
On Almost Monge All Scores Matrices

Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelson

Department of Computer Science, Ben-Gurion University of the Negev.

{karmela,dekelts,michaluz}@cs.bgu.ac.il

Abstract

The all scores matrix of a grid graph is a matrix containing the optimal scores of paths from every

vertex on the �rst row of the graph to every vertex on the last row. This matrix is commonly used

to solve diverse string comparison problems. All scores matrices have the Monge property, and this

was exploited by previous works that used all scores matrices for solving various problems. In this

paper, we study an extension of grid graphs that contain an additional set of edges, called bridges.

Our main result is to show several properties of the all scores matrices of such graphs. We also give

an O(r(nm+n2)) time algorithm for constructing the all scores matrix of an m×n grid graph with

r bridges.

1998 ACM Subject Classi�cation F.2.0 Nonnumerical Algorithms and Problems

Keywords and phrases Sequence alignment, longest common subsequences, DIST matrices, Monge

matrices, all path score computations.

Digital Object Identi�er 10.4230/LIPIcs...

1 Introduction

String comparison is a fundamental problem in computer science that has applications in

computational biology, computer vision, and other areas. String comparison is often per-

formed using sequence alignment : The characters of two input strings are aligned to each

other, and a scoring function gives a score to the alignment according to pairs of the aligned

characters and unaligned characters. The goal of the string alignment problem is to seek an

alignment that maximizes (or minimizes) the score. Common scoring functions are the edit

distance score, and the LCS (longest common subsequence) score.

All scores matrices were introduced by Apostolico et al. [3] in order to obtain fast parallel

algorithms for LCS computation. The all scores matrix of two strings A and B is a (|B|+1)×
(|B| + 1) matrix that stores the optimal alignment scores between A and every substring

of B. More precisely, the element at row i and column j in the matrix is the optimal

alignment score between A and B[i..j]. All scores matrices are also called DIST matrices [3]

or semi-local score matrices [34].

The problem of e�ciently constructing the all scores matrix of two strings has been stud-

ied in several papers [1�3,16,20,22�25,29,34,35]. All scores matrices provide a very powerful

tool that can be also used for solving many problems on strings: optimal sequence align-

ment computation [10], approximate tandem repeats [27, 33], approximate non-overlapping

repeats [6, 18, 33], common substring alignment [26, 28], sparse spliced alignment [19, 32],

alignment of compressed strings [14], fully-incremental string comparison [17, 31, 34], and

other problems.

The alignment problem on strings A and B can be represented by using an (|A| +

1) × (|B| + 1) grid graph, known as the alignment graph (cf. [33]). Vertical (respectively,

horizontal) edges correspond to alignment of a character in A (respectively, B) with a gap,

and diagonal edges correspond to alignment of two characters in A and B. A path from

© Amir Carmel, Dekel Tsur, and Michal Ziv-Ukelson;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 On Almost Monge All Scores Matrices

(a) (b)

Figure 1 The crossing paths property yielding the Monge property in grid graphs. In Figure (a),

the dark gray path is an optimal path from (0, 1) to (4, 5), and the light gray path is an optimal

path from (0, 2) to (4, 4). These two paths cross at the vertex v. Figure (b) shows that a path from

(0, 1) to (4, 4) can be obtained by taking the pre�x of the dark gray path until v, and the su�x

of the light gray path from v. Similarly, a path from (0, 2) to (4, 5) can be obtained by taking the

pre�x of the light gray path until v, and the su�x of the dark gray path from v. The sum of scores

of the new paths is equal to the sum of scores of the former paths, which is equal to D[1, 5]+D[2, 4].

Since the new paths are not necessarily optimal, we obtain that D[1, 4]+D[2, 5] ≥ D[1, 5]+D[2, 4].

the j-th vertex on row i to the j′-th vertex on row i′ corresponds to an alignment of A[i..i′]

and B[j..j′]. The all scores matrix is therefore a matrix that contains the maximum (or

minimum) scores of paths from vertices on the �rst row of the alignment graph to the

vertices on the last row.

For an n × n matrix D, its density matrix D� is an (n − 1) × (n − 1) matrix, where

D�[i, j] = D[i, j] +D[i− 1, j − 1]−D[i− 1, j]−D[i, j − 1]. A matrix is called Monge if its

density matrix is either non-negative or non-positive, and unit Monge if every row or column

of the density matrix contains at most one non-zero element, and all the non-zero elements

are equal to 1. All scores matrices of grid graphs are Monge matrices, this follows from the

crossing paths property of the grid graph: If P1 and P2 are two paths from vertices on the

�rst row to vertices on the last row of the graph, where on the �rst row the endpoint of P1

appears before the endpoint of P2, and on the last row the endpoint of P1 appears after the

endpoint of P2, then the paths P1 and P2 must cross. This is illustrated in Figure 1. The

Monge property is crucial for many of the algorithms for constructing all score matrices and

for their applications. When the scoring function is the LCS score, the all scores matrix is

unit Monge [35].

In this paper we extend the classical grid graphs to include an additional set of edges.

These additional edges are of form ((i, j), (i′, j′)) where i′ ≥ i and j′ ≥ j, and either

i′ > i+ 1 or j′ > j + 1 (see Figure 2a). We call these edges bridges. The bridges represent

correspondence between pairs of substrings, one per each input sequence, which could be

precomputed using an auxiliary adviser. In grid graphs enhanced with bridges, the crossing

paths property no longer holds, and so the all scores matrix does not necessarily have the

Monge property (see Figure 2).

