
Bounds for Resequencing By Hybridization

Dekel Tsur∗

Abstract

We study the problem of finding the sequence of an unknown DNA
fragment given the set of its k-long subsequences and a homologous se-
quence, namely a sequence that is similar to the target sequence. Such
a sequence is available in some applications, e.g., when detecting single
nucleotide polymorphisms. Pe’er and Shamir studied this problem and
presented a heuristic algorithm for it. In this paper, we give an algorithm
with provable performance: We show that under some assumptions, the
algorithm can reconstruct a random sequence of length O(4k) with high
probability. We also show that no algorithm can reconstruct sequences of
length Ω(log k · 4k).

1 Introduction

Sequencing by Hybridization (SBH) [3,22] is a method for sequencing of long DNA
molecules. Using a chip containing all 4k sequences of length k one can obtain
the set of all k-long subsequences of the target sequence: For every sequence in
the chip, if its reverse complement appears in the target than the two sequences
will hybridize. The set of all k-long subsequences of the target is called the k-
spectrum (or spectrum) of the target. After obtaining the spectrum, the target
sequence can be reconstructed in polynomial time [26].

Unfortunately, other sequences can have the same spectrum as the target’s.
For example, if we assume that the sequence is chosen uniformly from all the
sequences of length n, then only sequences of length less than roughly 2k can
be reconstructed reliably [2,13,27,29]. Several methods for overcoming this lim-
itation of SBH were proposed: gapped probes [14, 16, 18–20, 27, 28], interactive
protocols [15, 23, 31, 34], using location information [1, 4, 11, 12, 17, 29], and using
restriction enzymes [30, 32].

An additional limitation of SBH is that in practice, there are errors in the
hybridization process. Thus, some subsequences of the target do not appear
in the experimental spectrum (false negatives), and the experimental spectrum

∗School of Computer Science, Tel Aviv University. E-Mail: dekelts@tau.ac.il

1



contains sequences that do not appear in the target (false positives). Several
algorithms were given for SBH with errors [5–10,21,26]. The first algorithm with
provable performance was given by Halperin et al. [16], and their algorithm was
later improved in [33].

In many applications, the target sequence is not completely unknown. For
example, the problem of detecting single nucleotide polymorphisms can be consid-
ered as finding the sequence of a DNA fragment when most of the sequence (over
99%) is known in advance. Therefore, we study the problem of reconstructing a
target sequence given its spectrum and a sequence that is similar to the target
sequence (called a homologous sequence). This problem is called resequencing by
hybridization (RBH). Pe’er and Shamir [25] (see also [24]) gave an algorithm for
RBH and showed that the algorithm works well in practice, but did not prove a
bound on its performance.

In this work, we give an algorithm for RBH and prove a bound on its per-
formance. We assume that the target sequence is a random sequence, and that
the homologous sequence has the following property: Every k-subsequence of the
target differs from the corresponding subsequence of the homologous sequence
in at most d letter, where d ≤ ( 3

4
− δ)k for an arbitrarily small constant δ.

Moreover, we assume that the homologous sequence is generated randomly from
the target sequence by selecting positions on the target sequence and then ran-
domly changing the letters in the selected positions. Under these assumptions,
our algorithm can reconstruct sequences of length O(4k min(d−3/2, log k/k)) with
probability close to 1. We also show that that the algorithm can reconstruct se-
quences of length O(4k) if the number of different letters between the target and
the homologous sequence is O(n/2εk). Moreover, we show that no algorithm can
reconstruct sequences of length Ω(log k ·4k) with success probability greater than
1
3
. We also study the RBH problem under the presence of hybridization errors.

We give an algorithm for this case whose performance is close to the performance
of the algorithm in the errorless case.

Due to lack of space, some proofs are omitted.

2 Preliminaries

For a sequence A = a1 · · ·an, let Al
i denote the l-subsequence aiai+1 · · ·ai+l−1.

For two sequences A and B, AB is the concatenation of A and B.
A set I ⊆ {1, . . . , n} is called a k, d-set if |I ∩ {i, . . . , i + k − 1}| ≤ d for all i.

We denote by Ik,d(n) the set of all k, d-sets that are subsets of {1, . . . , n}. Two
sequences A = a1 · · ·an and B = b1 · · · bn will be called k, d-equal if {i : ai 6= bi}
is a k, d-set.

The RBH problem is as follows: Given the k-spectrum of A and a sequence
H which is k, d-equal to A, find the sequence A. We study the RBH problem
under a probabilistic model. We assume that the target sequence A = a1 · · ·an is

2



1. Let s1, s2, . . . , sk−1 be the first k − 1 letters of A.

2. Let sn−k+2, . . . , sn be the last k − 1 letters of A.

3. For t = k, k + 1, . . . , dn/2e do: (forward sequencing)

(a) Let B be the set of all sequences of length ck that are k, d-equal to
Hck

t .

