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Abstract

We give succinct data structures that store a tree with colors on the nodes. Given
a node x and a color α, the structures find the nearest node to x with color α. Our
results improve the O(n log n)-bits structure of Gawrychowski et al. [CPM 2016].
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1 Introduction

In the nearest colored node problem the goal is to store a tree with colors on the nodes
such that given a node x and a color α, the nearest node to x with color α can be found
efficiently. Gawrychowski et al. [12] gave a data structure for this problem that uses
O(n log n) bits and answers queries in O(log log n) time, where n is the number of nodes
in the tree.

In this paper we give succinct structures for the nearest colored node problem. Our
results are given in the following theorem.

Theorem 1. Let T be a colored tree with n nodes and colors from [1, σ], and let PT be a
string containing the colors of the nodes in preorder.

1. For σ = o(log n/(log log n)2), for any k = o(log n/ log2 σ), there is a representation
of T that uses nHk(PT ) + 2n + o(n) bits and answers nearest colored node queries
in O(1) time, where Hk(PT ) is the k-th order entropy of PT .

2. For σ = wO(1) (where w is the word size), for any function f(n) = ω(1), there is a
representation of T that uses nH0(PT ) + 2n+ o(n) bits and answers nearest colored
node queries in O(f(n)) time.

3. For σ ≤ n, there is a representation of T that uses nH0(PT )+2n+o(nH0(PT ))+o(n)
bits and answers nearest colored node queries in O(log log σ

logw ) time.

Theorem 1 improves both the space complexity and the query time complexity of the
structure of Gawrychowski et al. [12].

1.1 Related work

Gawrychowski et al. [12] also considered a dynamic version of the nearest colored node
problem in which the colors of the nodes can be changed. For this problem they gave
an O(n log n) bits structure that supports updates and queries in O(log n) time. They
also gave a structure with O(n log2+ε n) space, optimal O(log n/ log logn) query time, and
O(log1+ε n) update time.
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Several papers studied data structures for storing colored trees with support for various
queries [4, 6, 9, 13, 14, 19, 20]. In particular, the problem of finding the nearest ancestor
with color α was considered in [6,13,14,19,20]. In order to solve the nearest colored node
problem, we combine techniques from the papers above and from Gawrychowski et al. [12].

Another related problem is to find an approximate nearest node with color α. This
problem has been studied in general graphs [7, 15,16] and planar graphs [1, 17,18].

2 Preliminaries

Throughout the paper we assume the tree T is an ordinal tree (for a non-ordinal tree an
ordering can be chosen arbitrarily). When we write that a node w is a descendant of v it
means that either w = v or w is a proper descendant of v. The same holds for other tree
terminology, e.g. ancestor.

A node with color α will be called α-node. We also use other α- terms with the
appropriate meaning, e.g. an α-descendant of a node v is a descendant of v with color α.

2.1 Tree decomposition

We use the following tree decomposition [2, 3, 8].

Lemma 2. For a tree T with n nodes and an integer L, there is a collection DT,L of
subtrees of T with the following properties.

1. Every edge of T appears in exactly one tree of DT,L.

2. The size of every tree in DT,L is at most L and at least 2.

3. The number of trees in DT,L is O(n/L).

4. For every T ′ ∈ DT,L, at most two nodes of T ′ can appear in other trees of DT,L.
These nodes are called the boundary nodes of T ′.

5. A boundary node of a tree T ′ ∈ DT,L can be either a root of T ′ or a leaf of T ′. In
the latter case the node will be called the boundary leaf of T ′.

6. For every T ′ ∈ DT,L, there are two intervals I1 and I2 such that a node x ∈ T is a
non-root node of T ′ if and only if the preorder rank of x is in I1 ∪ I2.

