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Abstract

The most efficient currently known algorithms for two dimensional pattern matching with rotations
have a worst case time complexity of O(n2

m
3), where the size of the text is n × n and the size of the

pattern is m × m. In this paper we present a new algorithm for the problem whose running time is
O(n2

m
2).
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1 Introduction

One of the main motivation for research in two dimensional pattern matching is the problem of searching
aerial photographs. The problem is a basic one in computer vision, but it was felt that pattern matching
can not be of use in its solution. Such feelings were based on the belief that pattern matching algorithms
are only good for exact matching whereas in reality one seldom expects to find an exact match of the
pattern. Rather, it is interesting to find all text locations that “approximately” match the pattern. The
types of differences that make up these “approximations” in the aerial photograph case are: (1) Local Errors
— introduced by differences in the digitization process, noise, and occlusion (the pattern partly obscured
by another object). (2) Scale — size difference between the image in the pattern and the text, and (3)
Rotation — angle differences between the images. Progress has been made on local errors and scaling
(e.g. [3, 5, 7, 10, 17, 18, 4]), but rotation had proven challenging.

The two dimensional pattern matching with rotations problem (or rotated matching for short) is that of
finding all occurrences of a two dimensional pattern in a text, in all possible rotations. An efficient solution
to this problem proved elusive even though many researchers were thinking about it for over a decade. Part
of the problem was lack of a rigorous definition to capture the concept of rotation in a discrete pattern.

The major breakthrough came when Fredriksson and Ukkonen [14] gave an excellent combinatorial definition
of rotation based on geometric interpretation of the text and pattern. A slightly different definition of rotation
was given in Fredriksson et al. [12]. These two definitions give rise to the “pattern over text” and “pattern
under text” models, and will be described in Section 2.

Most of the algorithms for rotated matching are filtering algorithms that behave well on average but have
bad worst case complexity (e.g. [14, 12, 15]). In two papers [13, 2] there is an O(n2m3) worst case algorithm
for rotated matching, where the size of the text is n×n and the size of the pattern is m×m. Amir et al. [2]
also give a lower bound of Ω(n2m3) on the output size (the lower bound applies to both models of rotation).

In this paper we present the first algorithm for rotated matching whose time complexity is better than
O(n2m3). We give an algorithm for the “pattern under text” model whose time complexity is O(n2m2).
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The space complexity of the algorithm is O(m4). We are able to “break” the lower bound on the output
size by showing using geometric considerations that many of the rotated pattern occurrences are consecutive
and thus need not be explicitly written.

The result above assumes that the alphabet is {1, . . . , n2}. The case of an arbitrary alphabet can be handled
by first sorting the characters of the text and the pattern, and then replacing each character of by a number
from {1, . . . , n2}. In the general case, the time complexity increases by O(n2 log n).

Related work Bird [9] and Baker [8] independently gave an O(n2 log σ)-time algorithm for the standard
two dimensional matching problem, where σ is the size of the alphabet. An O(n2) time algorithm is obtained
by combining the results of [1] and [16].

The two dimensional matching with scaling problem can be solved in O(n2) time [6], when the allowed
scales are integers. For the case of real scales, Amir et al. [4] give an algorithm whose time complexity is
O(nm3 + n2m log m).

2 Preliminaries

In this section we define the two models of rotation. We first describe the “pattern under text” model, which
is the model that we use for our algorithm. Then, we describe the “pattern over text” model, and compare
the two models.

Let T be a two-dimensional string of size n × n over some finite alphabet Σ. The array of unit pixels for T
consists of n2 unit squares, called pixels in the real plane R

2. The pixel that corresponds to the character
T [i, j] is the pixel whose corners are are (i − 1, j − 1), (i, j − 1), (i − 1, j), and (i, j). Hence the pixels for T
form an n × n array covering the area between (0, 0), (n, 0), (0, n), and (n, n). We will use [i, j] to denote
the pixel that corresponds to T [i, j]. The center of a pixel [i, j] is the geometric center point of the pixel,
namely the point (i − 0.5, j − 0.5). The color of the pixel [i, j] is the value of T [i, j]. We also say that the
center of [i, j] has the color T [i, j]. See figure 1 for an example of these definitions.