(b) Let B′ be the set of all sequences B ∈ B such that all the k-
subsequences of Sk−1

t−k+1B appear in A.

(c) If all the sequences in B′ have a common first letter a, then set st ← a.
Otherwise, set st ← ht.

4. For t = n− k + 1, n− k, . . . , dn/2e+ 1 do: (backward sequencing)

(a) Let B be the set of all sequences of length ck that are k, d-equal to
Hck

t−ck+1.

(b) Let B′ be the set of all sequences B ∈ B such that all the k-
subsequences of BSk−1

t+1 appear in A.

(c) If all the sequences in B′ have a common last letter a, then set st ← a.
Otherwise, set st ← ht.

5. Return the sequence S.

Figure 1: Algorithm A.

chosen at random, where each letter is chosen uniformly from Σ = {A, C, G, T}
and independently of the other letters. The homologous sequence H = h1 · · ·hn

is built as follows: Some k, d-set I (called the locations set) is chosen before the
sequence A is chosen. After the sequence A is chosen, for every i /∈ I set hi = ai,
and for every i ∈ I, hi is chosen uniformly from Σ− {ai}.

We will use log x to denote the logarithm with base 2 of x.

3 Algorithm for RBH

In this section we give an algorithm for solving RBH, and analyze its performance.
We assume that the first and last k−1 letters of A are known. Let c be some large
integer, and suppose that n is large enough so ck ≤ n/2. We will use S = s1 · · · sn

to denote the sequence that is built by our algorithm. The algorithm is given in
Figure 1.

As the backward sequencing stage is analogous to the forward sequencing

3



stage, we shall only analyze the latter. A sequence in the set B in some step t
of the algorithm is called a path (w.r.t. t). A path is called correct if it is equal
to at · · ·at+ck−1, and it is called incorrect if its first letter is not equal to at. An
incorrect path in B′ is called a bad path. For a path B ∈ B, a supporting probe is
a k-subsequence of B which is also a subsequence of the target sequence A. We
will use i to denote the supporting probe Bk

i .
Clearly for every t, the correct path is always in B′. Thus, if at = ht then the

algorithm will always set st to at. In other words, the algorithm can fail only at
indices t for which at 6= ht.

We first give two technical lemmas:

Lemma 1. For every α ≥ 0, if d ≤
(

3
4
−
√

1
c

+ (1
2

log e)α + log k
k

)

k then k2
(

k
d

)

·

3deαk/4(1−1/c)k ≤ 1
2
.

Proof. Let a = d/k. Using Stirling formula we have that

(

k

d

)

≤ 1.1
√

2πk
(

k
e

)k

√
2πd

(

d
e

)d√

2π(k − d)
(

k−d
e

)k−d

=
1.1√
2π

√

k

d(k − d)
· kk

(ak)ak((1− a)k)(1−a)k

<
1

2
· 1

aak(1− a)(1−a)k
=

1

2
· 2(a log 1

a
+(1−a) log 1

1−a)k.

Thus, log(2
(

k
d

)

· 3d) ≤ (a log 1
a

+ (1− a) log 1
1−a

+ a log 3)k.

Let f(x) = x log 1
x

+ (1−x) log 1
1−x

+x log 3. Using simple calculus, we obtain

that f(3
4
− x) ≤ 2(1− x2). Therefore,

log

(

2

(

k

d

)

· 3d

)

≤ f(a)k ≤ 2(1− (3/4− a)2)k

≤ 2

(

1− 1

c
− log e

2
α− log k

k

)

k = log

(

4(1−1/c)k

eαkk2

)

.

Lemma 2. Let F =
∑k

j=1
(a+j)eαj

4j

∑min(j,d)
i=0

(

j
i

)

3i and F ′ =
∑k

j=1
eαj

4j ·
∑min(j,d)

i=0

(

j
i

)

3i.

If a ≥ 0 and 0 ≤ α ≤ 0.14 then F ≤ (2d + 6)(a + 2d)e2αd and F ′ ≤ (2d + 3)e2αd.

Proof. Let f(j) =
∑min(j,d)

i=0

(

j
i

)

3i. For every j,

f(j) ≤
j
∑

i=0

(

j

i

)

3i = 4j.

4



If j > 2d then

f(j) =
d
∑

i=0

(

j

i

)

3i ≤
(

j

d

) d
∑

i=0

3i ≤ 3

2

(

j

d

)

3d.