Motivating examples of grid graphs enhanced with bridges are found in the domain of

computational biology. Here, bridges are often used to incorporate additional information

that is known about the function and the physical structure of the aligned biomolecules and

of their components [7, 13, 30]. One such example is found in a problem denoted �sequence

alignment guided by motifs�. Here, each one of the input sequences is �rst subjected to a

parsing step in which meaningful substrings within it are identi�ed and labeled. Substrings

sharing the same label could be instantiations of the same motif shared by members of a

protein family [15], particular DNA or RNA substrings of similar structure or function [5],

or conserved molecular binding sites shared by multiple sequences that are combinatorially

A. Carmel, D. Tsur, and M. Ziv-Ukelson XX:3

regulated in some biological pathway. Note that two substrings identi�ed as belonging to

the same motif family could be quite diverged in sequence, as it is the function, rather

than the exact sequence, that is conserved in functional motifs. Yet, pairs of substrings

sharing the same motif label are expected to be highly conserved in their location and order

of occurrences within homologous genomic sequences. To incorporate this information, the

alignment grid graph is enhanced with bridges re�ecting pairs of substrings belonging to

the same motif family, one from each sequence, and weights are assigned to these additional

edges based on some a-priori scoring scheme expressing the importance of conserving the

motifs in the alignment [4, 5, 9, 11].

Our contribution and roadmap

In this paper, we consider grid graphs with bridges, and we assume that the non-bridge

edges have 0/1 weights. We note that grid graphs with arbitrary bounded integer weights

on the non-bridge edges can be reduced to grid graphs with 0/1 weights [34], and thus we

will only consider the 0/1 weights scheme. However, this reduction is only quasi-polynomial:

If the weights of non-bridge edges in the original grid graph are integers between −C and

C, the reduction increases the size of graph by a factor of Θ(C2).

Our main result is to show the following properties of the non-zero values in the density

matrix of an all scores matrix of a grid graph with r bridges (see Figure 2 for an example).

1. All the non-zero values in the density matrix are −1 or 1, except for O(r2) values in

speci�c locations in the matrix.

2. In every row or column, except for r speci�c rows and r speci�c columns, the number of

non-zero values is O(r).

In particular, the number of non-zero values in the density matrix isO(rn). Thus, if r = o(n),

the all scores matrix is �almost Monge�. Property 1 will be proved in Section 2 (Theorem 3),

and Property 2 in Sections 3. Due to space constraints, we only prove Property 2 for the

case of a single bridge.

As a consequence of our main result, we obtain an algorithm for computing the all

scores matrix for grid graphs with bridges in O(r(nm+ n2)) time. This algorithm is based

on Schmidt's algorithm [33] for grid graphs with no bridges, and utilizes the properties

described above. See below for comparison of this algorithm with previous results. The

algorithm is given in Section 4 (Theorem 20).

Due to space constraints, some proofs were omitted.

Related work

Our algorithm mentioned above computes the optimal scores of paths from every vertex in

a speci�c set of vertices (the vertices on the �rst row) to every vertex in the graph. This

problem is called multiple source shortest paths (MSSP) problem. Algorithms for solving

MSSP were proposed by several previous works. Schmidt [33] gave an MSSP algorithm

for grid graphs with general weights. This algorithm constructs the all scores matrix in

O((nm + n2) log n) time. For grid graphs with bounded integers weights, Schmidt gave an

algorithm that constructs the all scores matrix in O(mn) time. Tiskin [34] gave an MSSP

algorithm for grid graphs with bounded integer weights that constructs the all scores matrix

in O(mn(log log n/ log n)2) time. The results on grid graphs have been extended to general

planar graphs. Klein [21] gave an algorithm for MSSP on planar graphs with general weights.

The algorithm constructs the all scores matrix of a grid graph in O((nm + n2) log n) time.

Eisenstat and Klein [12] gave an algorithm for MSSP on undirected planar graphs with

XX:4 On Almost Monge All Scores Matrices

bounded integer weights, which is faster than the algorithm of Klein by a factor of Θ(log n).

Cabello et al [8] extended the result of Klein to graphs that can be embedded on a surface

with genus g. Since a grid graph with r bridges can be embedded on a surface with genus r,

the algorithm of Cabello et al. constructs the all scores matrix of a grid graph with r bridges

and general weights in O(rn2 log2 n) time. Cabello et al. also gave a randomized algorithm

whose running time is O(rn2 log n) with high probability. Our algorithm improves the result

of Cabello et al. by a factor of Θ(log2 n) for the case of bounded integer weights.

2 Preliminaries and basic problem properties

A grid graph with bridges is a directed graph G = (V,E) whose vertex set is V = {(i, j) :

0 ≤ i ≤ m, 0 ≤ j ≤ n}, and whose edge set consists of four types of edges:

1. Horizontal edges: ((i, j), (i, j + 1)) for every pair of indices i, j satisfying 0 ≤ i ≤ m and

0 ≤ j < n.

2. Vertical edges: ((i, j), (i + 1, j)) for every pair of indices i, j satisfying 0 ≤ i < m and

0 ≤ j ≤ n.
3. Diagonal edges: Edges of the form ((i, j), (i+ 1, j + 1)).