The array of pixels for the pattern P is defined similarly. A different treatment is necessary for patterns
with odd sizes and for patterns with even sizes. For simplicity’s sake we assume throughout the rest of this
paper that the pattern is of size m × m and m is even. The rotation pivot of the pattern array is its exact
center, namely the point (m

2
, m

2
) ∈ R

2.

Consider now a rigid motion (translation and rotation) that moves the pixel array of P with respect to the
the pixel array of T . Consider the special case where the translation moves the rotation pivot of P to a point
(i, j) ∈ R

2, where i and j are integers. The pattern array is now rotated counterclockwise, centered at (i, j),
creating an angle α between the x-axes of the pixel arrays of T and P . We say that the array of P is at
location ((i, j), α). There is an occurrence of P at location ((i, j), α) if the center of each pixel in T has the
same color as the pixel of P under it, if there is such a pixel. When the center of a text pixel is exactly over
a vertical (horizontal) border between text pixels, the color of the pattern pixel left (below) to the border is
chosen. An example for this definition is given in Figure 1.

Consider some occurrence of P at location ((i, j), α). This occurrence defines a non-rectangular substring of
T that consists of all the characters of T that correspond to text pixels whose centers are inside the pattern
pixels. We call this string P rotated by α, and denote it by Pα. Note that there is an occurrence of P at
location ((i, j), α) if and only if Pα occurs at location (i, j) of T .

In the “pattern over text” model, we say that there is an occurrence of P at location ((i, j), α) if the center of
each pixel in the rotated pixel array of P , has the same color as the pixel of T under it (see Figure 2). While
the two models of rotation seem to be quite similar, they are not identical. For example, in the “pattern over
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Figure 1: An example for the definition of rotation in the “pattern under text” model. The text T and
pattern P are given in Figures (a) and (b), respectively. Figure (c) shows the pixel arrays of T and P . In
Figure (d), the pattern array is at location ((3, 3), π/6). The pixel centers of T that fall inside pixels of P are
drawn in black, while the rest of the pixel centers of T are drawn in gray. Figure (e) shows the occurrence
of the pattern P at location ((3, 3), π/6). The pattern P π/6 is shown in Figure (f).
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Figure 2: An example for the definition of rotation in the “pattern over text” model. The text T is given
in Figure (a), and the pattern P is the same as in Figure 1. An occurrence of P at location ((i, j), π/6) is
shown in Figures (b) and (c). Note that the text pixel [5, 4] does not contain a pattern pixel center.

text” model there are angles for which two pattern pixel centers are over the same text pixel. Alternately,
there are angles where there are “holes” in the rotated pattern, namely there is a text pixel that does not
have in it a center of a pattern pixel, but all text pixels around it have centers of pattern pixels. See Figure 2
for an example.

The challenges of “discretizing” a continuous image are not simple. In the Image Processing field, stochastic
and probabilistic tools need to be used because the images are “smoothed” to compensate for the fact
that the image is presented in a far coarser granularity than in reality. The aim of the pattern matching
community has been to fully discretize the process, thus our different definitions. However, this puts us in
a situation where some “gut” decisions need to be made regarding the model that best represents “reality”.
It is our feeling that in this context the “pattern under text” model is more intuitive since it does not allow
anomalies such as having two pattern centers over the same text pixel (a contradiction) nor does it create
“holes” in the rotated pattern. We note that the algorithm we present in this paper cannot be applied to
the “pattern over text” model due to the “holes”.