Therefore,

F ≤
2d
∑

j=1

(a + j)eαj +

k
∑

j=2d+1

(a + j)

(

eα

4

)j

· 3

2

(

j

d

)

3d,

where the second sum is empty if d > (k − 1)/2. We have that

2d
∑

j=1

(a + j)eαj ≤
2d
∑

j=1

(a + 2d)eα·2d = 2d(a + 2d)e2αd,

Furthermore, for j > 2d,

(

j
d

) (

eα

4

)j

(

j−1
d

) (

eα

4

)j−1 =
j!

d!(j − d)!
· d!(j − 1− d)!

j − 1!
· e

α

4
=

j

j − d
· e

α

4
≤ 2 · e

0.14

4
≤ 3

5
,

so
(

j

d

)(

eα

4

)j

≤
(

2d

d

)(

eα

4

)2d(
3

5

)j−2d

≤ 22d

(

e0.14

4

)2d (
3

5

)j−2d

.

Thus,

k
∑

j=2d+1

(a + j)

(

eα

4

)j

· 3

2

(

j

d

)

3d ≤ 3

2
· 3d

(

e0.14

2

)2d ∞
∑

l=1

(a + 2d + l)

(

3

5

)l

=
3

2
·
(

e0.14
√

3

2

)2d
(

3

2
(a + 2d) +

15

4

)

<
3

2

(

3

2
(a + 2d) +

15

4

)

< 6(a + 2d),

so the bound on F follows. The bound on F ′ is proved using similar analysis.

Theorem 3. For every ε > 0, if d ≤
(

3
4
−
√

1/c + O(log k/k)
)

k and n =

O(ε4k min(d−3/2, log k/k)) then the probability that algorithm A fails is at most ε.

Proof. Let Et be the event that t is the minimum index for which st 6= at.
Assuming that events E1, . . . , Et−1 do not happen, Et happens if and only if
at 6= ht and there is a bad path w.r.t. t. To bound this probability for some fixed
t, we fix a k, d-set I ⊆ {1, . . . , ck} and generate a random path B ′ = b′1 · · · b′ck
as follows: If i /∈ I, then b′i = ht−1+i. If i > 1 and i ∈ I then b′i is selected

5



uniformly at random from Σ−{ht−1+i}, and if i = 1 and i ∈ I then b′i is selected
uniformly from Σ − {ht, at}. We shall compute the probability that B ′ is a bad
path w.r.t. t, and then we will bound P [Et] by roughly

∑

I 3|I| ·P [B′ is bad|t, I],
where the term 3|I| bounds the number of possible paths B ′ given the set I. Note
that each letter of B ′ has a uniform distribution over Σ, and the letters of B ′ are
independent.

Let B = Sk−1
t−k+1B

′, and denote B = b1 · · · bck+k−1. By definition, B′ is a bad
path if and only if there are indices r1, . . . , rck such that Bk

i = Ak
ri

for i = 1, . . . , ck,
so we need to bound the probability that these events happen. We say that
supporting probe i is trivial if ri = t − 1 + i. Note that probes 1, . . . , k are not
trivial as b′1 6= at. We consider two cases: The first case is when there are no
trivial supporting probes, and the second case is when there are trivial supporting
probes. These cases will be called case I and case II, respectively.

Case I Suppose that there are no trivial supporting probes. The difficulty in
bounding the probability that Bk

i = Ak
ri

for i = 1, . . . , ck is that these events are
not independent when some of the sequences Ak

r1
, . . . , Ak

rk
have common letters,

that is, if |ri − rj| < k for some pairs (i, j) of indices. We say that two probes
ri and rj are strongly adjacent if |ri − rj| < k and rj − ri = j − i (in particular,
every probe is strongly adjacent to itself). The transitive closure of the strongly
adjacency relation will be called the adjacency relation. The motivation behind
the definitions above is as follows: If ri and rj are strongly adjacent probes
with i < j, then the events Bk

i = Ak
ri

and Bk
j = Ak

rj
happen if and only if

Bk+j−i
i = Ak+j−i

ri
. More generally, for each equivalence class of the adjacency

relation, there is a corresponding equality event between a subsequence of A and
a subsequence of B.

If ri and ri′ are adjacent, then Bk
j = Ak

ri+j−i for every j = i, . . . , i′. Therefore,
we can assume w.l.o.g. that rj = ri +j− i for j = i, . . . , i′. Thus, each equivalence
class of the adjacency relation corresponds to an interval in {1, . . . , ck}. More
precisely, there are indices 1 = c1 < c2 < · · · < cx < cx+1 = ck + 1 such that
{rci

, rci
+ 1, . . . , rci+1

} is an equivalence class for i = 1, . . . , x. The sequence B ′ is

a bad path if and only if B
k−1+ci+1−ci
ci = A

k−1+ci+1−ci
rci

for all i. We shall compute

the probability that these events happen. Each sequence A
k−1+ci+1−ci
rci

will be
called a block, and will be denoted by Li. We denote by li = k− 1 + ci+1− ci the
number of letters in the block Li. To simplify the presentation, we define block
L0 to be the sequence A

(c+1)k−1
t−k+1 (l0 = (c + 1)k − 1).

