IFs than there really are, so removing this assumption would only
improve the results). Technically, to achieve this we assume that the length of
the clones is divided by d. Thus, the right endpoint of a clone is a left endpoint
of some other clone, except for the last few clones. This partition forms c IFs
J1, . . . , Jc. When we consider some k-tuple P in the spectrum of A, we attribute
P to the fragment Ji where i is the maximum index of a clone for which P
appears in its spectrum (for simplicity of representation we assumed here that P
appears only in one IF). Since we assumed only false negative errors, the index i is
always less than or equal to the correct index i′. So in the case of errors, instead
of knowing that P is in fragment Ji′ , we know that P is in the union ∪j≥iJj.
Moreover, the value of i′ − i is a random variable with geometric distribution
with parameter p. See Figure 2 for an example of the situation described above.

The paper is organized as follows: Section 2 contains problem definitions and
preliminaries. In Section 3 we give the upper and lower bounds on the failure
probability with no errors. The main result of this paper is given in Section 4.
Finally, our simulations are described in Section 5.
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Figure 2: An example of attributing k-tuples to IFs. If there are no errors, then
the 4-tuple ACTG appears in clones C1, C2, C3, so we attribute it to IF J3. If
there are false negatives, ACTG can appear, for example, only in C1, C2, and
therefore it will be mistakenly attributed to IF J2. As the mistake is only in one
direction, we know in this case that the k-tuple ACTG appears in ∪i≥2Ji.

2 Preliminaries

For a sequence A = a1 · · ·ar, let A|li denote the l-subsequence aiai+1 · · ·ai+l−1.
For two sequences A = a1 · · ·ar and B = b1 · · · bs, we denote A|B if the (s − 1)-
suffix of A is equal to the (s − 1)-prefix of B. If A|B, we denote by A � B the
sequence a1 · · ·arbs.

The k-spectrum of a sequence A of length N is the multi-set of all the k-
subsequences of A, and is denoted by SPk(A). The SBH problem is: Given a
multi-set M of k-tuples, find a sequence A for which SPk(A) = M , if there is
such a sequence. A sequence A is called uniquely recoverable w.r.t. k if there is
no sequence A′ 6= A such that SPk(A) = SPk(A′).

An alternative way to define the SBH problem is as follows: Given a multi-set
M = {A1, . . . , An} of k-tuples, find a permutation π : {1, . . . , n} → {1, . . . , n} for
which Aπ(i)|Aπ(i+1) for all i < n. For such a permutation π, define the sequence
Aπ = Aπ(1) � Aπ(2) � · · · � Aπ(n), and note that SPk(Aπ) = M . Pevzner [15] gave
a formulation of the SBH problem using graphs: For a multi-set M , define the
de-Bruijn graph GM to be a directed graph whose vertices are all the distinct
(k − 1)-tuples that appear in M , i.e. ∪n

i=1{Ai|k−1
1 , Ai|k−1

2 }, and whose edges are

ei = (Ai|k−1
1 , Ai|k−1

2 ) for i = 1, . . . , n. A permutation π is a solution to the SBH
problem iff Pπ = [eπ(1), eπ(2), . . . , eπ(n)] is an Eulerian path in GM . Therefore, the
SBH problem is polynomial.

The Positional SBH problem (PSBH) is defined as follows: Given a multi-set
M = {A1, . . . , An} and sets S(i) ⊆ {1, . . . , n} for all i ≤ n, find a permutation
π for which Aπ(i)|Aπ(i+1) for all i < n, and i ∈ S(π(i)) for all i ≤ n (namely,
the set S(j) contains the positions in which the k-tuple Aj can appear). Such a
permutation π is called a solution of the instance M, k, S. For example, suppose
that n = 3, A1 = ACT, A2 = CTA, A3 = TAC, S(1) = {1, 3}, S(2) = {1, 2}, and
S(3) = {2, 3}. Both π1(1), . . . , π1(3) = 1, 2, 3 and π2(1), . . . , π2(3) = 2, 3, 1 are
solutions and Aπ1 = ACTAC, Aπ2 = CTACT. However, π3(1), . . . , π3(3) = 3, 1, 2
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is not a solution as 1 /∈ S(3) = S(π3(1)). The PSBH problem is NP-hard even
when |S(i)| ≤ 3 for all i [4], while it is polynomial when |S(i)| ≤ 2 for all i [4],
or when each S(i) is an interval of length O(log n) [9].

It is more convenient to denote an instance of PSBH by A, k, S where A
is a sequence of length N = n + k − 1, which naturally defines the multi-set
M = SPk(A). A solution π of A, k, S is called trivial if Aπ = A. A sequence A
is called uniquely recoverable w.r.t. k, S if there is no nontrivial solution π of the
instance A, k, S.

In this paper, we consider two special cases of the Positional SBH problem.
Let I = {J1, . . . , Jc} be a partition of the interval [1, n] into disjoint intervals (i.e.,
there are integers s1 = 1, s2, . . . , sc, sc+1 = n+1 such that Ji = [si, si+1 − 1]). For
i ≤ n, let I(i) be the index such that i ∈ JI(i). An instance of the Interval PSBH
problem (IPSBH), denoted by A, k, I, is an instance A, k, SI of PSBH, where
SI(i) = JI(i) for i ≤ n. A sequence A is called uniquely recoverable w.r.t. k, I
if there is no nontrivial solution of the instance A, k, I. The instance A, k, SI is
equivalent to the instance A, k, S ′

I, where S ′
I(i) = [sI(i), n]. (The proof is simple:

Suppose that π is a solution of A, k, S ′
I . For i ∈ J1 = [1, s2 − 1], we have

i ∈ S ′
I(π(i)) = [sI(π(i)), n], hence I(π(i)) = 1 which implies that π(i) ∈ J1. Now,

for i ∈ J2 = [s2, s3 − 1], we have i ∈ [sI(π(i)), n], so I(π(i)) ≤ 2. But π(j) ∈ J1 for
all j ∈ J1, so it follows that π(i) /∈ J1. Therefore, π(i) ∈ J2, or in other words,
I(π(i)) = 2. By repeating the same argument, we conclude I(π(i)) = I(i) for
all i. Therefore, i ∈ JI(i) = SI(π(i)) for all i, namely π is a solution of A, k, S ′

I .
Conversely, if π is a solution of A, k, SI then it is also a solution of A, k, S ′

I as
SI(i) ⊆ S ′

I(i) for all i.)
Let ∆ = (∆1, . . . , ∆n) be a vector of nonnegative integers. An instance of the

Inexact Interval PSBH problem (IIPSBH), denoted by A, k, I, ∆, is an instance
A, k, SI,∆ of PSBH, where SI,∆(i) = [smax(I(i)−∆i,1), n]. A sequence A is called
uniquely recoverable w.r.t. k, I, ∆ if there is no nontrivial solution of the instance
A, k, I, ∆.

