
The maximum subforest problem:

Approximation and exact algorithms

Ron Shamir∗ Dekel Tsur∗

Abstract

We study the maximum subforest problem: Given a tree G and a set of

trees H, find a subgraph G′ of G such that G′ does not contain a subtree

isomorphic to a tree from H, and the number of edges in G′ is maximum.

We give a polynomial time approximation scheme for this problem. We

also give an exact algorithm for this problem whose time complexity is

2O(k2/ log k)n, where n is the number of vertices in G, and k is the total

number of vertices in H.

1 Introduction

A very common problem in algorithmic graph theory and combinatorial opti-
mization is to find in a given graph an optimal subgraph. Examples include the
maximum matching, the maximum clique and the traveling salesman problems.
For a graph property P , the maximum subgraph problem with respect to P is to
find, in a given graph G = (V, E), a largest possible subset of edges E ′ ⊆ E such
that (V, E ′) satisfies P . Such problems are also called edge deletion problems, as
they can be formulated as finding a minimum subset O of the edges such that
G − O satisfies P .

A graph property P is hereditary if for every graph satisfying P , all its vertex-
induced subgraphs also satisfy P . Any hereditary graph property P can be char-
acterized by the obstruction set HP of all minimal graphs that do not satisfy P :
A graph satisfies P if and only if it does not contain any graph from HP as an
induced subgraph.

Many maximum subgraph problems are NP-hard. However, when restricting
the input graph, some problems become polynomial. In particular, it has been
shown that many problem are polynomial on trees (e.g., [15, 18]) or on series-
parallel graphs (e.g., [17]). Takamizawa et al. [26] gave a general result that states
that for a hereditary property P with a finite obstruction set, the maximum

∗Dept. of Computer Science, Tel-Aviv University. E-Mail:{rshamir,dekelts}@tau.ac.il

1

subgraph problem can be solved in linear time on series-parallel graphs. While
there are many graph properties that satisfy this condition, there are many other
properties which are not hereditary (e.g., having a Hamiltonian cycle), or are
hereditary but have an infinite obstruction set (e.g., the property of being a
bipartite graph, whose obstruction set consists of all odd cycles).

Another limitation of the result of Takamizawa et al. is that the family of
series-parallel graphs is rather small. Therefore, the question arises whether there
are graph families that generalize both trees and series-parallel graphs, and still
optimization problem are easy on them. Such a generalization is the family of
graph with bounded treewidth. For examples of algorithms for specific problems
on graphs with bounded treewidth see [1, 2, 5]. The result given in [7, 20, 22, 24,
23] can be viewed as a generalization of the result of Takamizawa et al. to the
family of bounded treewidth graphs (in some of these papers, the input graph
is also required to have bounded degree). Moreover, the latter results apply to
larger classes of properties.

Here is one concrete example for this type of results. Scheffler [22] studied
properties P for which there is an additive function f , constants m and c, and a
relation P ′ such that

P (G) = ∃G1, . . . , Gm∀v P ′(G|Nc(v), G1|Nc(v), . . . , Gm|Nc(v), v) ∧ f(G1) ≥ B,

where Nc(v) is the set of all vertices that are at distance at most c from v (in-
cluding v). Scheffler showed that for such properties, deciding if a graph G has
property P can be done in linear time on graphs with bounded treewidth and
bounded degree. In particular, by defining f(G) to be the number of edges in
G, this result shows that for many graph properties, the corresponding maxi-
mum subgraph problem is polynomial. Among these properties are all hereditary
properties with a fixed obstruction set, and bipartiteness.

Courcelle [16] studied the property identification problem, namely deciding
whether a graph G has property P . Courcelle showed that for a property P that
is defined by a monadic second order logic formula, the property identification
problem can be solved in linear time when the input graph has bounded treewidth.
A monadic second order formula is a logic formula that is built from logic connec-
tives (∧,∨,¬,→,↔), vertex variables, edge variables, vertex set variables, edge
set variables, the existential (∃) and universal (∀) quantifiers, the membership
symbol (∈), and the equality symbol. For example, bipartiteness can be expressed
by the formula

∃W∀v∀w (v, w) ∈ E → ((v ∈ W ∧ ¬(w ∈ W)) ∨ (w ∈ W ∧ ¬(v ∈ W))).

This result has been extended to show that for a property that is defined by
a monadic second order logic formula, the maximum subgraph problem can be
solved in linear time on graphs with bounded treewidth [4, 13].