For two blocks Li and Lj with 0 ≤ i < j we say that Lj overlaps with Li if
the two blocks have common letters, namely if rcj

∈ [rci
− lj + 1, rci

+ li − 1]. If
the block Lj overlaps with some block Li, we say that Lj is an overlapping block.

We will bound the probability that B ′ is a bad path in two cases: When there
are no overlapping probes, and when there are overlapping probes. In the second
case, we will look at the overlapping probe with minimum index, and consider

6



the equality events that correspond to this block and the blocks with smaller
indices. However, the analysis of this case can be complicated if the overlapping
probe overlaps with two or more blocks. Therefore, we introduce the following
definition: A block Lj is called weakly overlapping if there is an index i < j
such that |rcj

− rci
| ≤ 2(c + 1)k − 4. In particular, an overlapping block is also

a weakly overlapping block. If there are overlapping blocks, define y to be the
minimum index such that block Ly is a weakly overlapping block. The definition
of a weakly close block ensures that Ly cannot overlap with more than one block.

We consider three cases:

1. There are no overlapping blocks.

2. There are overlapping blocks and y > 1.

3. There are overlapping blocks and y = 1.

Let Ei denote the event that there is a bad path that satisfies case i above. We
shall bound the probability of each of these events.

Case 1 Suppose that there are no overlapping blocks. In this case, the events
Bl1

c1
= Al1

rc1
, . . . , Blx

cx
= Alx

rcx
are independent. Therefore, for fixed t, I, and

r1, . . . , rk, the probability that event E1 happens is
∏x

i=1 4−li = 4−ck−(k−1)x. For
fixed x, the number of ways to choose c1, . . . , cx is

(

ck−1
x−1

)

, and for fixed c1, . . . , cx,
the number of ways to choose r1, . . . , rk is at most nx. Thus,

P [E1|t, I] ≤
ck
∑

x=1

(

ck − 1

x− 1

)

nx

4ck+(k−1)x
=

n

4ck+k−1

ck
∑

x=1

(

ck − 1

x− 1

)

( n

4k−1

)x−1

=
n

4(c+1)k−1

(

1 +
n

4k−1

)ck−1

≤ n

4(c+1)k−1
· e(n/4k−1)·ck.

Therefore,

P [E1|t] ≤
∑

I∈Ik,d(ck)

3|I| · ne(n/4k−1)ck

4(c+1)k−1
.

Let Ji = {ik + 1, . . . , ik + k}. From the definition of k, d-set we get that

7



∑

I∈Ik,d(ck)

3|I| =
∑

I∈Ik,d(ck)

c
∏

i=1

3|I∩Ji|

=
d
∑

j1,...,jc=0

|{I ∈ Ik,d(ck) : |I ∩ Ji| = ji, i = 1, . . . , c}| ·
c
∏

i=1

3ji

≤
d
∑

j1,...,jc=0

c
∏

i=1

(

k

ji

)

·
c
∏

i=1

3ji =

(

d
∑

j=0

(

k

j

)

3j

)c

≤
(

(d + 1)

(

k

d

)

· 3d

)c

,

where the last inequality follows from the fact that d ≤ 3
4
k.

Since H is k, d-equal to A, it follows that the number of indices i for which
ai 6= hi is at most dn/ked ≤ 2dn/k, so the number of ways to choose t is at most
2dn/k. Therefore, the probability that event E1 happens is at most

2dn

k
·
(

k

(

k

d

)

3d

)c

· ne(n/4k−1)ck

4(c+1)k−1
=

8dn2

k · 42k
·
(

k
(

k
d

)

3d · e(n/4k−1)k

4(1−1/c)k

)c

<
8n2

42k
,

where the last inequality follows from Lemma 1.

Case 2 Recall that y is the minimum index such that block Ly is a weakly
overlapping block. Let z = cy. Let E be the event that the equality events
corresponding to the blocks L1, . . . , Ly−1 happen, namely Bli

ci
= Ali

rci
for i =

1, . . . , y − 1, and let E ′ be the event that Bk
z = Ak

rz
. As there are no overlapping

blocks in L1, . . . , Ly−1, we obtain that

P [E|t, I, z, r1, . . . , rz−1] =
1

4(k−1)(y−1)+z−1
.

Furthermore, P [E ′|t, I, z, rz] = 4−k. This is clear when Ly does not overlap with
L0. To see that this claim is also true when Ly overlaps with L0, note that event
E ′ is composed of k equalities bz+i = arz+i for i = 0, . . . , k − 1. The probability
that such an equality happens given that the previous equalities happen is exactly
1/4 as the letters bz+i and arz+i are independent (since probe z is not trivial), and
at least one of these two letters is not restricted by the the previous equalities.
Therefore, P [E ′|t, I, z, rz] = 4−k.