For the rest of this paper we assume that n = cd for some integers c and
d. Let Id be the set of intervals {[1, d], [d + 1, 2d], . . . , [(c − 1)d + 1, cd]} (so
I(i) = di/de). We denote by P (n, k, d) the probability that for a random se-
quence A of length n + k − 1, A is not uniquely recoverable w.r.t. k, Id. We also
denote by P (n, k, d, p) the probability that for a random sequence A of length
n + k − 1 and for a vector ∆ = (∆1, . . . , ∆n) of independent identically dis-
tributed random variables with geometric distribution with parameter p, A is
not uniquely recoverable w.r.t. k, Id, ∆. The main result of this paper is showing
that P (n, k, d, p) = (1 + O(cp/d))P (n, k, d), where cp is a term that depends on
p.

Let A be a sequence of length N = n+ k− 1. A pair (i, j) is called a repeat if
A|k−1

i = A|k−1
j . A repeat (i, j) is called rightmost if j 6= n + 1 and (i + 1, j + 1)

is not a repeat (i.e., if ai+k−1 6= aj+k−1). (In the de-Bruijn graph, a repeat is
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manifest by two edges emanating from the same vertex. In a rightmost repeat,
the two edges enter distinct vertices.) A repeat (i, j) is called weakly rightmost if
either j = dI(i)+1, or (i, j) is rightmost. For example, let k = 4, d = n = 11, and
A = AGCTT ACGCT TCTT. The repeats of A are (2, 8), (3, 9), (9, 12), (3, 12),
the weakly rightmost repeats are (3, 9), (9, 12), (3, 12), and the single rightmost
repeat is (3, 9).

A pair of repeats ((i, j), (i′, j ′)) is called R-pair if (i, j) is rightmost, and it is
called Rr-pair if (i, j) is rightmost, and (i′, j ′) is weakly rightmost. The pair is
called interleaved if i ≤ i′ < j < j ′ and I(i) = I(j ′ − 1).

3 Estimating the failure probability

In this section we show that P (n, k, d) = Θ(d3n/42k). We note that an asymp-
totically exact formula for P (n, k) was given in [2,7], but it does not give a good
estimate for small values of n and k.

We begin with showing an upper bound on P (n, k, d). A necessary and suf-
ficient condition for unique recoverability w.r.t. k was given by Arratia et al. [2]
(based on result from [16]). In the following theorem, we give a more general
necessary and sufficient condition for unique recoverability w.r.t. k, Id. We also
note that our characterization is simpler than the one in [2].

Theorem 3.1. A sequence A is not uniquely recoverable w.r.t. k, Id iff either (1)
A contains an interleaved R-pair, or (2) A|k−1

1 = A|k−1
d+1 = · · · = A|k−1

cd+1 and there

are indices i1, . . . , ic with (l − 1)d + 1 < il < ld + 1, and A|k−1
i1

= A|k−1
i2

= · · · =

A|k−1
ic

6= A|k−1
1 .

Proof. If ((i, j), (i′, j ′)) is an interleaved R-pair, then we have A|ki−1 | A|kj (if i > 1),

A|kj−1 | A|ki , A|ki′−1 | A|kj′ (if j ′ < n + 1), and A|kj′−1 | A|ki′. Thus, we define a
permutation π as follows: π(1), . . . , π(n) =

1, 2, . . . , i−1, j, j+1, . . . , j ′−1, i′, i′+1, . . . , j−1, i, i+1, . . . , i′−1, j ′, j ′+1, . . . , n

and it is easy to verify that π is a solution of A, k, Id. Furthermore, A|ki 6= A|kj =

Aπ|ki (as (i, j) is a rightmost repeat), so A 6= Aπ. Therefore, A is not uniquely
recoverable w.r.t. k, I.

Suppose that A satisfies case (2) of the theorem with indices i1, . . . , ic. We
define a permutation π as follows: π(1), . . . , π(n) =

i1, i1 +1, . . . , d, 1, 2, . . . , i1−1, i2, i2 +1, . . . , 2d, d+1, d+2, . . . , i2−1, i3, . . . , ic−1.

The conditions of case (2) imply that π is a solution of A, k, Id and A 6= Aπ.
We now prove the second direction of the theorem. Suppose that A is not

uniquely recoverable w.r.t. k, Id, and let π be a nontrivial solution. To simplify the
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proof, we use the de-Bruijn graph G = (V, E) of SPk(A). Denote E = {e1, . . . , en}
where ei = (A|k−1

i , A|k−1
i+1 ). For two edges ei, ej we write ei ≡ ej if ei and ej are

parallel edges, namely if A|ki = A|kj . Clearly, both P = [e1, e2, . . . , en] and P ′ =
[eπ(1), eπ(2), . . . , eπ(n)] are Eulerian paths in G. We also define subgraphs Gl =
(V, El) of G, where El = {e(l−1)d+1, . . . , eld}. Again, both Pl = [e(l−1)d+1, . . . , eld]
and P ′

l = [eπ((l−1)d+1), . . . , eπ(ld)] are Eulerian paths in Gl.
The proof is based on comparison of the paths P and P ′. We will show that

if the paths P and P ′ start from the same vertex (i.e. Aπ|k−1
1 = A|k−1

1 ) then case
(1) happens, and otherwise case (2) happens.

We first consider the case when P and P ′ start from the same vertex. Let i
be the minimum index such that ei 6≡ eπ(i) and let j = π(i). W.l.o.g. we assume
that π(l) = l for all l < i. (If π doesn’t satisfy this requirement, then let l be
the minimum index for which l 6= π(l). Define a permutation π′ by π′(l) = l,
π′(π−1(l)) = π(l), and π′(l′) = π(l′) for any l′ 6= l, π−1(l). π′ is a solution as
el ≡ eπ(l). This process can be repeated until we obtain a solution that satisfies
the requirement.) Thus π(i) /∈ {1, . . . , i}, so i < j. From the minimality of i,
and the assumption that P and P ′ start from the same vertex, it follows that the
edges ei and ej have the same start vertex, so A|k−1

i = A|k−1
j . As ei 6≡ ej, the

edges ei and ej has different end vertices, hence A|k−1
i+1 6= A|k−1

j+1 . Therefore, (i, j)
is a rightmost repeat.