2

The above algorithms are based on finding a tree decomposition of the input
graph, and then applying a dynamic programming algorithm on that tree. The
bottleneck in the time complexity was the tree decomposition, since at the time
when the above papers were written, the best algorithm for finding a tree decom-
position were super-linear. Later, Bodlaender gave a linear time decomposition
algorithm [10]. A different kind of algorithm was given by Arnborg et al. [3] for
the property identification problem: The algorithm is based on graph reductions,
and thus, it does not require a tree decomposition.

For discussing parallel complexity, recall that an optimal-speedup algorithm is
a parallel algorithm that has the same overall number of operations as the fastest
sequential algorithm. The fastest optimal-speedup parallel algorithm for finding
a tree decomposition (i.e., one that uses O(n) operations on an n-vertex graph)
takes O(log2 n) time on an EREW machine [12]. The algorithm of [4] can be used
to solve the maximum subgraph problem with the same parallel time complexity.
Bodlaender and Hagerup [12] gave an optimal-speedup algorithm for the property
identification problem on graphs with bounded treewidth, requiring O(log n) time
on a CRCW machine. The algorithm is based on the reduction algorithm of
Arnborg et al. [3]. This algorithm was extended to solve the maximum subgraph
problem on graphs with bounded treewidth with the same time complexity [9, 11].
Bodlaender gave a dynamic algorithm for several optimization problems on graphs
with treewidth 2 such that each update of the graph takes O(log n) time, and
each query takes O(1) or O(log n) time [8].

A major problem with the above algorithms is that the constants hidden in
the time complexity are extremely large. In order to explicitly consider these
constants, we will look at the time complexity as a function of the size of the
input graph and the property P , or, in other words, we consider P to be part of
the input. We therefore need to define how P is represented in the input. One
possible way is to assume that P is represented by a monadic second order logic
formula. An alternative approach is to assume that P is a hereditary property,
and is represented by its obstruction set (we assume that the obstruction set is
finite). Thus, the input has two parts: a query graph and an obstruction set
which is a collection of forbidden graphs. In this case, the time complexity of the
algorithm is measured as a function of the number of vertices in the query graph
plus the total number of vertices in the forbidden graphs. We will concentrate on
the case when all the input graphs are trees: Given a tree G and an obstruction
set of trees H, the goal is to find a subforest of G that does not contain a subtree
isomorphic to any tree from H and has maximum number of edges. We call
this problem the maximum subforest problem (MSP). We call the corresponding
edge deletion problem the tree deletion problem (TDP). The maximum subforest
problem is a generalization of the subtree isomorphism problem which was studied
in Chapter ??.

Using the approach of Takamizawa et al. [26], the maximum subforest problem

3

can be solved in 22O(k)
n time, where n is the number of vertices in G, and k is

the total number of vertices in the trees in H.

1.1 New results

We show that MSP is NP-hard. We also give a 2O(k2/ log k)n-time algorithm for
MSP, improving the result implied by the work of Takamizawa et al.

Next, we study the approximation problem. While MSP and TDP are equiva-
lent if an exact solution is required, approximating the former is easier: We show
that TDP is hard to approximate within c log k factor for some constant c, and
in contrast, we give a polynomial time approximation scheme for MSP.

We note that some restrictions of MSP are tractable. In [27], we show, for
example, that MSP is polynomial if each tree in H has diameter of at most 5.
This result is best possible as it is shown in this thesis that MSP is NP-hard when
H contains trees with diameter 6. In fact, we give stronger results that imply
hardness of approximation for TDP when H contains trees with diameter 6.

The paper is organized as follows: In Section 2 we give a general framework
for exact algorithms for solving MSP. Section 3 describes a combinatorial lemma.
In Section 4 we analyze the complexity of the MSP algorithm using the combi-
natorial lemma. In Section 5 we use the lemma and the exact algorithm to give
a polynomial time approximation scheme for MSP.

We conclude this section with some definitions. A rooted forest is a collection
of trees with one distinguished vertex which is called the root. We will sometime
write Gr to denote the rooted forest G with root r. Also, for an unrooted forest
G, we denote by Gr the rooted forest formed by choosing the vertex r to be the
root.