Now, we claim that the events E and E ′ are independent. If Ly does not
overlap with L0 then this claim follows from [2, p. 437]. Otherwise, suppose that
Ly overlaps with L0. For each equality bi+i′ = arci

+i′ (where i = 1, . . . , y − 1
and i′ = 0, . . . , li − 1) that is induced by E , the letter arci

+i′ is not restricted by

8



event E ′ (as Ly does not overlap with Li), and therefore the probability that this
equality happen is 1/4. It follows that E and E ′ are independent.

Combining the claims above, we have that

P [E ∧ E ′|t, I, z, r1, . . . , rz] =
1

4(k−1)(y−1)+z−1+k
.

For fixed y and z, the number of ways to choose r1, . . . , rz−1 is at most
(

(z−1)−1
(y−1)−1

)

ny−1,

and the number of ways to choose rz is at most (2(2(c + 1)k− 4) + 1) · (y− 1) ≤
4(c + 1)kz. Thus,

P [E ∧ E ′|t, I, z] ≤
z
∑

y=2

(

(z − 1)− 1

(y − 1)− 1

)

ny−1 · 4(c + 1)kz · 1

4(k−1)(y−1)+z−1+k

≤ 64(c + 1)kzn

42k+z
·
(

1 +
n

4k−1

)z−2

≤ 64(c + 1)kzne(n/4k−1)z

42k+z
.

The event E ∧ E ′ depends only on the first z letters of B ′. Therefore,

P [E ∧ E ′] ≤ 2dn

k

ck
∑

z=2

∑

I∈Ik,d(z)

3|I| · 64(c + 1)kzne(n/4k−1)z

42k+z
.

Let z = kz1 + z2 where 1 ≤ z2 ≤ k. Then,

∑

I∈Ik,d(z)

3|I| =
∑

I∈Ik,d(z)

z1+1
∏

i=1

3|I∩Ji| ≤
(

d
∑

i=0

(

k

i

)

3i

)z1 min(d,z2)
∑

i=0

(

z2

i

)

3i

≤
(

k

(

k

d

)

3d

)z1
min(d,z2)
∑

i=0

(

z2

i

)

3i.

Using Lemma 1 and Lemma 2 we obtain that

P [E2] ≤ P [E ∧ E ′]

≤ 128(c + 1)dn2

42k

c−1
∑

z1=0

k
∑

z2=1

(

k

(

k

d

)

3d

)z1

·
min(d,z2)
∑

i=0

(

z2

i

)

3i · (kz1 + z2)e(n/4k−1)(kz1+z2)

4kz1+z2

≤ 128(c + 1)dn2

42k

c−1
∑

z1=0

(

k
(

k
d

)

3de(n/4k−1)k

4k

)z1

(2d + 6)(kz1 + 2d)e2(n/4k−1)d

≤ 128(c + 1)d(2d + 6)e2(n/4k−1)dn2

42k

c−1
∑

z1=0

(

k2
(

k
d

)

3de(n/4k−1)k

4k

)z1

(z1 + 2d)

9



≤ 128(c + 1)d(2d + 6)e2(n/4k−1)dn2

42k

c−1
∑

z1=0

z1 + 2d

2z1

≤ 128(c + 1)d(2d + 6)e2(n/4k−1)dn2

42k
· (2 + 4d).

Case 3 For fixed t, I, and r1, the probability that Bk
1 = Ak

r1
is 4−k. We multiply

this probability by the number of ways to choose t, the number or ways to choose
r1, and by the number of ways to choose b′1. Thus,

P [E3] ≤
2dn

k
· 4(c + 1)k · 3 · 1

4k
=

24(c + 1)dn

4k
.

Case II We now consider the case when there are trivial supporting probes.
Let z be the minimum index such that probe z + k is trivial (z ≥ 1 as probes
1, . . . , k are not trivial). We will consider only the first z + k − 1 probes. If
there are overlapping blocks among the first z + k − 1 probes, then event E2 or
E3 happens, so we only need to consider the case when there are no overlapping
blocks among these probes. We denote this event by E4.

Let x be the number of blocks among probes 1, . . . , z + k − 1. Then,

P [E4|t, I, z] ≤
z+k−1
∑

x=1

(

(z + k − 1)− 1

x− 1

)

nx

4(k−1)x+z+k−1
≤ 16ne(n/4k−1)(z+k)

4z+2k
.