As π is a solution we have that I(i) = I(j). The edges ei, ei+1, . . . , ej−1 form
a cycle in GI(i), which we denote by C, and we denote by VC the vertices of C.
As P ′

I(i) is an Eulerian path, it must pass through all the edges of C, and let l
be the minimum index such that eπ(l) is in C. By definition, the edge eπ(i) = ej

is not in C (though it can be parallel to an edge from C), and therefore, l > i.
Since the end vertex of eπ(l−1) is equal to the start vertex of eπ(l), we have that

A|k−1
π(l) = A|k−1

π(l−1)+1, namely (π(l), π(l−1)+1) is a repeat. Clearly, i ≤ π(l) ≤ j−1,
π(l − 1) ≥ j (as the edge eπ(l−1) is not in C), and I(π(l − 1)) = I(i) (as the edge
eπ(l−1) is in GI(i)). Therefore, ((i, j), (π(l), π(l − 1) + 1)) is an interleaved R-pair.

We now consider the case when P and P ′ start from different vertices (P
starts from A|k−1

1 , and P ′ starts from Aπ|k−1
1 ). Since P ′

1 is an Eulerian path in

G1 which doesn’t start from vertex A|k−1
1 , it follows that the vertex A|k−1

1 has
equal in and out degrees in G1. Since P1 is an Eulerian path in G1 which starts
from the vertex A|k−1

1 , it must also end in A|k−1
1 , hence A|k−1

1 = A|k−1
d+1. With

similar arguments, we obtain that vertex Aπ|k−1
1 has equal in and out degrees in

G1 (as P1 doesn’t start from Aπ|k−1
1 ), and therefore P ′

1 ends in Aπ|k−1
1 . Thus,

Aπ|k−1
1 = Aπ|k−1

d+1.

Now, P ′
2 is an Eulerian path in G2 which doesn’t start from vertex A|k−1

d+1 (P ′
2

starts from Aπ|k−1
d+1 = Aπ|k−1

1 ) and therefore vertex A|k−1
d+1 has equal in and out

degrees in G2. Again, it follows that A|k−1
d+1 = A|k−1

2d+1. We also obtain that Aπ|k−1
d+1

has equal in and out degrees in G2 and Aπ|k−1
d+1 = Aπ|k−1

2d+1.
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By repeating the same arguments, we obtain that A|k−1
1 = A|k−1

d+1 = · · · =

A|k−1
cd+1 and Aπ|k−1

1 = Aπ|k−1
d+1 = · · · = Aπ|k−1

cd+1. We therefore define il = π((l −
1)d+1) for l = 1, . . . , c, and A satisfies the conditions of case (2) with the indices
i1, . . . , ic.

For bounding the failure probability, we will use a slightly different characteriza-
tion:

Theorem 3.2. A sequence A is not uniquely recoverable w.r.t. k, Id iff either A
contains an interleaved Rr-pair, or case (2) of Theorem 3.1 happens.

Proof. It suffices to prove that if A contains an interleaved R-pair, then it also
contains an interleaved Rr-pair. Let ((i, j), (i′, j ′)) be an interleaved R-pair. If
(i′, j ′) is weakly rightmost, then we are done. Otherwise, j ′ 6= dI(i′) + 1 and
(i′, j ′) is not rightmost. It follows that I(j ′) = I(j ′ − 1) = I(i) and j ′ ≤ n. As
(i′, j ′) is not rightmost and j ′ 6= n + 1, we have that (i′ + 1, j ′ + 1) is a repeat. If
i′ < j−1 then let i′2 = i′ +1 and j ′2 = j ′+1. Otherwise (i′ = j−1), let i′2 = i and
j ′2 = j ′ + 1 (note that (i′2, j

′
2) is a repeat as (i, j) and (j, j ′ + 1) are repeats). In

both cases, ((i, j), (i′2, j
′
2)) is an interleaved R-pair. We repeat this process until

we reach a pair ((i, j), (i′r, j
′
r)) which is an interleaved Rr-pair.

By Theorem 3.2, P (n, k, d) is less than or equal to the probability that there
is an interleaved Rr-pair, plus the probability that case (2) happens. The lat-
ter probability is less than 1/4(k−1)n/d. Let Pi,j,i′,j′ denote the probability that
((i, j), (i′, j ′)) is an interleaved Rr-pair.

Lemma 3.3. For all i ≤ i′ < j < j ′, Pi,j,i′,j′ ∈ {0, 9/42k} for j ′ < dI(i) + 1, and
Pi,j,i′,j′ ∈ {0, 12/42k} for j ′ = dI(i) + 1.

Proof. We only prove the case j < dI(i) + 1, as the proof of the second case is
similar. Let a1, . . . , aN denote the letters of the sequence A. By definition,

Pi,j,i′,j′ = P

[

ai = aj, ai+1 = aj+1, . . . , ai+k−2 = aj+k−2, ai+k−1 6= aj+k−1,
ai′ = aj′, ai′+1 = aj′+1, . . . , ai′+k−2 = aj′+k−2, ai′+k−1 6= aj′+k−1

]

.

For the proof of the lemma we build a graph Gi,i′,j,j′. The vertices of Gi,i′,j,j′

are the indices of the letters that appear in the above equalities and inequalities,
and the edges correspond to the equalities. Formally, the vertices of Gi,i′,j,j′ are
{i, . . . , i+k− 1}∪{j, . . . , j +k− 1}∪{i′, . . . , i′ +k− 1}∪{j ′, . . . , j ′ +k− 1} and
its edges are {(i + r, j + r)|r = 0, . . . , k − 2} ∪ {(i′ + r, j ′ + r)|r = 0, . . . , k − 2}.
Let V1, . . . , Vb be the connected components of Gi,i′,j,j′, and let nl and ml denote
the number of vertices and edges in Vl, respectively. The pairs (i, j) and (i′, j ′)
are repeats iff for each connected component Vl, all the corresponding letters in
A are equal. The probability of this event is exactly

∏b
l=1(1/4)nl−1.

We consider three cases. In case 1, we assume that Gi,i′,j,j′ contains parallel
edges, which implies that (i+r1, j+r1) = (i′+r2, j+r2) for r1, r2 ∈ {0, . . . , k−2}

9



where r1 > r2. Therefore, i′ − i = j ′ − j = r for some r ∈ {1, . . . , k − 2}. A
repeat at (i′, j ′) = (i + r, j + r) implies that ai+r+l = aj+r+l for all l < k − 1, and
in particular, for l = k− 1− r we get ai+k−1 = aj+k−1. But a rightmost repeat at
(i, j) implies that ai+k−1 6= aj+k−1. Thus, ((i, j), (i′, j ′)) can not be an interleaved
Rr-pair, so Pi,j,i′,j′ = 0.