4. Bridges: Edges of the form ((i, j), (i′, j′)) where i ≤ i′ and j ≤ j′, and either i + 1 < i′

or j + 1 < j′.

In our framework, the horizontal and vertical edges have weight 0, the diagonal edges have

weight 1, and each bridge has a positive integer weight. The score of a path is the sum of

the weights of its edges. The 0/1 weights of the non-bridge edges correspond to the LCS

scoring scheme for sequence alignment.

Let G be a grid graph with bridges f1, . . . , fr. For a path P in G, if the �rst bridge P

passes through is fs, we say that P is an s-path. If P does not pass through bridges, we say

that P is a 0-path. The reason for focusing on the �rst bridge is to obtain a variant of the

crossing path property which will be given in Lemma 12.

We de�ne matrices D, D�, and Dfirst as follows (see Figure 2).

1. For 0 ≤ i ≤ j ≤ n, D[i, j] is the maximum score of a path from (0, i) to (m, j). For i > j,

D[i, j] = j − i. The matrix D is called the all scores matrix of G.

2. For 1 ≤ i, j ≤ n, D�[i, j] = (D[i, j] + D[i − 1, j − 1]) − (D[i − 1, j] + D[i, j − 1]). The

matrix D� is called the density matrix of D.

3. For 0 ≤ i, j ≤ n, Dfirst[i, j] is a subset of the set S = {0, 1, . . . , r} of bridge indices. For
every s ∈ S, s ∈ Dfirst[i, j] if and only if there is an s-path from (0, i) to (m, j) with score

D[i, j].

To illustrate the importance of this matrix, consider a region inDfirst in which all elements

contain the same symbol s. Then, the crossing path property holds for indices in the region

(since the two paths pass through fs), so we obtain that the Monge property holds inside

the region.

Next, we point out the entries in D and in D� that are a�ected by a bridge in G. For

some bridge fk = ((i, j), (i′, j′)), we de�ne start(fk) = j and end(fk) = j′. We also de�ne

Ek = {(i, j) : i ≤ start(fk), j ≥ end(fk)}. In other words, Ek contains all indices (i, j) in

D such that paths from (0, i) to (m, j) can pass through fk. The boundary of fk is a set

of indices in D�, de�ned as Bk = {(i, end(fk)) : i ≤ start(fk) + 1} ∪ {(start(fk) + 1, j) :

j ≥ end(fk)}. The two sets in the de�nition of Bk are called the left boundary and bottom

boundary of fk, respectively. We say that an index (i, j) in D is a boundary index if it is

inside the boundary of some fk. An index (i, j) is an intersection index if there are k, k′

A. Carmel, D. Tsur, and M. Ziv-Ukelson XX:5

(a) Grid graph

-1

-1-2

-1-2-3

-1-2-3-4

-1-2-3-4-5

-1-2-3-4-5-6

-1-2-3-4-5-6-7

-1-2-3-4-5-6-7-8

-1-2-3-4-5-6-7-8-9

-1-2-3-4-5-6-7-8-9-10

0 1 2 3 4 7 7 7 7 7 8

0 1 2 3 7 7 7 7 7 7

0 1 2 7 7 7 7 7 7

0 1 2 3 4 5 6 7

0 1 2 4 4 5 6

0 1 4 4 4 5

0 4 4 4 4

0 1 2 3

0 1 2

0 1

0

(b) D

-4

-1

-3

-1

-1

-1

1

1

1

1

1

1 1

1 1 1 1

1

1

(c) D�

0

0

0

0

0

0

0

0

0

0

0

0 0 0 00 0,1

0 0 0 1 0,1

0 0 1 1

0 0 0 0

20 0

20

0

0

0

0

00

1 1 1 1

1 1 1 1

1 1 1 0,1

0 0 00,2

0,2 00

2 0,2 0

2 2 2 0,2

(d) Dfirst

Figure 2 Figure (a) contains an example of a grid graph with two bridges. The weight of the

bridge f1 = ((1, 2), (9, 5)) is 7, and the weight of the bridge f2 = ((0, 6), (9, 7)) is 4. The matrices

D, D�, and Dfirst of the graph are shown in Figures (b), (c), and (d), respectively. Only the non-

zero values of the density matrix are shown. The boundary indices are marked in grey, and the

intersection indices are marked with darker grey. As stated in the text, each column or row of the

density matrix can contain at most two negative values in non-boundary indices, and these values

must be −1. The value of D�[3, 5] is 2 + 2 − 7 − 1 = −4, and these four values in D are marked

in (b). The cause of the negative value in D�[3, 5] is that the corresponding optimal paths do not

cross.

(possibly k = k′) such that (i, j) is in the left boundary of fk and in the bottom boundary

of fk′ (see Figure 2c).

In the introduction we gave two properties of the density matrix. We now restate these

properties using the de�nitions above.

1. Non-zero values other than −1, 1 can appear only at intersection indices.

2. In every row or column, the number of −1 values in non-boundary indices is at most r,

and the number of 1 values in these indices is at most r.

Due to space constraints, we show these properties only for negative values. We will prove

the properties for the positive values in the full version of the paper. Due to symmetry, we

will show Property 2 only for columns.

Note that if i > j+1, D�[i, j] = (j−i)+((j−1)−(i−1))−(j−(i−1))−((j−1)−i) = 0.