We say that two rooted forests Gr and Hs are isomorphic if there is an
isomorphism between G and H which maps r to s. We write Hs ⊆R Gr if
there is a rooted subforest J r of Gr which is isomorphic to Hs (note that Jr must
have the same root as Gr). For a forest (rooted or unrooted) G and an unrooted
tree H, we write H ⊆ G if H is isomorphic to a subgraph of G. For a forest G
and a set of trees H we write H ⊆ G if H ⊆ G for some H ∈ H. If H 6⊆ G we
say that G is H-free.

For a vertex v in the graph G = (V, E) define N(v) = {u : uv ∈ E}. For a
set of vertices X, N(X) = ∪x∈XN(x).

For a graph G, E(G) denotes the set of edges of G, and e(G) = |E(G)|. We
denote the family of all rooted forests by R.

An l-ary rooted forest operator is a function f which acts on l rooted forests
and yields a rooted forest. Given G1, . . . , Gl, the forest f(G1, . . . , Gl) is built by
taking the forests G1, . . . , Gl, and then performing some of the following opera-
tions:

1. Merging the roots of some of the input forests.

4

PSfrag replacements

G H G ⊕ H nr(G)

Figure 1: The ⊕ and nr operators.

2. Adding new vertices.

3. Adding new edges, where each endpoint of a new edge is either a root of
some input forests or a new vertex.

Finally, the root of f(G1, . . . , Gl) is either a root of some input forests or a new
vertex. For an operator f , let a(f) denote the number of forests on which f
operates. For a set of operators Φ, let a(Φ) = maxf∈Φ a(f). An operator f
is a suboperator of an operator f ′ if a(f) = a(f ′) and for any G1, . . . , Ga(f),
f(G1, . . . , Ga(f)) is a subgraph of f ′(G1, . . . , Ga(f)). For an operator f , let sub(f)
denote the set of all suboperators of f . A set of operators Φ is called closed
if sub(f) ⊆ Φ for any f ∈ Φ. A set of operators Φ is called complete if every
rooted forest can be built from copies of the single-node rooted tree by a series
of applications of the operators in Φ.

We define some rooted forests operators: Given two rooted forests G and H,
G⊕H is the rooted forest formed by taking G and H and identifying their roots.
The nr (new root) operator takes a rooted forest G, adds a vertex s and an edge
between s and the root of G, and makes s the new root. The nir (new isolated
root) operator takes a rooted forest, adds to it a disconnected vertex and makes
it the new root. Note that sub(nr) = {nr, nir}. See Figure 1 for examples. The
set {⊕, nr, nir} is closed and complete.

The tree K1,l is composed by taking l vertices, and a distinguished vertex
called the center and connecting the center to all other vertices. We denote by
P̂l the rooted tree formed by taking a path with l vertices and choosing one of
the two path endpoints as the root.

Let G be a tree and P be a graph property. We define the predicate P (G) to
have value 1 if G has property P , and 0 otherwise.

For a set A, 2A denotes the set of all subsets of A.

2 A framework for solving MSP

In this section we describe a general method for solving maximum subforest
problems based on decomposition. We will use this method in Section 4 to give

5

an exact algorithm for MSP, and in Section 5 to give an approximation scheme
for MSP. The general idea behind our framework is similar to the one used by
Bern el al. [6] and others (e.g., [4, 13]), although some aspects are different, as
will be explained later.

Before describing the framework, we give some definitions. Let P be some
graph property. The maximum subforest problem with respect to P is to find, in a
given tree G = (V, E), a subforest of G with property P and with the maximum
number of edges. In the following we will describe an algorithm for solving this
problem under certain assumptions on P .

Let Φ be a closed and complete set of rooted forest operators. A composition
tree (w.r.t. Φ) of a rooted forest G is a rooted tree H, where each internal node
v of H is labeled by an operator f ∈ Φ such that a(f) is equal to the number of
children of v. Each node in the tree is associated with a rooted forest: A leaf is
associated with the forest P̂1 and an internal node is associated with the rooted
forest formed by applying the node’s operator on the forests associated with the
children of the node. The forest associated with the root of the composition tree
is isomorphic to G.