Let G′
i,i′,j,j′ be the graph obtained from Gi,i′,j,j′ by adding the edges e1 =

(i + k − 1, j + k − 1) and e2 = (i′ + k − 1, j ′ + k − 1) (corresponding to the two
inequalities). For case 2, assume that G′

i,i′,j,j′ has no cycles, and therefore Gi,i′,j,j′

has no cycles, so ml = nl−1 for every l. Therefore, the probability that (i, j) and

(i′, j ′) are repeats is
∏b

l=1 1/4ml = 1/4
Pb

l=1
ml = 1/42(k−1) where the last equality

follows from the fact that Gi,i′,j,j′ has 2(k−1) edges. Furthermore, as the edges e1

and e2 do not create a cycle, it follows that Pi,j,i′,j′ = (1/4)2(k−1)(3/4)2 = 9/42k.
Now, for case 3, suppose that G′

i,i′,j,j′ contains a cycle. Note that a cycle in
G′

i,i′,j,j′ cannot pass through e2 as the vertex j ′ +k−1 has only one neighbor (the
vertex i′ + k − 1). We claim that G′

i,i′,j,j′ contains a cycle that passes through e1.
Let C = [v1, v2, . . . , vr−1, vr = v1] be some cycle in G′

i,i′,j,j′. If C passes through
e1 we are done. Otherwise, for any edge e = (vl, vl+1) in C, as e 6= e1, e2, then
(vl+1, vl+1+1) is also an edge in G′

i,i′,j,j′. Therefore, C ′ = [v1+1, v2+1, . . . , vr+1]
is also a cycle in G′

i,i′,j,j′. We repeat this process until we obtain a cycle that passes
through e1 (and doesn’t pass through e2). Therefore the vertices i + k − 1 and
j + k − 1 are in the same connected component of Gi,i′,j,j′ which implies that
ai+k−1 = aj+k−1 and thus ((i, j), (i′, j ′)) can not be an interleaved Rr-pair. Thus,
Pi,j,i′,j′ = 0.

Note that a result similar to Lemma 3.3 was given in [2]. Arratia et al. proved the
bound on Pi,j,i′,j′ provided that max(j ′ − j, j − i′, i′ − i) ≥ k, and used computer
computations to bound the other cases. Our proof of the first two cases is similar
to theirs, while the third case is new.

Corollary 3.4. P (n, k, d) ≤ ( 3
8
d3 + 5

4
d2) · n/42k + 1/4(k−1)n/d.

Proof. There are n
d

(

d
4

)

+ n
d

(

d
3

)

= n
d

(

d+1
4

)

ways to choose the indices i, i′, j, j ′ with
j ′ < dI(i) + 1 (the first term is the number of ways with i < i′, and the second
term is the number of ways with i = i′), and n

d

(

d
3

)

+ n
d

(

d
2

)

= n
d

(

d+1
3

)

ways to
choose them with j ′ = dI(i) + 1. By Lemma 3.3, the probability that there is an
interleaved Rr-pair is at most

n

d

(

d + 1

4

)

9

42k
+

n

d

(

d + 1

3

)

12

42k
≤ 9

4!
(d3 − 2d2)

n

42k
+

12

3!
d2 n

42k
≤ (

3

8
d3 +

5

4
d2)

n

42k
.

The term 1/4(k−1)n/d bounds the probability of case (2) in Theorem 3.2.

We now give a lower bound on P (n, k, d). Denote D = b d
4
c.
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Lemma 3.5. If d ≥ 4k then P (n, k, d) ≥ L(n, k, d)(1 − L(n, k, d)/2) where

L(n, k, d) =
n

d
(D − k + 1)4

9

42k

(

1 − (D − k + 1)2 3

4k

)2

.

Proof. The proof is based on looking at a large number of Rr-pair events, and
estimating their contribution to P (n, k, d). The dependency between these events
is controlled by choosing the indices of the Rr-pairs such that the corresponding
k-tuples are from different sections of the sequence.

For r = 0, . . . , n/d−1, let Ir,1 = [rd+1, rd+D−k+1]×[rd+2D+1, rd+3D−
k +1] and Ir,2 = [rd+D+1, rd+2D−k +1]× [rd+3D+1, rd+4D−k +1]. Let
Xr denote the event that there is an interleaved Rr-pair ((i, j), (i′, j ′)) for some
indices i, i′, j, j ′ with (i, j) ∈ Ir,1 and (i′, j ′) ∈ Ir,2. By Theorem 3.1, P (n, k, d) ≥
P

[

∨n/d−1
r=0 Xr

]

. Clearly, the events X0, . . . , Xn/d−1 are independent and have

equal probabilities, so P
[

∨n/d−1
r=0 Xr

]

= 1 − (1 − P [X1])
n/d.

We will now bound P [X1]. Let Z be the event that there is (i, j) ∈ I1,1 such
that (i, j) is a rightmost repeat, and let Z ′ be the event that there is (i′, j ′) ∈
I1,2 such that (i′, j ′) is a rightmost repeat (and in particular weakly rightmost
repeat). The events Z and Z ′ are independent and have equal probabilities.
Thus, P [X1] = P [Z ∧ Z ′] = P [Z]2. For a pair α = (i, j) ∈ I1,1, we denote by Zα

the event that (i, j) is rightmost repeat, and let Yα = Zα ∧
∧

β∈I1,1−{α} Zβ. The

events {Yα}α∈I1,1
are disjoint, so P [Z] ≥ P

[

∨

α∈I1,1
Yα

]

=
∑

α∈I1,1
P [Yα], and

P [Yα] = P



Zα ∧
∧

β∈I1,1−{α}

Zβ



 = P [Zα] P





∧

β∈I1,1−{α}

Zβ

∣

∣

∣

∣

∣

∣

Zα





= P [Zα]



1 − P





∨

β∈I1,1−{α}

Zβ

∣

∣

∣

∣

∣

∣

Zα







 ≥ P [Zα]



1 −
∑

β∈I1,1−{α}

P [Zβ|Zα]



.

For any α = (i, j), as j− i ≥ D+k > k, we have from [2, p. 437] that P [Zβ|Zα] ∈
{0, 3/4k} for all β. Thus, P [Yα] ≥ (3/4k) · (1 − (D − k + 1)2 · 3/4k) for all α.
Therefore, P [X1] ≥ d

n
L(n, k, d). Using the inequality (1 − x)r ≤ 1 − rx + 1

2
r2x2

(which can be proved by induction on r) we have

P (n, k, d) ≥ 1 − (1 − P [X1])
n/d ≥ 1 − (1 − d

n
L(n, k, d))n/d

≥ L(n, k, d)(1 − L(n, k, d)/2).