If i = j + 1 then D�[i, j] = −D[j, j], so in this case D�[i, j] = 0 unless there is a bridge

fk with start(fk) = end(fk) = j, in which case (i, j) is an intersection index. Similarly,

for i = j, D�[i, j] ∈ {0, 1} unless one of the following two cases occurs: (1) There is a

bridge fk with start(fk) = j − 1 and end(fk) = j. (2) There are bridges fk and fk′ with

XX:6 On Almost Monge All Scores Matrices

start(fk) = end(fk) = j − 1 and start(fk′) = end(fk′) = j. In both cases (i, j) is an

intersection index. Therefore, the properties stated above are satis�ed for indices (i, j) with

i ≥ j. In the rest of the paper we will implicitly assume that indices (i, j) in D� satisfy

i < j.

We now give a proof for Property 1. For this goal, we need the following de�nition and

lemma.

I De�nition 1. A pair of indices (i1, j1), (i2, j2) in the matrix D are said to be bridge

equivalent if for every 1 ≤ k ≤ r, (i1, j1) ∈ Ek if and only if (i2, j2) ∈ Ek. In other words,

(i1, j1), (i2, j2) are bridge equivalent if paths from (0, i1) to (m, j1) and paths from (0, i2) to

(m, j2) can pass through the same set of bridges.

I Lemma 2. For every i, j,

1. If (i, j − 1) and (i, j) are bridge equivalent, D[i, j − 1] ≤ D[i, j] ≤ D[i, j − 1] + 1.

2. If (i− 1, j) and (i, j) are bridge equivalent, D[i, j] ≤ D[i− 1, j] ≤ D[i, j] + 1.

Property 1 is now obtained.

I Theorem 3. Negative values other than −1 can appear only at intersection indices.

Proof. Let (i, j) be an index that is not an intersection index. We have that either (1)

(i, j − 1), (i, j) are bridge equivalent, and (i − 1, j − 1), (i − 1, j) are bridge equivalent, or

(2) (i − 1, j), (i, j) are bridge equivalent, and (i − 1, j − 1), (i, j − 1) are bridge equivalent.

In the former case we can rearrange the terms in the de�nition of D�[i, j] and obtain that

D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] and ∆2 = D[i−1, j]−D[i−1, j−1]. We

have ∆1−∆2 < 0, and by Lemma 2, ∆1,∆2 ∈ {0, 1}. It follows that ∆1 = 0 and ∆2 = 1, so

D�[i, j] = −1. In the latter case we write D�[i, j] = ∆′1−∆′2 where ∆′1 = D[i, j]−D[i−1, j]

and ∆2 = D[i, j − 1] −D[i − 1, j − 1]. By Lemma 2, in this case ∆′1 = −1 and ∆′2 = 0, so

again D�[i, j] = −1. J

We next give several lemmas which will be used later to prove Property 2 in Section 3.

I De�nition 4. An index (i, j) which is not a boundary index and for which D�[i, j] < 0 is

called an injury. The submatrices D[i − 1..i, j − 1..j] and Dfirst[i − 1..i, j − 1..j] are called

the submatrices of D and Dfirst corresponding to the injury, respectively.

I Lemma 5. For an injury (i, j), D[i− 1..i, j − 1..j] = (x x+1
x x) for some x.

Proof. As in the proof of Theorem 3, D�[i, j] = ∆1−∆2, where ∆1 = D[i, j]−D[i, j−1] = 0

and ∆2 = D[i − 1, j] − D[i − 1, j − 1] = 1. Thus, D[i − 1..i, j − 1..j] is of the form

(y y+1
x x). We also have D�[i, j] = ∆′1 − ∆′2 where ∆′1 = D[i, j] − D[i − 1, j] = −1 and

∆′2 = D[i, j − 1]−D[i− 1, j − 1] = 0. The lemma follows. J

Our next goal is to show that every column in the density matrix contains at most r

injuries. Consider a �xed column, and assume that this column has k injuries.

I De�nition 6. Let Di =
(
γi βi

αi δi

)
be the submatrix of Dfirst corresponding to the i-th

injury, where the injuries are numbered in increasing row indices.

Our approach for proving that k ≤ r is based on showing properties of the Dfirst matrix.

One of our techniques is showing that there are forbidden structures in Dfirst. For example,

Lemma 10 below states that a structure consisting of a symbol s ∈ βi and s ∈ αj for j ≥ i

is forbidden. For the case of r = 1, applying this lemma with i = j implies that there are

A. Carmel, D. Tsur, and M. Ziv-Ukelson XX:7

only two possible values for αi, βi: either {0}, {1} or {1}, {0}. If we assume conversely that

there are k = 2 injuries, then there are four possible values for α1, β1, α2, β2. We then use

Lemma 10 and an additional lemma (Lemma 12) that gives another forbidden structure in

Dfirst, and show that each of these four cases cannot occur. This is a contradiction, and

therefore there cannot be two injuries.

I Lemma 7. For every i, j,

1. If (i, j − 1) and (i, j) are bridge equivalent,

a. If D[i, j − 1] = D[i, j] then Dfirst[i, j − 1] ⊆ Dfirst[i, j].

b. If D[i, j − 1] + 1 = D[i, j] then Dfirst[i, j] ⊆ Dfirst[i, j − 1].