We now describe the basic idea of our algorithm. Let G be the input to the
maximum subforest problem, and let G′ be a forest that corresponds to some
node in the decomposition tree of G. We want to create a collection of candidate
subforests of G′, such that the optimal solution for G will contain one of these
candidates as an induced subgraph. In other words, we want to find all “pieces”
within G′ that may take place in an optimal solution. To do this, we need a way
to choose the collection. As an example, consider the tree G′ in Figure 2, and
the property P of not containing a path of length 4. Out of the two subforests
G′ − {a} and G′ − {b}, it is better to take G′ − {a} into the collection: If there
is an optimal solution G∗ to MSP such that the subforest of G∗ that is induced
by the vertices of G′ is G′ −{b}, then G∗ ∪ {b}− {a} is also an optimal solution.
Hence, in this case, only G′ − {a} and G′ − {a, b} will be the candidates. The
key to the efficiency of the approach is eliminating as many candidate subforests
(“pieces”) as possible.

We now give a formal description of this idea: We will define partial orders
which are used to compare candidates for the collection. Let ≤ be some partial
order on rooted forests. We say that ≤ is preserved by Φ if for any f ∈ Φ, and
any G1, . . . , Ga(f), G

′
1, . . . G

′
a(f) such that Gi ≤ G′

i for i = 1, . . . , a(f), there is an

operator f ′ ∈ sub(f) such that f(G1, . . . , Ga(f)) ≤ f ′(G′
1, . . . , G

′
a(f)). We say that

≤ preserves P if G ≤ G′ implies P (G) ≤ P (G′). We say that ≤ preserves P
with size if ≤ preserves P , and additionally, G ≤ G′ and P (G) = 1 implies that
e(G) ≤ e(G′). A (P, Φ)-order is a partial order that preserves P with size, and
is preserved by Φ.

For example, let Φ = {⊕, nr, nir} and let P be the property of not containing
a path of length 4. For a rooted forest G, we denote by h(G) the height of the

6

PSfrag replacements

G′

a b

Figure 2: Example for the definition of complete collection. Let P be the property
of not containing a path of length 4. The collection C = {G′ − {a}, G′ − {a, b}}
is a complete collection of G′ w.r.t. ≤3.

forest G, namely the length of a longest path that starts in the root of G. We
define a partial order ≤1 by G ≤1 G′ iff h(G) ≥ h(G′). We have that ≤1 is
preserved by Φ: If G1 ≤

1 G′
1 and G2 ≤

1 G′
2 then

h(G1 ⊕ G2) = max(h(G1), h(G2)) ≥ max(h(G′
1), h(G′

2)) = h(G′
1 ⊕ G′

2),

and therefore G1 ⊕ G2 ≤1 G′
1 ⊕ G′

2. Similarly, G ≤1 G′ implies nr(G) ≤1 nr(G′)
(as h(nr(G)) = h(G) + 1 ≥ h(G′) + 1 = h(nr(G′))) and nir(G) ≤1 nir(G′). The
partial order ≤1 does not preserve P , since P̂2 ≤1 nir(P̂5), but P (P̂2) = 1 >
0 = P (nir(P̂5)). The partial order ≤2 defined by G ≤2 G′ iff h(G) ≥ h(G′) and
P (G) ≤ P (G′) preserves P , and is preserved by Φ. The partial order ≤3 defined
by G ≤3 G′ iff P (G) = 0, or (G ≤2 G′ and e(G) ≤ e(G′)) is a (P, Φ)-order.

For a collection C of rooted forests and a partial order ≤, a complete collection
of C (w.r.t. ≤) is a collection C ′ ⊆ C such that (1) there are no G, G′ ∈ C ′ such
that G ≤ G′, and (2) for any G ∈ C−C ′ there is some G′ ∈ C ′ such that G ≤ G′. A
collection C of rooted subforests of a rooted forest G is called a complete collection
of G (w.r.t. ≤) if C is a complete collection (w.r.t. ≤) of the set of all subforests
of G. See Figure 2 for an example.

If ≤ is a (P, Φ)-order and we have a procedure to compute ≤, then the max-
imum subforest problem with respect to P can be solved by the algorithm Max-
Subforest that is given in Figure 3.

Lemma 2.1. Algorithm MaxSubforest solves the maximum subforest problem with
respect to property P .

Proof. To prove the correctness of this algorithm, we will show that for any tree G′

corresponding to a node v in the composition tree, C(G′) is a complete collection
of G′. The proof is by induction on the structure of G′. The base of the induction
is trivial. Suppose that G′ = f(G1, . . . , Gl), where G1, . . . , Gl are the forests that

7

1 Arbitrarily choose a vertex r in G.
2 Compute a composition tree for Gr.
3 Scan the nodes of the composition tree in postorder.