3 The New Algorithm

The main idea of the algorithm is to partition the pattern into two parts: an inner part and an outer part.
By carefully choosing the partition, we will be able to efficiently search for occurrences of each part in T ,
and then combine the results of the two searches. More precisely, our partition has the following properties:

1. There are O(m) different shapes of the inner part. The number of different shapes is smaller by a
factor of O(m) than the number of shapes in all the rotations of the pattern. This fact will allow us
to reduce the time complexity for matching the inner parts by a factor of O(m).

2. Each outer part contains O(m) characters. Again, since the number of characters is smaller by a factor
of O(m) than the number of characters in the pattern, we obtain an O(m) speedup.

Let B0 be the square in R
2 whose bottom corners are (0, 0), (0, m), (m, m), and (m, 0). For a positive integer

i, let Bi denote the square whose corners are (i, i), (i, m− i), (m− i, m− i), and (m− i, i). We denote by Bα
i

the square obtained by rotating Bi counterclockwise by an angle of α with rotation center at (m/2, m/2).
Recall that we assume that m is even.
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(2,2)
(0,0)

The plane pixel center (3.5,3.5)

Figure 3: Example showing the angle α1 for a pattern of size 4 × 4. The plane pixel center (3.5, 3.5) was
inside the pixel [4, 4] of the pattern pixel array rotated by α1 − ǫ, while it is inside the pixel [4, 3] of the
pattern pixel array rotated by α.

For the following definitions, consider the pixel array of P , and an infinite array of pixels that covers the plane,
which will be called the plane pixel array. Consider a continuous rotation of the array of P counterclockwise.
During this rotation, 3 types of events occur:

1. A plane pixel center which was inside the pixel [i, j] of the pattern pixel array rotated by α− ǫ (for all
small enough ǫ > 0), is inside the pixel [i′, j′] 6= [i, j] of the pattern pixel array rotated by α.

2. A plane pixel center which was outside the square Bα−ǫ
0 (in other words, the center was not inside any

pixel of the pattern pixel array rotated by α − ǫ), is inside the square Bα
0 .

3. A plane pixel center which was inside the square Bα−ǫ
0 , is outside the square Bα

0 .

Let α1 ≤ α2 ≤ · · · ≤ αk < 2π be the angles in which these events occur (see Figure 3). We assume that in
each αi, only one event occurs for a single plane pixel center (when several events occur simultaneously, we
assign them into angles αi, αi+1, . . . such that αi = αi+1 = · · ·). We also define α0 = 0.

Definition 1 (outline). Let i0 = 0. We define indices i1, i2, . . . , il−1 and sets I1, I2, . . . , Il as follows. For

j ≥ 1, the outline Ij is the set of all plane pixels whose centers are inside B
αij−1

1 . For j ≥ 1, ij is the

minimum index such that there is a pixel in Ij whose center is outside the square B
αij

0 , if such index exists.
Finally, l is the minimum value such that il is not defined.

Examples for Definition 1 are shown in Figure 4.

Definition 2 (inner and outer parts). Let s ≤ k be some index, and let j be the index such that ij−1 ≤ s < ij.
The inner part of Pαs is the string that consists of all the characters P [a, b] such that [a, b] ∈ Ij. The outer
part of Pαs consists of all the characters of Pαs that are not in the inner part.

Examples for Definition 2 are given in Figure 5.

An important property of the partition above is that there are O(m) different outlines. This is proved in
the following lemma.

Lemma 1. For every j, 1 ≤ j ≤ l, αij
− αij−1

= Θ(1/m).
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Figure 4: Examples for the definition of outline for a pattern of size 12 × 12. Figure (a) shows the outline
I1. Figure (b) illustrates the definition of the index i1. The outline I2 is shown in Figure (c).
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Figure 5: Examples for the definition of inner and outer parts. The pattern P = Pα0 , its inner part, and its
outer parts are shown in Figures (a)–(c), respectively. Note the three ‘x’ characters at the top left corner of
P . Figures (d)–(f) show the pattern Pαs and its inner and outer parts, for some s < i1. Note that while the
outline of the inner parts of Pαs and Pα0 are identical, the characters of these two inner parts are different.
Figures (g)–(i) show the pattern Pαi1 and its inner and outer parts.
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Proof. Let A be the set of all plane pixel centers that are inside B
αij−1