Since probe z + k is trivial, we have that b′z+1 = at+z, . . . , b
′
z+k = at+z+k−1, so

event E4 depends only on the first z letters of B ′. Therefore, by Lemma 2,

P [E4] ≤
2dn

k

(c−1)k
∑

z=1

∑

I∈Ik,d(z)

3|I| · 16ne(n/4k−1)(z+k)

4z+2k

≤ 32dn2e(n/4k−1)k

k · 42k

c−2
∑

z1=0

k
∑

z2=1

(

k

(

k

d

)

3d

)z1
min(d,z2)
∑

i=0

(

z2

i

)

3i · e
(n/4k−1)(kz1+z2)

4kz1+z2

≤ 32dn2e(n/4k−1)k

k · 42k

c−2
∑

z1=0

(

k
(

k
d

)

3de(n/4k−1)k

4k

)z1

(2d + 3)e2(n/4k−1)d

≤ 32d(2d + 3)e(n/4k−1)(k+2d)n2

k · 42k

c−2
∑

z1=0

1

2z1

≤ 32d(2d + 3)e(n/4k−1)(k+2d)n2

k · 42k
· 2.

Combining all four cases, we have that the probability that the algorithm fails is
O((d+e(n/4k−1)k/k)d2e2(n/4k−1)dn2/42k+dn/4k), so if n = O(ε4k min(d−3/2, log k/k))
then this probability is at most ε.

10



In some applications, the number of different letters between A and H is much
smaller than dn/ked, and in that case, the algorithm performs better:

Theorem 4. For every ε > 0, if d ≤
(

3
4
−
√

1/c + O(log k/k)
)

k, n = O(ε4k),

and the number of different letters between A and H is O(n/2εk), then the prob-
ability that algorithm A fails is at most ε.

4 Upper bound

In this section, we show an upper bound on the length of the sequences that can
be reconstructed from their spectra and homologous sequences.

We use the following lemma:

Lemma 5. For every sequence P of length k, the probability that P does not
appear in the spectrum of a random sequence of length n ≥ 2(k + 1)k is at most

e−
1

3
n/4k

.

Proof. Let S be a random sequence of length n, and let Ai denote the event
that Sk

i 6= P . Clearly, the probability that P does not appear in the spectrum

of S is P
[

∧n−k+1
i=1 Ai

]

. The difficulty in bounding this probability lies in the fact

that the events A1, . . . , An−k+1 are dependent. Thus, we will split these events
into groups such that the events from one group are independent of the events
from other groups.

For i = 1, . . . , bn/2kc, let Ii = {2k(i − 1) + 1, . . . , 2k(i − 1) + k + 1}. Let
Bi =

∧

j∈Ii
Aj. The events B1, . . . , Bbn/2kc are independent and have equal prob-

abilities, so

P

[

n−k+1
∧

i=1

Ai

]

≤ P

[

n−k+1
∧

i=1

Bi

]

=

bn/2kc
∏

i=1

P [Bi] = P [B1]bn/2kc .

We will now bound P [B1]. For an index i ∈ I1, let Ci = Ai∧
∧i−1

j=1 Aj. The events
{Ci}i∈I1 are disjoint, so

P [B1] = 1− P

[

∨

i∈I1

Ai

]

≤ 1− P

[

∨

i∈I1

Ci

]

= 1−
∑

i∈I1

P [Ci] .

For every i ∈ I1,

P [Ci] = P
[

Ai

]

· P
[

i−1
∧

j=1

Aj

∣

∣

∣

∣

∣

Ai

]

= P
[

Ai

]

·
(

1− P

[

i−1
∨

j=1

Aj

∣

∣

∣

∣

∣

Ai

])

≥ P
[

Ai

]

·
(

1−
i−1
∑

j=1

P
[

Aj |Ai

]

)

.

11



Clearly, P
[

Ai

]

= 4−k. Moreover, for j < i, the first j − i letters of Sk
j are

independent of the letters of Sk
i , so P

[

Aj |Ai

]

≤ 1
4i−j . It follows that P [Ci] ≥

4−k · (1− 1
3
), hence

P

[

n−k+1
∧

i=1

Ai

]

≤
(

1− (k + 1) · 2

3
4−k

)bn/2kc

≤ e−(k+1) 2

3
4−k·bn/2kc ≤ e−

1

3
n/4k

.

Theorem 6. If n = Ω(log k · 4k) then every algorithm for RBH fails with prob-
ability of at least 2

3
, even when the homologous sequence differs from the target

sequence in one letter (whose position is known).