Corollary 3.6. If 5k − 5/4 ≤ d ≤ 2k+1/c1/4 + 4(k − 1) then P (n, k, d) =
Ω(d3n/42k).
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Arratia et al. This paper
n k lower upper lower upper Simulation

193 8 0 0.5923 0.0051 0.1233 0.0907
791 10 0 0.2648 0.0083 0.1341 0.0996

3175 12 0.0502 0.1500 0.0094 0.1356 0.1009
12195 14 0.0742 0.1000 0.0084 0.1152 0.0875

Table 1: Comparison between the bounds in this paper and in Arratia et al. [2]
for P (n, k), and simulation estimates of P (n, k). For the setup of the simulation
see Section 5.

Proof. The bounds on d imply that D−k+1 ≥ (d/4−3/4)−(d/5+1/4)+1 = d/20
and (D − k + 1)2 · 3/4k ≤ (d/4 − k + 1)2 · 3/4k ≤ (2k−1/c1/4)2 · 3/4k = 3/4

√
c.

Thus, L(n, k, d) ≤ c((D − k + 1)2 · 3/4k)2 ≤ c(3/4
√

c)2 = 9/16. By Lemma 3.5,
P (n, k, d) ≥ 23

32
L(n, k, d) ≥ 23

32
n
d
(d/20)4 · (9/42k) · (1 − 3/4

√
c)2 = Ω(d3n/42k).

Our results are valid for the classical SBH model with no subintervals, by taking
d = n. The resulting bounds on P (n, k) improve over Arratia et al. for small
(realistic) values of k. See Table 1 for a comparison between the results.

4 Estimating the failure probability in the pres-

ence of errors

Let X denote the event that a random sequence is uniquely recoverable w.r.t. k, Id

but is not uniquely recoverable w.r.t. k, Id, ∆. We call this event failure due to
noise. In this section we show that P [X] = O(p/(1−p)4 ·d2n/42k), and therefore
P (n, k, d, p) = P (n, k, d) + P [X] = (1 + O(p/(1 − p)4 · 1/d))P (n, k, d).

We denote by Mj,i the event that i ∈ SId,∆(j), namely, according to the noisy
data, the j-th k-tuple can appear at position i in the solution. Note that a
permutation π is a solution of A, k, Id, ∆ iff event Mπ(i),i happens for every i ≤ n,

and A|kπ(i) | A|kπ(i+1) for every i ≤ n−1. As event Mj,i happens iff I(j)−∆j ≤ I(i),
and since the random variable ∆j has geometric distribution, it follows that
P [Mj,i] = pI(j)−I(i) for i ≤ j and P [Mj,i] = 1 for i > j.

A pair of repeats ((i, j), (i′, j ′)) is called ordered if i < j < j ′, i′ /∈ [j, j ′],
and I(i′) ≥ I(i) (note that i′ can be either bigger or smaller than j ′). Similarly
to Lemma 3.3, the probability that ((i, j), (i′j ′)) is an ordered R-pair is either
0 or 12/42k. An ordered R-pair is called bad if event Mi′,j′−j+i happens, event
Ml,l−j+i happens for every j ≤ l ≤ j ′ − 1, and either (1) I(i) < I(j ′ − 1), or
(2) j ′ − 1 = dI(i) and j ′ < i′. The role of a bad pair is similar to the role of
an interleaved Rr-pair in Section 3: We shall show that if event X happens then
there is a bad pair (an example is given in Figure 3), so an upper bound on the

12
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Figure 3: A portion of a de-Bruijn graph showing a example of a bad R-pair (for
clarity, not all edges are drawn). The numbers on the edges correspond to the triv-
ial solution 1, . . . , n. Let π be a solution with π(1), . . . , π(7) = 1, 2, 3, 7, 8, 9, 20.
((4, 7), (10, 20)) is an ordered R-pair. Since π(4) = 7, it follows that event
M7,4 happens, and similarly events M8,5, M9,6, and M20,7 happen. Thus,
((4, 7), (10, 20)) is a bad pair.

probability that there is bad pair gives us an upper bound on P [X]. A bad pair
that satisfies condition (1) is called of type 1, and otherwise it is called of type 2.
As events Ma,a′ and Mb,b′ are independent if a 6= b, we get that the probability
that ((i, j), (i′, j ′)) is a bad pair is either 0 or

12

42k
P

[

Mi′,j′−j+i ∧
j′−1
∧

l=j

Ml,l−j+i

]

=
12

42k
P [Mi′,j′−j+i]

j′−1
∏

l=j

P [Ml,l−j+i] =
12

42k
pQi,j,i′,j′

where Qi,j,i′,j′ = max(I(i′) − I(j ′ − j + i), 0) +
∑j′−1

l=j I(l) − I(l − j + i).
For brevity, we will use the term solution when referring to a solution of

A, k, Id, ∆. We say that a sequence A is cyclic if A|k−1
1 = A|k−1

n+1. Let π be a
solution, and define π(0) = 0. An index l is called a jump point of π if π(l) 6=
π(l − 1) + 1. If π(l) > π(l − 1) + 1 then the index l is called a forward jump and
if π(l) < π(l − 1) + 1 then it is called a backward jump. Clearly, any nontrivial
solution contains at least one forward jump and at least one backward jump. For
a nontrivial solution π, we denote by iπ1 the minimum forward jump in π, and by
iπ2 the minimum backward jump (clearly, iπ1 < iπ2 ).

Claim 4.1. If A is acyclic and i is a jump point in a solution π, then (π(i−1)+
1, π(i)) is a repeat.

Proof. If i = 1, then by the proof of Theorem 3.1, we have that Aπ|k−1
1 = A|k−1

1

and therefore A|k−1
π(i−1)+1 = A|k−1

π(i) (note that π(i − 1) + 1 = 1). Otherwise, since

π is a solution, we have A|kπ(i−1) | A|kπ(i) and therefore A|k−1
π(i−1)+1 = A|k−1

π(i) .

We define a complete ordering on the nontrivial solutions as follows: For two
nontrivial solutions π and π′, π > π′ if the series of jump points of π, sorted in
increasing order, is lexicographically larger than the corresponding series of π ′.
The maximum nontrivial solution has the following property, which we will use
later:

13



Lemma 4.2. Let π be the maximum nontrivial solution. If A is acyclic, i < iπ2 is
a forward jump, and I(π(i−1)+1) = I(iπ1 ) then (π(i−1)+1, π(i)) is a rightmost
repeat.