1 , and let A′ be the set obtained by
rotating all the points in A by an angle of −αij−1

. By definition, αij
− αij−1

is equal to the minimum angle

α > 0 such that the set A intersects with the line segments of B
αij−1

+α

0 . It is also equal to the minimum
α > 0 such that A′ intersects with Bα

0 .

We first show an upper bound on α. Every
√

2 ×
√

2 rectangle contained in B1 contains at least one
point of A′. In particular, there is a point (a, b) ∈ A′ such that a ≥ m − 1 −

√
2 and b ≥ m − 1 −

√
2.

Define β to be the minimum angle such (a, b) intersects with Bβ
0 . Clearly, α ≤ β, so it suffices to give

an upper bound on β. Let (m, m
2

+ y) be the point on the right segment of B0 which is moved to (a, b)
when B0 is rotated by β. The points (a, b) and (m, m

2
+ y) have an equal distance to (m

2
, m

2
), namely

√

(m/2)2 + y2 =
√

(a − m/2)2 + (b − m/2)2 ≥
√

2(m
2
− 1 −

√
2). It follows that y ≥

√

m2

4
− 2(1 +

√
2)m.

For large enough m, y ≥ m
3

.

Clearly, a = m
2

+ m
2

cosβ−y sinβ. Using Taylor’s expansion on the right-hand side of the equality, we obtain

that a = m − yβ − O(mβ2) ≤ m − m
3

β. It follows that β ≤ 3

m(m − a) ≤ 3

m (1 +
√

2).

For the lower bound on α, we have that α ≥ γ, where γ is the minimum angle such that the right segment of
Bγ

0 intersect the line y = m−1. Using arguments similar to the ones above, we obtain that γ = Ω(1/m).

Corollary 1. l = O(m).

3.1 Matching the outer parts

Lemma 2. There is a constant c such that for every i, the plane pixel centers that correspond to the
characters of the outer part of Pαi are outside the square Bαi

c .

Proof. W.l.o.g. we will prove the lemma for i < i1. The rightmost point of Bαi

0 is the bottom-right corner.
Its x-coordinate is m

2
+ m

2
cosαi + m

2
sin αi ≤ m + c0 for some constant c0, where the inequality follows from

the fact that, by Lemma 1, αi ≤ αi1 = O(1/m). Let (a, b) be some plane pixel center that corresponds to
the outer part of Pαi , namely, (a, b) is inside the square Bαi

0 and outside the square B1. Assume w.l.o.g.
that a ≥ m − 1. There is a point (a′, b) on Bαi

0 whose distance to (a, b) is a′ − a ≤ c0 + 1. Therefore, the
distance between (a, b) and Bαi

0 is at most c0 + 1, and the lemma follows.

Let αo1
, . . . , αol′

be the angles in which the outer part of the pattern changes. From Lemma 2, the outer
part depends on O(m) pixels of the pattern. Each pattern pixel contains O(m) different plane pixel centers
at some step of the rotation. It follows that l′ = O(m2). Therefore, we can check for all occurrences of the
outer parts at some text location (a, b) in T in O(m2) time using the algorithm of [2].

3.2 Matching the inner parts

The multiple pattern matching problem (for one dimensional strings) is as follows:

Input: A set of strings (dictionary) D = {D1, . . . , Dk} and a string T over alphabet Σ.
Output: All the occurrences of the strings of D in T .

Let n be the length of T , and let d be the sum of the lengths of the strings of D. For the case when
Σ = {1, . . . , n}, the multiple pattern matching problem can be solved in O(n + d) time and space using the
suffix tree construction algorithm of [11].