Proof. Suppose that n ≥ 3 ln(36k) · 4k + 2k − 1. Let {k} be the locations set.
For a sequence S and an integer i, let S[i] be the set containing S and the 3
sequences that are obtained from S by changing the i-th letter of S. We say
that a sequence S of length n is hard if for every sequence T ∈ S2k−1

1 [k], all the

k-subsequences of T appear in S
n−(2k−1)
2k . By Lemma 5, the probability that a

random sequence S is not hard is at most 4k · e− 1

3
(n−2k+1)/4k ≤ 1

9
. Therefore, it is

suffices to bound the success probability on hard sequences.
Let S be a hard sequence. All the sequences in S[k] have the same spectrum,

so their corresponding inputs to the RBH problem are equal. Therefore, every al-
gorithm will fail with probability of at least 3

4
when given a random sequence from

S[k]. Since this is true for every hard sequence, it follows that every algorithm
fails with probability of at least 3

4
on a random hard sequence, and therefore any

algorithm fails with probability of at least 8
9
· 3

4
= 2

3
on a random sequence of

length n.

5 Hybridization errors

In this section, we study the RBH problem in a more realistic scenario, in which
there are errors in the hybridization data. We assume the following model of
errors: Each k-tuple contained in the target appears in the (experimental) spec-
trum with probability 1− q, and each k-tuple that is not contained in the target
appears in the spectrum with probability p. In other words, the false negative
probability is q, and the false positive probability is p. Furthermore, the appear-
ance of a tuple is independent of the other k-tuples.

We say that a sequence S is simple if there are no indices i 6= j such that
Sk

i = Sk
j . Let algorithm B be an algorithm that acts like algorithm A, except

that steps 3b and 3c are replaced by the following steps

(3b’) Choose a sequences B ∈ B such that Sk−1
t−k+1B is simple, and the number of

supporting probes of Sk−1
t−k+1B is maximal (breaking ties arbitrarily).

12



Table 1: Performance of algorithm A.
k d = 1 d = 2 d = 3 d = 4 d = 5 Classical SBH
7 1900 1340 980 730 470 120
8 7240 5150 3940 3270 2440 240

Table 2: Performance of algorithm B.
k d = 1 d = 2 d = 3 d = 4
7 1240 600 290 100
8 4360 2500 1130 390

(3c’) Set set st to the first letter of B.

and steps 4b and 4c are replaced by similar steps.

Theorem 7. For every ε > 0 and c ≥ 2, if p = O(1/k),

d ≤
(

3

4
−
√

1

c
+

1

2
log(1 + 4q) + O(log k/k)

)

k,

and n = O(ε(kd)−14(1− c
4

log(1+4q))k) then the probability that algorithm B fails is
at most ε.

6 Experimental results

To complement our theoretical results, we performed simulations with our algo-
rithms. For each value of k and d, we run algorithm A on 1000 random sequences
of length n for various values of n, and computed the maximum value of n for
which algorithm A returned the correct sequence in at least 90% of the runs. The
results are given in Table 1. We also performed simulations with algorithm B, us-
ing the parameters p = q = 0.05. The results are given in Table 2. We note that
further research is needed in order to evaluate the performance of algorithm B
on real data. Some modification to the algorithm might be needed as real data
do not behave like our probabilistic model.

Acknowledgments

We thank Ron Shamir for helpful discussions.

References

[1] L. M. Adleman. Location sensitive sequencing of DNA. Technical report,
University of Southern California, 1998.

13



[2] R. Arratia, D. Martin, G. Reinert, and M. S. Waterman. Poisson process
approximation for sequence repeats, and sequencing by hybridization. J. of
Computational Biology, 3(3):425–463, 1996.

[3] W. Bains and G. C. Smith. A novel method for nucleic acid sequence deter-
mination. J. Theor. Biology, 135:303–307, 1988.

[4] A. Ben-Dor, I. Pe’er, R. Shamir, and R. Sharan. On the complexity of
positional sequencing by hybridization. J. Theor. Biology, 8(4):88–100, 2001.

[5] J. B lażewicz, P. Formanowicz, F. Glover, M. Kasprzak, and J. Wȩglarz. An
improved tabu search algorithm for DNA sequencing with errors. In Proc.
3rd Metaheuristics International Conference, pages 69–75, 1999.

[6] J. B lażewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic
managing errors for DNA sequencing. Bioinformatics, 18(5):652–660, 2002.

[7] J. B lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and
J. Wȩglarz. DNA sequencing with positive and negative errors. J. of Com-
putational Biology, 6(1):113–123, 1999.

[8] J. B lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and
J. Wȩglarz. Tabu search for dna sequencing with false negatives and false
positives. European Journal of Operational Research, 125:257–265, 2000.

[9] J. B lażewicz, J. Kaczmarek, M. Kasprzak, W. T. Markiewicz, and
J. Wȩglarz. Sequential and parallel algorithms for DNA sequencing.
CABIOS, 13:151–158, 1997.

[10] J. B lażewicz, M. Kasprzak, and W. Kuroczycki. Hybrid genetic algorithm
for DNA sequencing with errors. J. of Heuristics, 8:495–502, 2002.