2. If (i− 1, j) and (i, j) are bridge equivalent,

a. If D[i, j] = D[i− 1, j] then Dfirst[i, j] ⊆ Dfirst[i− 1, j].

b. If D[i, j] + 1 = D[i− 1, j] then Dfirst[i− 1, j] ⊆ Dfirst[i, j].

Proof. We �rst prove the �rst part of the lemma. Choose a value s ∈ Dfirst[i, j − 1]. Let P

an s-path from (0, i) to (m, j−1) with score D[i, j−1]. The path P ′ obtained by appending

the vertex (m, j) to P is an s-path from (0, i) to (m, j) with score D[i, j − 1] = D[i, j]

Therefore, s ∈ Dfirst[i, j].

We next prove the second part of the lemma. Let s ∈ Dfirst[i, j], and let P be an s-path

from (0, i) to (m, j) with score D[i, j]. Since (i, j − 1),(i, j) are bridge equivalent, P cannot

pass through a bridge f with end(f) > j−1, so P has vertices on column j−1. Denote by k

the maximal index such that (k, j− 1) ∈ P . The path P ′ obtained by taking the pre�x of P

until (k, j−1), and appending the vertices (k+1, j−1), . . . , (m, j−1) is an s-path from (0, i)

to (m, j − 1) with score at least D[i, j]− 1 = D[i, j − 1]. It follows that s ∈ Dfirst[i, j − 1].

The proofs of the third and fourth parts of the lemma are symmetrical to the proofs of

the �rst two parts, and thus they are omitted. J

The following lemma follows directly from Lemmas 5 and 7.

I Lemma 8. For every i, αi ⊆ γi ∩ δi and βi ⊆ γi ∩ δi
In order to restrict values of D in indices for which the entries in Dfirst contain the same

symbol s, we de�ne a matrix Ds as follows. For a symbol s ∈ S, let Ds be a matrix in which

for every (i, j) ∈ Es, Ds[i, j] is the maximum score of an s-path from (0, i) to (m, j). For

s = 0, Ds is de�ned as above, except that Ds[i, j] is de�ned for every 0 ≤ i, j ≤ n. Note

that Ds[i, j] ≤ D[i, j] for every (i, j) for which Ds[i, j] is de�ned.

I Lemma 9. For every s ∈ S, the matrix Ds has the Monge property.

Proof. For s = 0 the lemma is true due to the crossing paths property for grid graphs with

no bridges. For s > 0 we also have the crossing paths property: For every index (i, j), a

maximum score s-path from (0, i − 1) to (m, j) must cross a maximum score s-path from

(0, i) to (m, j − 1) as both paths pass through fs. Thus, the lemma follows. J

I Lemma 10. For every 1 ≤ i ≤ j ≤ k, βi ∩ αj = ∅.

Proof. Fix i ≤ j, and assume conversely that s ∈ βi ∩ αj . By Lemma 5, the submatrices of

D corresponding to injuries i and j are D′ = (x x+1
x x) for some x, and D′′ =

(
y y+1
y y

)
for some

y, respectively (see Figure 3). Let D′s and D
′′
s be the submatrices of Ds that correspond to

D′ and D′′, respectively. From the assumption s ∈ βi and Lemma 8, we have that s ∈ γi.
Thus, the �rst row of D′s is equal to the �rst row of D′. Similarly, we have that s ∈ δj and
therefore the last row of D′′s is equal to the last row of D′′. By taking the �rst row of D′s
and the last row of D′′s , we obtain that Ds contains a submatrix

(
x x+1
y y

)
and therefore Ds

does not have the Monge property. This contradicts Lemma 9. J

XX:8 On Almost Monge All Scores Matrices

(a) (b) (c)

Figure 3 An illustration of the proof of

Lemma 10. The grey s symbols in �gure (a) rep-

resent values that are obtained using Lemma 8.

Figure 4 An illustration of the proof of

Lemma 12.

Finally, we give another forbidden structure in Dfirst, based on a variant of the crossing path

property.

I De�nition 11. Let � be a linear order on S = {0, 1, . . . , r} de�ned as follows. For every

i 6= j, i � j if and only if start(fi) ≤ start(fj), where start(f0) =∞.

I Lemma 12. Let di, dj , dk be values on rows i, j, k of some column i′ of Dfirst, where

i < j < k. Then, there are no s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk, and t ∈ dj.

Proof. Assume conversely that there are s, t ∈ S such that s � t, s ∈ di ∩ dk, t /∈ di ∪ dk,
and t ∈ dj . Note that s 6= 0 since by de�nition, 0 6� t.

Let Pi, Pk be maximum score s-paths from (0, i) and (0, k) to (m, i′), respectively. Let

Pj be a maximum score t-path from (0, j) to (m, i′). Since s � t, in the subgraph of G that

contains the vertices above and to the left of the start vertex of fs, the paths Pi, Pj , Pk do

not pass through bridges (see Figure 4). Thus, Pj must cross one of the paths Pi and Pk.

Assume without loss of generality that Pj crosses Pk.

Let P 1
j , P

1
k denote the pre�xes of Pj , Pk until the crossing point, and let P 2

j , P
2
k denote

the su�xes of Pj , Pk from the crossing point. Let y, z denote the scores of the paths Pj , Pk,

respectively, and let a, b denote the score of the paths P 1
j , P

1
k , respectively.