Proof. Denote j = π−1(π(i− 1) + 1). As iπ2 is the first backward jump, it follows
that j ≥ iπ2 and therefore j > i. By Claim 4.1, (π(i− 1)+1, π(i)) is a repeat. By
contradiction, suppose that it is not a rightmost repeat, so A|kπ(i−1)+1 = A|kπ(i),

namely A|kπ(j) = A|kπ(i).
Define a permutation π′ as follows: π′(i) = π(j), π′(j) = π(i), and π′(l) =

π(l) for any l 6= i, j. Since π is a solution and A|kπ(i) = A|kπ(j), it follows that

A|kπ′(i) | A|kπ′(i+1) for all i ≤ n− 1. For any l 6= i, j, event Mπ′(l),l happens as event
Mπ(l),l happens. Furthermore, I(π′(j)) − ∆π′(j) = I(π(i)) − ∆π(i) ≤ I(i) ≤ I(j)
and I(π′(i)) − ∆π′(i) ≤ I(π′(i)) = I(π(j)) = I(π(i − 1) + 1) = I(iπ1 ) ≤ I(i) where
the last inequality follows from the fact that iπ1 ≤ i. Therefore, π′ is a solution,
and it is nontrivial as Aπ′

= Aπ.
Now, i is a jump point in π, but not in π′ (as π′(i) = π(j) = π(i − 1) + 1 =

π′(i − 1) + 1). The only possible jump points which exists in π′ but not in π
are i + 1, j, and j + 1, all of which are greater than i. It follows that π ′ > π,
contradicting the maximality of π. Therefore, (π(i − 1) + 1, π(i)) is a rightmost
repeat.

Theorem 4.3. If failure happens due to noise then either A is cyclic or there is
a bad pair.

Proof. Suppose that event X happens, namely A is uniquely recoverable w.r.t. k, Id

but A is not uniquely recoverable w.r.t. k, Id, ∆. For the rest of the proof, assume
that A is acyclic. Let π be the maximum nontrivial solution of A, k, Id, ∆. We
denote by iπ1 = j1 < j2 < · · · all the jump points of π, and let j0 = 1. Let b
be the maximum index for which jb satisfies conditions of Lemma 4.2, namely
jπ
b < iπ2 and I(π(jb −1)+1) = I(j1) (such an index exists as π(j1−1)+1 = j1, so

I(π(j1−1)+1) = I(j1)). Since j1, . . . , jb are forward jumps, for any 0 ≤ l ≤ b we
have that π(jl), . . . , π(jl+1−1) = jl +cl, . . . , jl+1−1+cl, where c0 < c1 < · · · < cb.
See Figure 4 for an example.

Denote i = π(jb − 1) + 1 = jb + cb−1, j = π(jb) = jb + cb, j ′ = π(jb+1 −
1) + 1 = jb+1 + cb and i′ = π(jb+1). We will show that ((i, j), (i′, j ′)) is a bad
pair. Clearly i < j < j ′. Furthermore, i′ do not belong to any interval of the
form [jl + cl, jl+1 − 1 + cl], and in particular, to [1, j1 − 1] or [j, j ′ − 1]. Moreover,
i′ 6= j ′ as jb+1 is a jump point, hence i′ /∈ [1, j1 − 1] ∪ [j, j ′]. Since i ≥ j1, it
follows that I(i′) ≥ I(j1) = I(i). From the definition of jb and Lemma 4.2,
we have that (i, j) is a rightmost repeat. Furthermore, by Claim 4.1, (i′, j ′)
is a repeat. Therefore ((i, j), (i′, j ′)) is an ordered R-pair. As π is a solution,
event Ml,π−1(l) happens for every l. As jb ≤ i, for any l ∈ [j, j ′ − 1] we have
π−1(l) = l− cb = l− j + jb ≤ l− j + i, and since event Ml,π−1(l) happens, it follows

14
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Figure 4: An illustration for the proof of Theorem 4.3. The vertices in the graph
correspond to the k-tuples in the sequence numbered according to the trivial
solution, and the edges correspond to the solution π, namely there is an edge
(π(l), π(l + 1)) for every l ≤ n − 1 (note that the graph is not the de-Bruijn
graph). For clarity, only a portion of the graph is drawn. In this example,
we have π(1), . . . , π(10) = 1, 2, 3, 6, 7, 8, 11, 12, 14, 4, so iπ1 = j1 = 4, j2 = 7,
j3 = 9, and iπ2 = j4 = 10. Assuming that d = 10, we have that b = 2 (as
I(π(j2 − 1) + 1) = I(9) = I(4) = 1 and I(π(j3 − 1) + 1) = I(13) = 2). Therefore,
i = 9, j = 11, j ′ = 13 and i′ = 14.

1 3 4 7 8 9 132 1210 1165
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Figure 5: An example showing the case when I(i) = I(j ′ − 1) and jb+1 is a
backward jump. Here π(1), . . . , π(9) = 1, 2, 3, 6, 7, 8, 11, 12, 4, so iπ1 = j1 = 4,
j2 = 7, and iπ2 = j3 = 9. Assuming that d = 20, we have that b = 2, r = 1, i = 9,
j = 11, j ′ = 13, i′ = π(jr −1)+1 = 4, and π(jr) = 6. ((4, 6), (4, 13)) is an R-pair.

that event Ml,l−j+i happens. Similarly, π−1(i′) = jb+1 = j ′ − j + jb ≤ j ′ − j + i,
hence event Mi′,j′−j+i happens.

To establish that ((i, j), (i′, j ′)) is a bad pair, it remains to show that either
case (1) or case (2) in the definition of a bad pair happens. We shall show
that if (1) does not occur then (2) holds. For the rest of the proof assume that
I(i) = I(j ′ − 1) (= I(j1)). We claim that jb+1 is a forward jump.

Suppose conversely that jb+1 is a backward jump. We have that i′ = π(jb+1) ∈
[jr + cr−1, jr + cr − 1] for some index r. See Figure 5 for an example. Clearly,
π(jr − 1) + 1 ≤ i′ < π(jr) < j ′ and I(π(jr − 1) + 1) = I(j ′ − 1) (We have
j1 ≤ π(jr − 1) + 1 ≤ π(jb − 1) + 1. Therefore, I(j1) ≤ I(π(jr − 1) + 1) ≤
I(π(jb − 1) + 1) = I(j1) so I(π(jr − 1) + 1) = I(j1) = I(j ′ − 1)). By Lemma 4.2,
(π(jr − 1) + 1, π(jr)) is a rightmost repeat. Hence, ((π(jr − 1) + 1, π(jr)), (i

′, j ′))
is an interleaved R-pair, and by Theorem 3.1, A is not uniquely recoverable
w.r.t. k, Id, a contradiction.