For a tree T and an integer L we define a tree TL as follows. Construct a tree
decomposition DT,L according to Lemma 2. If the root r of T appears in several trees
of DT,L, add to DT,L a tree that consists of r. The tree TL has a node vS for every tree
S ∈ DT,L. For two trees S1, S2 ∈ DT,L, vS1 is the parent of vS2 in TL if and only if the
root of S2 is equal to the boundary leaf of S1.

For a node vS in TL let V (vS) be the set of the nodes of S excluding the root. For a
node v ∈ T , we denote by map(u) the node of TL for which u ∈ V (map(u)).

2.2 Data structures

In this section we describe the data structure we use in this paper.
Ferragina and Venturini [10] gave a data structure for storing a string S of length n

using nHk(S) + O(nk log σ/ logσ n) + O(n log logn/ logσ n) bits (for k = o(logσ n)) that
supports accessing a substring of S of length l in O(1 + l/ logσ n) time.
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A rank-select structure on a string S is a structure that supports the following queries.
rankα(S, i) returns the number of times the character α appears in the substring S[1..i],
and selectα(S, i) returns the index of the i-th occurrence of α in S. We use the following
results of Belazzougui and Navarro [5]. For σ = wO(1), there is a rank-select structure
that uses nH0(S) + o(n) bits and answers queries in O(1) time. For σ ≤ n, there is a
rank-select structure that uses nH0(S) +o(nH0(S)) +o(n) bits. The time for rank queries
is O(log log σ

logw ) and the time for select queries is O(1).
An RMQ structure on an array A supports the query RMQ(A, i, j) which returns the

index of the minimum element in the sub-array A[i..j]. Fischer and Heun [11] gave an
RMQ structure that uses O(n/c(n)) bits and answers RMQ queries in O(c(n)) time, for
every c(n) = O(nε) for an arbitrary constant 0 < ε < 1. The structure requires access to
A for answering RMQ queries.

There are several succinct structures for storing ordinal trees. Here we use the structure
of Farzan and Munro [8]. The structure stores the balanced parenthesis string of the
tree (uncompressed) using 2n bits, and additional information that takes o(n) bits. The
structure supports various tree queries. The queries we use in this paper are as follows
(we assume that the nodes are identified by their preorder numbers). lca(u, v) returns the
lowest common ancestor of u and v, rightmost leaf(v) returns the rightmost descendant
leaf of v, and depth(v) returns the depth of v.

Suppose T is a tree with n nodes and some of its nodes are marked. Let v1, . . . , vm
be the marked nodes, in preorder. Apply the tree decomposition of Section 2.1 on T with
parameter L and obtain the tree TL. In [20] we showed a data structure that stores the
tree TL using O((n/L) logL) bits and supports the following queries in constant time. (1)
Given i, compute map(vi) (2) Given a node vS ∈ TL, compute the intervals I1, I2 such
that vi ∈ V (vS) if and only if i ∈ I1 ∪ I2 (these intervals exists due to Property 6 of
Lemma 2) (3) Given nodes u, v ∈ TL, compute lca(u, v).

3 Proof of part 1 of Theorem 1

Our structure is similar to the labeled tree structure of He et al. [14]. As in [14], the
data structure stores PT in the compressed structure of Ferragina and Venturini [10], the
tree T without the colors in the data structure of Farzan and Munro [8], and additional
structures described below. Recall that the structure of T keeps the balanced parenthesis
string of T .