For every node v do

4 Let G′ be the forest that corresponds to v.
5 If v is a leaf then let C(G′) = {G′}.

else

6 Let f be the operator associated with v.
Let G1, . . . , Gl be the trees that correspond to the children of v.
(i.e., G′ = f(G1, . . . , Gl))

7 Let C0(G
′) = {f ′(H1, . . . , Hl) : f ′ ∈ sub(f), H1 ∈ C(G1), . . . , Hl ∈ C(Gl)}.

Let C(G′) = φ.
8 For every H ∈ C0(G

′) do

9 If there is least one forest H ′ ∈ C(G′) such that H ′ ≤ H but H 6≤ H ′

then remove all such forests from C(G′) and add H to C(G′).
else if there is no H ′ ∈ C(G′) such that H ≤ H ′

then add H to C(G′).
10 Check for each forest in C(Gr) if it has property P , and output a forest

from C(Gr) that has property P and has maximum number of edges.

Figure 3: Algorithm MaxSubforest(G).

correspond to the children of v. By construction there are no H, H ′ ∈ C(G′)
such that H ≤ H ′. It remains to show that for any subforest H of G′, there is
a subforest H ′ ∈ C(G) such that H ≤ H ′. Let H be some subforest of G′. We
have that H = f ′(H1, . . . , Hl), where f ′ ∈ sub(f) and Hi is a subforest of Gi for
i = 1, . . . , l. By the induction hypothesis, there are H ′

1 ∈ C(G1), . . . , H
′
l ∈ C(Gl)

such that Hi ≤ H ′
i for i = 1, . . . , l. Since ≤ is preserved by Φ, it follows that

H ≤ f ′(H ′
1, . . . , H

′
l). Furthermore, it is easy to verify that C(G′) is a complete

collection of C0(G
′). Thus, as f ′(H ′

1, . . . , H
′
l) ∈ C0(G

′), there is a forest H ′ ∈ C(G)
such that f ′(H ′

1, . . . , H
′
l) ≤ H ′. Therefore, C(G′) is a complete collection of G′.

Let H∗ be an optimal solution for the maximum subforest problem. From
the fact that C(Gr) is a complete collection, it follows that there is a subforest
H ∈ C(Gr) such that H∗ ≤ H, and from the fact that ≤ preserves P with size,
it follows that H is an optimal solution. The algorithm returns a forest H ′ from
C(Gr) that has property P and has maximum number of edges, and in particular,
e(H) ≤ e(H ′). Therefore, H ′ is an optimal solution.

We now compute the time complexity of the algorithm. Let |≤| denote the size
of the largest complete collection of R w.r.t. ≤ (we assume that |≤| is finite).
Suppose that checking whether a forest G with at most n vertices has property
P takes at most T1(n) time, and checking whether G ≤ G′ for two forests with at
most n vertices each takes at most T2(n) time. Suppose that v is some node in
the decomposition tree, G′ is the forest that corresponds to v, and G1, . . . , Gl are

8

the forests that correspond to the children of v. The time complexity of building
the collection C(G′) is O(|C0(G

′)| · |≤| · T2(n)). We have that

|C0(G
′)| ≤ max

f∈Φ
|sub(f)| ·

l
∏

i=1

|C(Gi)| ≤ max
f∈Φ

|sub(f)| · |≤|a(Φ).

Therefore, we have:

Theorem 2.2. The time complexity of algorithm MaxSubforest is

O(max
f∈Φ

|sub(f)| · |≤|a(Φ)+1 · T2(n) · n + |≤| · T1(n)).

Naturally, given P and Φ, our goal will be to find a (P, Φ)-order ≤ such that |≤|
is as small as possible.

We now give an example for the framework. For the rest of the section, let
Φ1 = {⊕, nr, nir}, and assume that P is some hereditary property. We define two
partial orders on rooted forests: For two rooted forests G and G′,

G ≤P G′ ⇐⇒ ∀rooted forest J, P (G ⊕ J) ≤ P (G′ ⊕ J),

and

G ≤′
P G′ ⇐⇒ P (G) = 0 or (G ≤P G′ and e(G) ≤ e(G′)) .

It is clear that ≤P is partial order. To show that ≤′
P is a partial order, we need

to show that ≤′
P is transitive. Suppose that G ≤′

P G′ ≤′
P G′′. If P (G) = 0 then

we are done. Otherwise, we have 1 = P (G) = P (G⊕ P̂1) ≤ P (G′ ⊕ P̂1) = P (G′),
so we have that G ≤P G′ ≤P G′′ and e(G) ≤ e(G′) ≤ e(G′′). Therefore, G ≤P G′′

and e(G) ≤ e(G′′), and it follows that G ≤′
P G′.