We conclude that jb+1 is a forward jump, so j ′ < i′. Furthermore, by the
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maximality of jb it follows that I(j ′) > I(j1) = I(i). Since I(j ′ − 1) = I(i), we
conclude that j ′ − 1 = dI(i). Thus, ((i, j), (i′, j ′)) is a bad pair of type 2.

By Theorem 4.3, P [X] is less than or equal to the probability that A is cyclic
plus the probability there is a bad pair. The former probability is exactly 1/4k−1.
Let Pr denote the probability that there is a bad pair ((i, j), (i′, j ′)) with I(i) = r.
It is easy to verify that P1 ≥ P2 ≥ · · · ≥ Pn/d−1 and Pn/d = 0, so the probability
that there is a bad pair is at most (n/d − 1)P1. We now bound P1. We consider
five cases, where in the first four cases we consider bad pairs of type 1, and in
the fifth case we consider bad pairs of type 2.

Case 1: I(j) < I(j ′−1) and j ′ < i′. Denote q = d(j−i)/de−1, x = (j−i)−qd,
r = I(j ′ − 1)− I(j)− 1, y = (j ′ − 1)− d(I(j ′ − 1)− 1), and s = d(i′ − j ′)/de− 1.
Note that q, r, s ≥ 0 and 1 ≤ x, y ≤ d.

Claim 4.4. In case 1, Qi,j,i′,j′ ≥ s + r + q + min(x, y).

Proof. Recall that Qi,j,i′,j′ = I(i′)−I(j ′−j+i)+
∑j′−1

l=j I(l)−I(l−j+i). If r > 0,
then for t = 0, . . . , r−1, let lt = d(I(j)+t)+1. Let L1 = {j}, L2 = {l0, . . . , lr−1},
and L3 = [d(I(j ′ − 1)− 1) + 1, j ′ − 1]. Denote Qt =

∑

l∈Lt
I(l)− I(l− j + i), and

clearly Qi,j,i′,j′ ≥ I(i′) − I(j ′ − j + i) + Q1 + Q2 + Q3. The claim is proven by
observing the following:

1. As I(l) = dl/de, we get that I(i′) ≥ I(j ′) + I(i′ − j ′) − 1 = I(j ′) + s ≥
I(j ′ − j + i) + s. Hence I(i′) − I(j ′ − j + i) ≥ s.

2. I(j) ≥ I(i) + I(j − i) − 1 = I(i) + q, so Q1 = I(j) − I(i) ≥ q.

3. Any index lt ∈L2 satisfies I(lt) − I(lt − j + i) ≥ 1 (as I(lt) = I(j) + t + 1
and I(lt − j + i) ≤ I(lt − 1) = I(j) + t). Therefore, Q2 ≥ r.

4. For any l ∈ L3, if l−d(I(j ′− 1)− 1) ≤ x then I(l)− I(l− j + i) ≥ 1. Thus,
Q3 ≥ min(x, y). (Note that if q > 1 then Q3 ≥ y.)

We note that the bound in Claim 4.4 is very crude, but it is suffice for our needs.
For fixed values of q, x, r, y, and s, there are at most d ways to choose a value for
i (as I(i) = 1), and at most d ways to choose a value for i′ (the values of j and
j ′ are fixed after choosing a value for i). Therefore, the contribution of case 1 to
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P1 is at most

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

r≥0

∑

s≥0

d2 12

42k
pQi,j,i′,j′ ≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

r≥0

∑

s≥0

ps+r+q+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

r≥0

1

1 − p
pr+q+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

∑

q≥0

1

(1 − p)2
pq+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

1

(1 − p)3
pmin(x,y)

≤ 12

42k
d2 1

(1 − p)3
· 2

d
∑

y=1

d
∑

x=y

py

≤ 12

42k
d2 2

(1 − p)3

d
∑

y=1

dpy

≤ 12

42k

2p

(1 − p)4
d3.

Case 2: I(j) < I(j ′ − 1) and i′ < j ′ (so i′ < j). Define q, x, r, and y as in case
1. Here Qi,j,i′,j′ ≥ r + q + min(x, y). For fixed values of q, x, r, and y, there are
at most d ways to choose a value for i, and (q + 2)d ways to choose a value for i′

(as I(i) ≤ I(i′) ≤ I(j) and I(j) − I(i) ≤ I(j − i) = q + 1). The contribution of
case 2 to P1 is at most

12

42k

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

r≥0

(q + 2)d2pQi,j,i′,j′ ≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

r≥0

(q + 2)pr+q+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

∑

q≥0

1

1 − p
(q + 2)pq+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

2 − p

(1 − p)3
pmin(x,y)

≤ 12

42k

2p(2 − p)

(1 − p)4
d3.

Case 3: I(j) = I(j ′−1) and j ′ < i′. Let z = j−d(I(j)−1)−1. We have that
j− i > z because otherwise, I(i) = I(j) = I(j ′−1) contradicting the assumption
that ((i, j), (i′, j ′)) is a bad pair of type 1. Denote q = d(j − i − z)/de − 1, x =
(j−i−z)−qd, y = j ′−j, and s = d(i′−j ′)/de−1. Then, Qi,j,i′,j′ ≥ s+q+min(x, y).
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For fixed values of q, x, y, and s, there are at most d ways to choose a value for
j, and d ways to choose a value for i′. Therefore, the contribution of case 3 to P1

is at most

12

42k

d
∑

x=1

d
∑

y=1

∑

q≥0

∑

s≥0

d2pQi,j,i′,j′ ≤ 12

42k
d2

d
∑

x=1

d
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y=1

∑

q≥0
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s≥0

ps+q+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

1

(1 − p)2
pmin(x,y)

≤ 12

42k

2p

(1 − p)3
d3.

Case 4: I(j) = I(j ′−1) and i′ < j ′. With z defined as in case 3, we have again
that j − i > z. Define q, x, r, and y as in case 3. Here Qi,j,i′,j′ ≥ q + min(x, y).
For fixed values of q, x, and y, there are at most d ways to choose a value for j,
and (q + 2)d ways to choose a value for i′. Therefore, the contribution of case 4
to P1 is at most

12

42k

d
∑

x=1

d
∑

y=1

∑

q≥0

(q + 2)d2pQi,j,i′,j′ ≤ 12

42k
d2

d
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x=1

d
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y=1

∑

q≥0

(q + 2)pq+min(x,y)

≤ 12

42k
d2

d
∑

x=1

d
∑

y=1

2 − p

(1 − p)2
pmin(x,y)

≤ 12

42k

2p(2 − p)

(1 − p)3
d3.