Using the tree decomposition of Lemma 2, the tree T is partitioned into mini-trees
of size at most L′ = dlog2 ne, and every mini-tree is decomposed into micro-trees of size
at most L = d12 logσ ne. From Property 4 of the tree decomposition we have that if y
is the nearest α-node to a node x and y is not in the mini-tree that contains x, then
the path from x to y passes through a boundary node of the mini-tree that contains
x. Similar property holds for micro-trees. Based on the observation above, the data
structure stores the following additional information. (1) A lookup table that contains
for every colored tree S of size at most L, every node x in S, and every color α, the
α-node in S that is nearest to x (if such nodes exist). (2) For every mini-tree S′ and
every color α, the α-nodes in T that are nearest to the root of S′ and to the boundary
leaf of S′. (3) For every micro-tree S and every color α, the α-nodes in the mini-tree
that contains S that are nearest to the root of S and to the boundary leaf of S. The
space for storing PT is nHk(PT ) + o(n) bits, and the space for storing T is 2n+ o(n) bits.
The space for the lookup table is O(22LσLLσ logL) = o(n), the space for the mini-tree
information is O((n/L′)σ log n) = o(n), and the space for the micro-tree information is
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O((n/L)σ logL′) = O(σ log σ · n log log n/ log n) = o(n).
Given a query x, α, we obtain up to five candidates for the nearest α-node to x: the

α-node in the micro-tree that contains x that is nearest to x, and the four α-nodes stored
for the micro-tree and mini-tree that contain x. Note that in order to use the lookup-table,
we need to generate the balanced parenthesis string of the micro-tree that contains x, and
a sequence containing the colors of the nodes in this tree in preorder. This can be done in
O(1) time due to Property 6 of Lemma 2. The distance between x and every candidate y
can be computed in O(1) time (the distance is depth(x) + depth(y)− 2 · depth(lca(x, y))).
Therefore, the query is answered in O(1) time.

4 Proof of parts 2 and 3 of Theorem 1

Our data structure stores the rank-select structure of Belazzougui and Navarro [5] on PT ,
the tree structure of Farzan and Munro [8] on the tree T without the colors, and additional
information that will be described below.

Our structure is similar to the structure of Gawrychowski et al. [12]. We next give a
short description of the structure of [12]. For a color α, let Zα be the set of all α-nodes and
their ancestors, and let Yα be the set of all nodes x ∈ Zα such that either x has color α,
or x has at least two children in Zα. We define a tree Tα whose nodes are Yα, and x is the
parent of y in Tα if and only if x is the lowest proper ancestor of y that is in Yα.

Let x, α be a query. If x is an α-node, the answer to the query is x itself, so assume
for the rest of the section that x is not an α-node (checking whether x is an α-node is
done using rank and select queries on PT ). We define nodes in the tree that will be used
for answering the query: z is the lowest ancestor of x which has an α-descendant that is
not a descendant of x. Moreover, y (resp., y2) is the nearest descendant (resp., ancestor)
of z which is in Yα. Note that y = y2 = z if z ∈ Yα.

The nearest α-node to x is either (1) the nearest α-descendant of x, (2) the nearest
α-node to y, or (3) the nearest α-node to y2. Based on this observation, the structure
of Gawrychowski et al. [12] finds these three candidate nodes, and returns the one that
is closest to x. Our structure is based on a slightly different observation: The nearest
α-node to x is either (1) the nearest α-descendant of x, (2) the nearest α-descendant of y,
or (3) the nearest α-non-descendant of y.

We next describe the approach we use for finding the node y, which is different than
the one used in [12]. We assume that the nodes of T are 1, . . . , n, according to preorder.
For a node v, let succα(v) (resp., predα(v)) be the minimum (resp., maximum) w such that
w ≥ v (resp., w ≤ v) and w is an α-node. We also define succ-ndα(v) to be the minimum
w such that w > v, w is an α-node, and w is not a descendant of v. The following lemma
shows how to efficiently find z.

Lemma 3. Let x∗ be the node from {predα(x), succ-ndα(x)} that minimizes the distance
of lca(x∗, x) to x (if predα(x) does not exist then x∗ = succ-ndα(x) and vice versa). Then,
z = lca(x∗, x).