We have that the path P 1
k ∪P 2

j is a t-path from (0, k) to (m, i′). Since t 6∈ dk, we conclude
that b+(y−a) < z. Furthermore, due to the path P 1

j ∪P 2
k we have a+(z−b) ≤ y. Summing

the two inequalities above we obtain y + z < y + z, a contradiction. J

3 Properties of the one bridge case

In this section we assume the grid graph has a single bridge, f = ((ibeg, jbeg), (iend, jend)),

and show that there is at most one injury in every column of D�.

I Theorem 13. There is at most one injury in every column of D�.

Proof. Fix some column of D�, and suppose conversely that there are at least two injuries

in this column. Recall that Di =
(
γi βi

αi δi

)
is the submatrix of Dfirst corresponding to the i-th

injury. By Lemma 10, αi ∩ βi = ∅, and since αi and βi are non empty subsets of S = {0, 1},
it follows that either Di is of the form (· 1

0 ·) or Di is of the form (· 0
1 ·). Considering the �rst

two injuries, there are four possible cases (see Figure 5):

1. D1, D2 are of the form (· 1
0 ·).

2. D1, D2 are of the form (· 0
1 ·).

3. D1 is of the form (· 1
0 ·) and D2 is of the form (· 0

1 ·).

A. Carmel, D. Tsur, and M. Ziv-Ukelson XX:9

(a) (b) (c) (d)

Figure 5 The four cases for two injuries in the proof of Theorem 13. The grey 0 in �gure (a)

represents a value that is obtained using Lemma 8.

4. D1 is of the form (· 0
1 ·) and D2 is of the form (· 1

0 ·).

We now show that each of the cases above yields a contradiction. In Case 1, we have from

Lemma 8 that 0 ∈ δ1. We now apply Lemma 12 on β1, δ1, β2 and obtain a contradiction

(taking s = 1 and t = 0). Case 2 yields a contradiction using similar arguments. In Cases 3

and 4, we have 1 ∈ β1 ∩ α2 and 0 ∈ β1 ∩ α2, respectively, which is a contradiction to

Lemma 10. J

Theorem 13 implies the following corollary.

I Corollary 14. For j 6= jend there are at most two negative values in column j of D�.

Moreover, the negative values can occur only in rows 1, . . . , jbeg + 1, and if there are two

negative values, one of the values must be in row jbeg + 1.

Proof. The column j can contain at most one injury. The column j has at most one

boundary index, so there is at most one negative value in addition to the injury. J

4 Algorithm for constructing all-scores matrices

In this section we give an algorithm for computing the all scores matrix of a grid graph

with bridges. Our algorithm is an extension of the algorithm of Schmidt for a grid graph

without bridges [33]. We follow the presentation of Schmidt's algorithm which was given in

Matarazzo et al. [29]. For clarity of presentation, we will �rst describe an algorithm for the

case of a single bridge, and we will later handle the case of r > 1 bridges.

Let f = ((ibeg, jbeg), (iend, jend)) be the single bridge of the grid graph, and letWf denote

its weight.

Let G0, . . . , Gm be grid graphs, where Gi is the subgraph of G induced by all the vertices

(i′, j) with i′ ≤ i. Let D0, . . . , Dm be the all scores matrices of G0, . . . , Gm, respectively.

For 0 ≤ k ≤ n, de�ne

DiffCi,j(k) = Di[k, j + 1]−Di[k, j] and DiffRi,j(k) = Di+1[k, j]−Di[k, j].

The following lemma follows from the de�nition above.

I Lemma 15. For i ≤ m, if all DiffCi,j(k) values are known for all j and k, then the

matrix Di can be constructed in O(n2) time.

Our algorithm for constructing the all-scores matrix of G computes all DiffCm,j functions

and then applies Lemma 15. The algorithm is based on the following properties of the

DiffCi,j and DiffRi,j functions.

1. Most DiffCi,j and DiffRi,j functions have compact representations of size O(1).

2. The compact representations of DiffCi+1,j and DiffRi,j+1 can be computed e�ciently

from the compact representations of DiffCi,j and DiffRi,j .

XX:10 On Almost Monge All Scores Matrices

Property 1, stated in Lemma 18, is obtained from Lemmas 16 and 17 below. Property 2

is shown in Lemma 19. Similar properties were used in the algorithm of Schmidt for grid

graphs with no bridges. In that case, all the DiffCi,j and DiffRi,j functions have compact

representations, and the size of each representation is exactly 1. In the case of a grid graph

with a bridge, we need additional steps to handle the DiffCi,j and DiffRi,j functions that

do not have compact representations.

I Lemma 16. For every j 6= jend − 1, DiffCi,j(k) ∈ {0, 1}, and for every i 6= iend − 1,

DiffRi,j(k) ∈ {0, 1}.

Proof. Follows immediately from Lemma 2. J

I Lemma 17. 1. For every i and j 6= jend− 1 there are k1 < k2 (where k2 = jbeg + 1) such

that for every k 6= k1, k2, DiffCi,j(k − 1) ≤ DiffCi,j(k).

2. For every i 6= iend − 1 and j there are k1 < k2 (where k2 = jbeg + 1) such that for every

k 6= k1, k2, DiffRi,j(k − 1) ≥ DiffRi,j(k).