Case 5: j ′ − 1 = dI(i) and j ′ < i′. Denote s = d(i′ − j ′)/de − 1. Here
Qi,j,i′,j′ ≥ s+1. For a fixed value of s, there are at most

(

d
2

)

ways to choose values
for i and j, and d ways to choose a value for i′. Therefore, the contribution of
case 5 to P1 is at most

12

42k

∑

s≥0

d ·
(

d

2

)

· pQi,j,i′,j′ ≤ 12

42k

d3

2

∑

s≥0

ps+1

≤ 12

42k

p

2(1 − p)
d3.

Combining all cases, we obtain that P1 = O(p/(1 − p)4 · d3/42k). Therefore,
we proved the following theorem:

Theorem 4.5. P [X] = O(1/4k−1 + p/(1 − p)4 · d2n/42k).

Combining Theorem 4.5 and Corollary 3.6 gives the following theorem:

Theorem 4.6. If 5k−5/4 ≤ d ≤ 2k+1/c1/4+4(k−1) and P (n, k, d) = Ω(1/p·d/4k)
then P (n, k, d, p) = (1 + O(p/(1 − p)4 · 1/d))P (n, k, d).
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n k d p0 p0.5 p0.5/p0

18880 8 40 0.0985 0.1353 1.374
9550 8 50 0.1025 0.1260 1.229
5520 8 60 0.0994 0.1190 1.197
3500 8 70 0.0979 0.1114 1.138
2320 8 80 0.0956 0.1074 1.123
1620 8 90 0.0903 0.1006 1.114
1200 8 100 0.0896 0.0964 1.076
880 8 110 0.0890 0.0950 1.067
720 8 120 0.0945 0.0998 1.056

Table 2: An experimental estimation of P (n, k, d) and P (n, k, d, 0.5). p0 and p0.5

are the estimates of P (n, k, d) and P (n, k, d, 0.5), respectively. For each value of
d, we chose a value for n so that p0 will be approximately 0.1.

5 Experimental results

To complement our theoretical results, we performed simulations with random
and real DNA sequences. In the first set of simulations, we randomly generated
a sequence, partitioned it into d-long IFs, and computed the error-prone assign-
ment of k-mers into IFs according to our probabilistic model, assuming 50% false
negative errors. A simple backtracking algorithm was then used to compute the
set of all distinct sequences that are consistent with the data. The same process
was performed with noiseless data. (Formally, if the target sequence is A, we
computed the set B0 of all the sequences A′ such that A′ =Aπ for a solution π of
A, k, Id, and the set B0.5 of all the sequences A′ such that A′ =Aπ for a solution
π of A, k, Id, ∆.) The program was run 10,000 times for each combination of n, k
and d. Let pt denote the fraction of runs in which the sequence was not uniquely
recoverable in case of false negative probability t (|Bt| > 1). Clearly, p0 and p0.5

are estimates of P (n, k, d) and P (n, k, d, 0.5). The results are given in Table 2,
and they show that indeed p0.5/p0 = 1 + O(1/d) as stated in Theorem 4.6.

Another set of experiments tested the power of the strategy in a more realistic
scenario. Here we no longer assumed that the IFs are of equal size. Instead, we
randomly chose clone positions so that they are uniformly distributed across
the target sequence, and the average distance between adjacent left endpoints
of clones is d̄. Here we considered both endpoints of the clones for partitioning
the sequence into IFs. Note that we assume that the order of the clones and
the positions of the endpoints are known. 1000 random target sequences were
generated for each value of n, and for each one, the first solution generated by
the backtracking algorithm (representing an arbitrary solution) was compared
with the target sequence. Two statistics were computed: The fraction of the
runs in which the two sequences differed, and the average rate of mismatches
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n k d̄ P0 P0.5 E0 E0.5

5000 9 40 0.038 0.046 0.00022 0.00028
10000 9 40 0.098 0.108 0.00034 0.00038
20000 9 40 0.158 0.192 0.00028 0.00035
30000 9 40 0.228 0.277 0.00028 0.00036
40000 9 40 0.316 0.360 0.00034 0.00040

Table 3: Results of simulations with random sequences and uniformly distributed
clone positions. Pt estimates the fraction of times the reconstructed sequence
differs from the target sequence for false-negative probability t. Et estimates the
fraction of incorrectly reconstructed positions in the sequence.

n k d̄ P0 P0.5 E0 E0.5

5000 9 40 0.4 0.4 0.00114 0.00138
10000 9 40 0.5 0.5 0.00090 0.00094
20000 9 40 0.8 0.8 0.00067 0.00075
30000 9 40 0.8 1.0 0.00087 0.00104

Table 4: Results of simulations with Human DNA sequences and uniformly dis-
tributed clone positions.

between them. (Technically, the algorithm chose one sequence A0 from B0, and
one sequence A0.5 from B0.5. We measured P0, the fraction of runs in which
A0 6= A, and P0.5, the fraction of runs in which A0.5 6= A. We also computed Et,
the average over all runs of the fraction of positions in which At and A differ, for
t = 0, 0.5.) Table 3 contains the results. While the odds of completely correct
reconstruction decrease with target size, the average number of mismatch errors
in the reconstruction was very low: between 2 and 4 in 10,000 bp.

Table 4 shows results of the same simulation using real (coding and non-
coding) Human DNA sequences. For each target length, 10 disjoint sequences
were used. As expected, due to the non-randomness of real DNA, the results
worsen. In fact, with sequences of length 30,000 bp and error-prone data, none
of the reconstructions was perfectly correct. However, even in that situation, the
average number of miscalled base errors was only about one in 1000 bp.

In closing, we note that further simulations making even weaker assumptions
can be performed: The assumption that clone order and endpoint positions are
known can be removed (This requires an algorithm that given the hybridization
data, finds the clone order and endpoint positions. While such algorithms exist,
e.g. [13, 18], they have yet to be adapted to the situation studied here.), and
the knowledge of the noisy multi-spectrum can be replaced by noisy spectrum
without multiplicities. False positives can also be incorporated. We intend to
pursue the above in the future. A key limitation in our analysis and simulations,
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is the assumption of independence of overlapping clone spectra. Though such
dependencies definitely exist in real spectra, it is currently unclear how to model
them adequately.
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