Proof. First, lca(x∗, x) is an ancestor of x and an ancestor of an α-node that is not a
descendant of x (the node x∗). Now, consider some ancestor x′ of x that is closer to
x than lca(x∗, x). In other words, lca(x∗, x) is a proper ancestor of x′. By definition
lca(predα(x), x) is an ancestor of x∗, and therefore lca(predα(x), x) is a proper ancestor of
x′. Since predα(x) < x, it follows that predα(x) < x′. Therefore, predα(x) < x′′ for every
descendant x′′ of x′. Similarly, succ-ndα(x) > x′′ for every descendant x′′ of x′. From the
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definition of predα(x) and succ-ndα(x), x′ does not have an α-descendant that is not a
descendant of x. Since this is true for every x′, the lemma follows.

Finding predα(x) and succ-ndα(x) can be done using rank and select queries on PT .
Moreover, computing lca(x′, x) and its distance to x can be done using the tree data
structure of T .

The next lemma shows how to find y.

Lemma 4. Let v be a node in Zα, and let w be the nearest descendant of v that is in Yα.
Then, w = lca(succα(v), predα(rightmost leaf(v))).

Proof. Suppose first that w does not have color α. Since w ∈ Yα, w has at least
two children that are in Zα. Let w′, w′′ be the first and last children of w that are in
Zα, respectively. Every α-descendant of v is also a descendant of w. It follows that
succα(v) is a descendant of w′ and predα(rightmost leaf(v)) is a descendant of w′′. Thus,
lca(succα(v),predα(rightmost leaf(v))) = lca(w′, w′′) = w.

If w has color α then succα(v) = w and predα(rightmost leaf(v)) is a descendant of w.
Therefore, lca(succα(v),predα(rightmost leaf(v))) = w.

We now show how to find the nearest α-non-descendant of y. We use the approach
of [20]. For the case σ = wO(1) let L = f(n) where f is an integer function that satisfies
f(n) = ω(1) and f(n) = O(log n), and for larger σ let L = dlog log σ

logwe. We say that a color α
is frequent if the number of α-nodes is at least L. Given a query x, α, finding whether α is
frequent can be done by performing a rank query on PT . If α is non-frequent, the query
can be answered in O(L) time by enumerating all α-nodes (by computing selectα(PT , k)
for all k) and computing the distance between x and each enumerated node. For the rest
of the section, we describe how to handle queries in which the color is frequent.

We apply the tree decomposition of Section 2.1 on Tα with parameter L and obtain
the tree TLα . For a node vS in TLα let Vα(vS) be the set of α-nodes in V (vS). Due to the
properties of the tree decomposition we have that for two nodes u, v ∈ Yα, lca(u, v) is a
node in the tree S in the decomposition for which vS = lca(map(u),map(v)) (if lca(u, v)
is not the root of S then map(lca(u, v)) = vS and otherwise map(lca(u, v)) = parent(vS)).

We assign weights to each node vS of TLα as follows.

• w1(vS) is the distance between the boundary nodes of S.

• w2(vS) (resp., w3(vS)) is the shortest distance between the root (resp., boundary
leaf) of S and a node in Vα(vS). If Vα(vS) = ∅ then w2(vS) = w3(vS) =∞.

Let v and v′ be two nodes of TLα , and let P be the path from v to v′. The weighted distance
from v to v′ is the sum of the following values.

1. w1(u) for every node u 6= v, v′ which is on P and the parent of u is also on P .

2. w2(v
′) if v′ is not an ancestor of v.

3. w3(v
′) if v′ is an ancestor of v.

The descendant (resp., non-descendant) of v with minimum weighted distance of v (with
ties broken arbitrarily) will be denoted wnearest-d(v) (resp., wnearest-nd(v)).

Our approach for finding the nearest α-non-descendant of y is based on the following
observation.
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Observation 5. Let vS 6= vS′ be two nodes of TLα , and u be a node in S. The shortest
distance between u and a node in Vα(vS′) is equal to the weighted distance from vS to vS′

plus the distance between u and the boundary leaf of S if vS′ is a descendant of vS, and
the distance between u and the root of S otherwise.