The algorithm for matching the inner parts is based on reducing the problem to two instances of the mul-
tiple pattern matching problem. First, build a dictionary D containing all the rows of all the inner parts.
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Enumerating all these rows is done by maintaining the pattern Pαi when i goes from 0 to k. When i is
increased by 1, a single character in the rotated pattern changes, and the row of the inner part of Pαi that
contains this character is added to D.

For each string in D assign a distinct label from 1, . . . , |D|. Then, find all the occurrences of the strings in
D in the rows of T . In other words, for each location (a, b) in T , we store a table Ra,b such that Ra,b[i] is
the label of the dictionary string of length i that begins in row a of T in position b, if there is such a string,
and 0 otherwise.

Lemma 3. |D| = O(m3). The length of every string in D is O(m).

Proof. P has m rows. For each i, Pαi differs from Pαi+1 in exactly one row and by [2] there are Θ(m3)
different angles αi. Note also that the length of every string in D is at most ⌈

√
2m⌉.

Therefore, the stage described above takes O(m4 + n2m) time.

We now need to put together rows that create an inner part. We will handle each different outline separately.
Fix an outline Ij and consider the set of its inner parts, namely, the inner parts of Pαij , . . . , Pαij+1−1 . Denote
this set of inner parts by Pj . Each inner part in Pj can be encoded by a string of length at most ⌈

√
2m⌉ by

writing the labels of its rows from the top row to the bottom row. Construct a dictionary Dj containing the
strings that encode the inner parts in Pj (note that the strings in Dj all have the same length).

We will perform the matching in a brute force fashion, spending O(m) time for every text location. For each
text location (a, b) we build a string Ta,b,j as follows: Let P ′ be some string in Pj . If the i-th row of P ′ has
length r, and its leftmost pixel is [x, y], then the i-th letter of Ta,b,j is Ra+x−m/2,b+y−m/2[r]. Clearly, a string
P ′′ ∈ Pj appears at location (a, b) in T if and only if Ta,b,j is equal to the string in Dj that corresponds
to P ′′. Thus, by concatenating the strings Ta,b,j for all a, b, and j to a string T ′, and solving the multiple
pattern matching problem on Dj and T ′, we can find all the occurrences of the inner parts of Pj in T . The
time complexity of this stage is O(n2ml). From Corollary 1, the time complexity for matching the inner
parts is O(n2m2).

We now describe how to merge the output from the two stages of the algorithm. For j ≤ l, let Sj be the set
of all intervals [oi, oi+1 −1] that intersect with the interval [ij , ij+1−1]. For each inner part P ′ ∈ Pj , let LP ′

be the set of all indices i such that the inner part of Pαi is T ′. For each S ∈ Sj build a list LP ′,S = LP ′ ∩S.
To output all the occurrences of P at position (a, b) of T , go over all j ≤ l. For each j, if there is an inner
part P ′ ∈ Pj that matches to T at position (a, b), output all the lists LP ′,S for every set S ∈ Sj whose
corresponding outer part occurs in T at position (a, b) (for S = [oi, oi+1 − 1], the corresponding outer part
is the outer part of Pαoi ). Note that the algorithm needs to output only a pointer to each list, so the time
complexity does not depend on the lengths of the lists.

The total time complexity of the algorithm is O(n2m2). The space complexity is (n2m2), which can be
reduced to O(m4) by splitting the string T into overlapping substrings of size at most 3m×3m, and running
the algorithm on each substring separately.

4 Conclusion and Open Problems

We have provided an O(n2m2) algorithm for the rotated matching problem. Our algorithm exploits geometric
properties of the problem. Nevertheless, it seems like there is more knowledge to be exploited. For example,
we did not make use of some point (a, b) in the text to obtain some properties about its neighboring points,
even though they share a vast number of characters. Thus it is our feeling that the rotated matching problem
can be solved more efficiently than O(n2m2).
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