Based on the previous two lemmas, we now give a compact representation for the DiffRi,j
and DiffCi,j functions. The compact representation SRi,j of DiffRi,j is an array of �step�

indices, i.e., the indices in which the value of DiffRi,j change. Formally, let I be the set of

all indices k such that DiffRi,j(k) 6= DiffRi,j(k − 1). Then, SRi,j [l] is the l-th smallest

element of I. The arrays SCi,j are de�ned similarly.

I Lemma 18. For every i 6= iend − 1 and j 6= jend − 1, the arrays SRi,j and SCi,j have

O(1) elements each.

In the following lemma we show that SCi+1,j and SRi,j+1 can be computed e�ciently from

SCi,j and SRi,j . For every (i, j) 6= (iend − 1, jend − 1) and k ≤ j, the optimal path from

(0, k) to (i+ 1, j + 1) passes through either (i+ 1, j), (i, j), or (i, j + 1). Thus,

Di+1[k, j + 1] = max{Di+1[k, j], Di[k, j] +Wi,j , Di[k, j + 1]},

where Wi,j = 1 if there is a diagonal edge entering (i, j) and Wi,j = 0 otherwise. From the

equality above, the following formulas forDiffCi+1,j andDiffRi,j+1 are obtained (see [29]).

I Lemma 19. For 0 ≤ k ≤ j and (i, j) 6= (iend − 1, jend − 1),

DiffCi+1,j(k) = Maxi,j(k)−DiffRi,j(k) and DiffRi,j+1(k) = Maxi,j(k)−DiffCi,j(k)

where Maxi,j(k) = max{DiffRi,j(k),Wi,j ,DiffCi,j(k)}.

We will use compact representations SMaxi,j for the Maxi,j functions, which are de�ned

similarly to the SRi,j arrays. From the de�nition of Maxi,j , every step of Maxi,j corre-

sponds to a step of either DiffCi,j or DiffRi,j , and thus the number of elements in SMaxi,j
is less then or equal to the number of elements in both SCi,j and SRi,j . Therefore, SMaxi,j
has O(1) elements for i 6= iend − 1 and j 6= jend − 1.

Our algorithm for computing the arrays SCm,j , traverses every i, j and computes SCi+1,j

and SRi,j+1 from SCi,j and SRi,j using Lemma 19. When i 6= iend−1 and j 6= jend−1, this

computation takes O(1) time by Lemma 18. There are two cases which require a special

treatment. The �rst case is (i, j) = (iend − 1, jend − 1). In this case Lemma 19 can not

be applied and thus SCi+1,j and SRi,j+1 must be computed di�erently. Here we compute

Di+1[k, j], Di[k, j + 1], and Di+1[k, j + 1], for every 0 ≤ k ≤ n. Then, we use these values

to compute DiffCi+1,j(k) and DiffRi,j+1(k) for all k, and �nally we compute SCi+1,j and

SRi,j+1 from DiffCi+1,j and DiffRi,j+1.

A. Carmel, D. Tsur, and M. Ziv-Ukelson XX:11

The values Di+1[k, j] and Di[k, j + 1] are obtained using Lemma 15 in O(n2) time. To

compute the Di+1[k, j + 1] values, we use the equality

Di+1[k, j + 1] = max{Di[k, j + 1], Di[k, j] +Wi,j , Di+1[k, j], Dibeg
[k, jbeg] +Wf}.

The second special case is when i = iend − 1 or j = jend − 1. In this case Lemma 18

does not apply. Therefore, we can only bound the time to compute SCi+1,j and SRi,j+1 by

O(n). Since there are O(n+m) pairs i, j for which this case occurs, the total contribution

of this case to the time complexity of the algorithm is O(n2 + nm).

Extension to r bridges

The algorithm presented above can be extended to the case of r > 1 bridges. In this

case, using the results of the next section we get that for every non-boundary pair (i, j),

DiffCi,j and DiffRi,j are partitioned to O(r) monotone regions and thus their compact

representations SCi,j ,SRi,j have O(r) elements. Therefore, the computation of SCi,j ,SRi,j
for non-boundary indices takesO(rnm) time. As for boundary indices, the technique remains

as in the case of one bridge, only that now there are O(r) intersection indices and O(r(n+m))

boundary indices. Summing the above, the following theorem is obtained.

I Theorem 20. The all scores matrix for an m × n grid graph with r bridges can be con-

structed in O(r(nm+ n2)) time.

References

1 C. E. R. Alves, E. N. Cáceres, and S. W. Song. An all-substrings common subsequence

algorithm. Discrete Applied Mathematics, 156(7):1025�1035, 2008.

2 A. Apostolico, M. J. Atallah, and S. E. Hambrusch. New clique and independent set algorithms

for circle graphs. Discrete Applied Mathematics, 36(1):1�24, 1992.

3 A. Apostolico, M. J. Atallah, L. L. Larmore, and S. McFaddin. E�cient parallel algorithms

for string editing and related problems. SIAM J. on Computing, 19(5):968�988, 1990.

4 A. N. Arslan. Sequence alignment guided by common motifs. In Proceedings of the fourth

Biotechnology and Bioinformatics Symposium, page 30. University of Colorado at Colorado

Springs, 2007.

5 A. N. Arslan. Sequence alignment guided by common motifs described by context free gram-

mars. In Biotechnology and Bioinformatics Symposium (BIOT-2007). Colorado Springs, CO,

2007.

6 G. Benson. A space e�cient algorithm for �nding the best nonoverlapping alignment score.

Theoretical Computer Science, 145(1&2):357�369, 1995.