Corollary 6. Let vS be a node of TLα . Let u be a node in S and u′ be the nearest α-
non-descendant of u. If u is not the root of S then u′ ∈ Vα(vS) ∪ Vα(wnearest-nd(vS)) ∪
Vα(wnearest-d(vS)) and otherwise u′ ∈ Vα(parent(vS)) ∪ Vα(wnearest-nd(parent(vS))).

Based on Corollary 6, the algorithm for finding the nearest α-non-descendant of y is
as follows.

1. Find z using Lemma 3.

2. Compute y = lca(succα(z),predα(rightmost leaf(z))).

3. Compute y′ = lca(map(succα(z)),map(predα(rightmost leaf(z)))) and y′′ = parent(y′).

4. Enumerate all nodes in Vα(y′)∪Vα(wnearest-nd(y′))∪Vα(wnearest-d(y′))∪Vα(y′′)∪
Vα(wnearest-nd(y′′)) that are not descendants of y, compute their distances to y,
and return the node that is nearest to y.

In order to perform steps of the algorithm efficiently, we store the following.

• For each tree Tα we store the tree TLα using the data structure from [20] (see Sec-
tion 2.2), where the marked nodes of Tα are the α-nodes.

• A lookup table that contains for every tree S of size at most L′ = b18 log n/ logLc
with weights w1, w2, w3 on its nodes, a vector AS that contains for every node u in
S, the node u2 in S whose weighted distance from u is minimum.

• Let T ′ be a tree obtained by connecting the roots of the trees TLα to a new node
whose w1, w2, w3 weights are ∞. Apply the tree decomposition of Section 2.1 on T ′.
Namely, T ′ is partitioned into micro-trees of size at most L′. For every micro-tree S
we store the nodes in T ′ with minimum weighted distances to the root of S and to
the boundary leaf of S.

• For every micro-tree S of T ′, a pointer to the vector AS in the lookup table.

Using this information, the queries map(·), wnearest-d(·) and wnearest-nd(·) are performed
in O(1) time. Therefore, the nearest α-non-descendant of y can be found in time ω(1) for
σ = wO(1) and O(log log σ

logw ) for larger σ.
Finally, we describe how to find the nearest α-descendant of a node v (recall that we

need to find the nearest α-descendants of x and y). For every frequent color α, let Aα be
an array containing the depths of the α-nodes in preorder. Let A be the concatenation of
the Aα arrays. We store the RMQ structure of Fischer and Heun [11] on A, with c(n) = L.
Note that our structure does not store A. However, any element of A can be computed in
O(1) time using select query on PT and depth query on T .

To find the nearest α-descendant of a node v, find the range [i, j] of preorder ranks of the
α-descendants of v as follows: i = rankα(PT , v−1)+1 and j = rankα(PT , rightmost leaf(v)).
Then perform an RMQ(Aα, i, j) query and return the corresponding node.

We now analyze the space complexity of our structure. The space of the rank-select
structure on PT is nH0(PT ) + o(n) for σ = wO(1) and nH0(PT ) + o(nH0(PT )) + o(n) for
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larger σ. The space for the tree T is 2n + o(n). We now show that all the additional
structures use o(n) bits. The space for the trees TLα is O(n/L · logL) = o(n) bits. The
number of unweighted trees of size at most L′ is at most 22L

′
. The number of ways to

assign weights w1, w2, w3 to the nodes of a tree of size at most L′ (where each weight

is from {0, . . . , L − 1,∞}) is at most (L+ 1)3L
′
. Therefore, the number of entries in

the lookup table is at most 22L
′ · (L+ 1)3L

′
< 24L

′ logL ≤ 2
1
2
logn =

√
n. Each entry takes

O(L′ logL′) = O(log n log log n) bits. Therefore, the space of the lookup table is o(n). The
information stored for the micro-trees of T ′ takes O((n/L)/L′ · log n) = O((n/L) logL) =
o(n) bits. The space of the RMQ structure is O(n/L). Therefore, the space of the
additional structures is o(n).
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