[11] S. D. Broude, T. Sano, C. S. Smith, and C. R. Cantor. Enhanced DNA
sequencing by hybridization. Proc. Nat. Acad. Sci. USA, 91:3072–3076, 1994.

[12] R. Drmanac, I. Labat, I. Brukner, and R. Crkvenjakov. Sequencing of
megabase plus DNA by hybridization: theory of the method. Genomics,
4:114–128, 1989.

[13] M. E. Dyer, A. M. Frieze, and S. Suen. The probability of unique solutions of
sequencing by hybridization. J. of Computational Biology, 1:105–110, 1994.

[14] A. Frieze, F. Preparata, and E. Upfal. Optimal reconstruction of a sequence
from its probes. J. of Computational Biology, 6:361–368, 1999.

[15] A. M. Frieze and B. V. Halldórsson. Optimal sequencing by hybridization
in rounds. J. of Computational Biology, 9(2):355–369, 2002.

14



[16] E. Halperin, S. Halperin, T. Hartman, and R. Shamir. Handling long tar-
gets and errors in sequencing by hybridization. In Proc. 6th Annual Inter-
national Conference on Computational Molecular Biology (RECOMB ’02),
pages 176–185, 2002.

[17] S. Hannenhalli, P. A. Pevzner, H. Lewis, and S. Skiena. Positional sequencing
by hybridization. Computer Applications in the Biosciences, 12:19–24, 1996.

[18] S. A. Heath and F. P. Preparata. Enhanced sequence reconstruction with
DNA microarray application. In COCOON ’01, pages 64–74, 2001.

[19] S. A. Heath, F. P. Preparata, and J. Young. Sequencing by hybridization
using direct and reverse cooperating spectra. In Proc. 6th Annual Inter-
national Conference on Computational Molecular Biology (RECOMB ’02),
pages 186–193, 2002.

[20] H. W. Leong, F. P. Preparata, W. K. Sung, and H. Willy. On the control of
hybridization noise in DNA sequencing-by-hybridization. In Proc. 2nd Work-
shop on Algorithms in Bioinformatics (WABI ’02), pages 392–403, 2002.

[21] R. J. Lipshutz. Likelihood DNA sequencing by hybridization. J. Biomolec-
ular Structure and Dynamics, 11:637–653, 1993.

[22] Y. Lysov, V. Floretiev, A. Khorlyn, K. Khrapko, V. Shick, and A. Mirz-
abekov. DNA sequencing by hybridization with oligonucleotides. Dokl. Acad.
Sci. USSR, 303:1508–1511, 1988.

[23] D. Margaritis and S. Skiena. Reconstructing strings from substrings in
rounds. In Proc. 36th Symposium on Foundation of Computer Science
(FOCS 95), pages 613–620, 1995.

[24] I. Pe’er, N. Arbili, and R. Shamir. A computational method for resequencing
long dna targets by universal oligonucleotide arrays. Proc. National Academy
of Science USA, 99:15497–15500, 2002.

[25] I. Pe’er and R. Shamir. Spectrum alignment: Efficient resequencing by
hybridization. In Proc. 8th International Conference on Intelligent Systems
in Molecular Biology (ISMB ’00), pages 260–268, 2000.

[26] P. A. Pevzner. l-tuple DNA sequencing: Computer analysis. J. Biomolecular
Structure and Dynamics, 7:63–73, 1989.

[27] P. A. Pevzner, Yu. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Floren-
tiev, and A. D. Mirzabekov. Improved chips for sequencing by hybridization.
J. Biomolecular Structure and Dynamics, 9:399–410, 1991.

15



[28] F. Preparata and E. Upfal. Sequencing by hybridization at the information
theory bound: an optimal algorithm. In Proc. 4th Annual International
Conference on Computational Molecular Biology (RECOMB ’00), pages 88–
100, 2000.

[29] R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of
Computational Biology, 9(2):413–428, 2002.

[30] S. Skiena and S. Snir. Restricting SBH ambiguity via restriction enzymes.
In Proc. 2nd Workshop on Algorithms in Bioinformatics (WABI ’02), pages
404–417, 2002.

[31] S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. of
Computational Biology, 2:333–353, 1995.

[32] S. Snir, E. Yeger-Lotem, B. Chor, and Z. Yakhini. Using restriction enzymes
to improve sequencing by hybridization. Technical Report CS-2002-14, Tech-
nion, Haifa, Israel, 2002.

[33] D. Tsur. Sequencing by hybridization with errors: Handling longer se-
quences. Manuscript, 2003.

[34] D. Tsur. Sequencing by hybridization in few rounds. In Proc. ESA ’03, to
appear.

16