7 H. L. Bodlaender, M. R. Fellows, and P. A. Evans. Finite-state computability of annotations

of strings and trees. In Combinatorial Pattern Matching, pages 384�391. Springer, 1996.

8 S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths in embedded

graphs. SIAM J. on Computing, 42(4):1542�1571, 2013.

9 J.-P. Comet and J. Henry. Pairwise sequence alignment using a prosite pattern-derived simi-

larity score. Computers & chemistry, 26(5):421�436, 2002.

10 M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A sub-quadratic sequence alignment

algorithm for unrestricted cost matrices. SIAM J. on Computing, 32(5):1654�1673, 2003.

11 Z. Du and F. Lin. Improvement of the needleman-wunsch algorithm. In Rough Sets and

Current Trends in Computing, pages 792�797. Springer, 2004.

12 D. Eisenstat and P. N. Klein. Linear-time algorithms for max �ow and multiple-source shortest

paths in unit-weight planar graphs. In Proc. 45th ACM Symposium on Theory Of Computing

(STOC), pages 735�744, 2013.

XX:12 On Almost Monge All Scores Matrices

13 P. A. Evans. Algorithms and complexity for annotated sequence analysis. PhD thesis, Citeseer,

1999.

14 D. Hermelin, G. M. Landau, S. Landau, and O. Weimann. A uni�ed algorithm for accelerating

edit-distance computation via text-compression. In Proc. 26th Symposium on Theoretical

Aspects of Computer Science (STACS), pages 529�540, 2009.

15 N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S. Langendijk-Genevaux,

M. Pagni, and C. Sigrist. The prosite database. Nucleic acids research, 34(suppl 1):D227�

D230, 2006.

16 H. Hyyrö. An e�cient linear space algorithm for consecutive su�x alignment under edit

distance. In Proc. 15th Symposium on String Processing and Information Retrieval (SPIRE),

pages 155�163, 2008.

17 Y. Ishida, S. Inenaga, A. Shinohara, and M. Takeda. Fully incremental LCS computation.

In Proc. 15th Symposium on Fundamentals of Computation Theory (FCT), pages 563�574,

2005.

18 S. Kannan and E. W. Myers. An algorithm for locating nonoverlapping regions of maximum

alignment score. SIAM J. on Computing, 25(3):648�662, 1996.

19 C. Kent, G. M. Landau, and M. Ziv-Ukelson. On the complexity of sparse exon assembly.

Journal of Computational Biology, 13(5):1013�1027, 2006.

20 S.-R. Kim and K. Park. A dynamic edit distance table. J. of Discrete Algorithms, 2(2):303�

312, 2004.

21 P. N. Klein. Multiple-source shortest paths in planar graphs. In Proc. 16th Symposium on

Discrete Algorithms (SODA), volume 5, pages 146�155, 2005.

22 P. Krusche and A. Tiskin. String comparison by transposition networks. In Proc. of London

Algorithmics Workshop, pages 184�204, 2008.

23 P. Krusche and A. Tiskin. New algorithms for e�cient parallel string comparison. In Proc.

22nd Symposium on Parallel Algorithms and Architectures (SPAA), pages 209�216, 2010.

24 G. M. Landau, E. W. Myers, and J. P. Schmidt. Incremental string comparison. SIAM J. on

Computing, 27(2):557�582, 1998.

25 G. M. Landau, E. W. Myers, and M. Ziv-Ukelson. Two algorithms for LCS consecutive su�x

alignment. J. of Computer and System Sciences, 73(7):1095�1117, 2007.

26 G. M. Landau, B. Schieber, and M. Ziv-Ukelson. Sparse LCS common substring alignment.

Information Processing Letters, 88(6):259�270, 2003.

27 G. M. Landau, J. P. Schmidt, and D. Sokol. An algorithm for approximate tandem repeats.

J. of Computational Biology, 8(1):1�18, 2001.

28 G. M. Landau and M. Ziv-Ukelson. On the common substring alignment problem. J. of

Algorithms, 41(2):338�359, 2001.

29 U. Matarazzo, D. Tsur, and M. Ziv-Ukelson. E�cient all path score computations on grid

graphs. Theoretical Computer Science, 525:138�149, 2014.

30 S. Mozes, D. Tsur, O. Weimann, and M. Ziv-Ukelson. Fast algorithms for computing tree lcs.

Theoretical Computer Science, 410(43):4303�4314, 2009.

31 L. M. S. Russo. Multiplication algorithms for Monge matrices. In Proc. 17th Symposium on

String Processing and Information Retrieval (SPIRE), pages 94�105, 2010.

32 Y. Sakai. An almost quadratic time algorithm for sparse spliced alignment. Theory of Com-

puting Systems, pages 1�22, 2009.

33 J. P. Schmidt. All highest scoring paths in weighted grid graphs and their application to

�nding all approximate repeats in strings. SIAM J. of Computing, 27(4):972�992, 1998.

34 A. Tiskin. Semi-local string comparison: algorithmic techniques and applications.

arXiv:0707.3619v16.

35 A. Tiskin. Semi-local longest common subsequences in subquadratic time. J. Discrete Algo-

rithms, 6(4):570�581, 2008.

	Introduction
	Preliminaries and basic problem properties
	Properties of the one bridge case
	Algorithm for constructing all-scores matrices