Lemma 2.3. For any rooted forest operator f (not necessarily in Φ1), and for
any G1, . . . , Ga(f), G

′
1, . . . , G

′
a(f), if Gi ≤P G′

i for i = 1, . . . , a(f) then

f(G1, . . . , Ga(f)) ≤P f(G′
1, . . . , G

′
a(f)).

In particular, ≤P is preserved by Φ1.

Proof. Let J be some rooted forest. Let J ′ be the subforest of f(G′
1, G2, . . . , Ga(f))⊕

J induced by the vertices of G2, . . . , Ga(f), and J . The forest f(G′
1, G2, . . . , Ga(f))⊕

J is isomorphic to G′
1 ⊕ J ′. Therefore,

P (f(G1, . . . , Ga(f))⊕J) = P (G1⊕J ′) ≤ P (G′
1⊕J ′) = P (f(G′

1, G2, . . . , Ga(f))⊕J).

Repeating this argument gives that

P (f(G1, . . . , Ga(f)) ⊕ J) ≤ P (f(G′
1, G2, . . . , Ga(f)) ⊕ J)

≤ P (f(G′
1, G

′
2, G3, . . . , Ga(f)) ⊕ J)

...

≤ P (f(G′
1, . . . , G

′
a(f)) ⊕ J).

9

Lemma 2.4. ≤′
P is a (P, Φ1)-order.

Proof. To show that ≤′
P is preserved by Φ1, let G1, G2, G′

1, and G′
2 be rooted

forests such that G1 ≤
′
P G′

1 and G2 ≤
′
P G′

2. If either P (G1) = 0 or P (G2) = 0 then
we have P (G1 ⊕ G2) = 0 as P is hereditary, and therefore G1 ⊕ G2 ≤

′
P G′

1 ⊕ G′
2.

Otherwise, G1 ≤P G′
1 and G2 ≤P G′

2, so Lemma 2.3 implies that G1 ⊕ G2 ≤P

G′
1 ⊕ G′

2. Furthermore, e(G1) ≤ e(G′
1) and e(G2) ≤ e(G′

2), so e(G1 ⊕ G2) =
e(G1) + e(G2) ≤ e(G′

1) + e(G′
2) = e(G′

1 ⊕ G′
2). Therefore, G1 ⊕ G2 ≤′

P G′
1 ⊕ G′

2.
Similarly, we have that if G ≤′

P G′ then nr(G) ≤′
P nr(G′) and nir(G) ≤′

P nir(G′).
To show that ≤′

P preserves P with size, suppose that G ≤′
P G′. If P (G) = 0

then clearly P (G) ≤ P (G′). Otherwise, as G ≤P G′, we have that P (G) =
P (G ⊕ P̂1) ≤ P (G′ ⊕ P̂1) = P (G′). Furthermore, if P (G) = 1 then by the
definition of ≤′

P , e(G) ≤ e(G′).

We will use the partial order ≤′
P in Section 4 and Section 5. We note that it

is not hard to show that for any (P, Φ1)-order ≤, G ≤ G′ implies G ≤′
P G′

(Furthermore, for any partial order ≤ that preserves P and is preserved by Φ1,
G ≤ G′ implies G ≤P G′). Therefore |≤′

P | ≤ |≤|, or in other words, ≤′
P is an

“optimal” (P, Φ1)-order.
Let =P be the following equivalence relation: G =P G′ iff G ≤P G′ and

G′ ≤P G. Let |P | denotes the number of equivalence classes of =P . Clearly, if
G =P G′ then either G ≤′

P G′ or G′ ≤′
P G. Therefore, a complete collection

cannot contain forests from the same equivalence class of =P . It follows that
|≤′

P | ≤ |P |. Since a(Φ1) = 2 and maxf∈Φ1 |sub(f)| = 2, we conclude:

Theorem 2.5. The time complexity of the algorithm in the above case is O(|P |3 ·
T2(n) · n + |P | · T1(n)).

The difference between the approach we described in this section and the ap-
proach of Bern el al. [6], is that in the latter, an equivalence relation is used
instead of a partial order, and the time complexity depends on the number of
equivalence classes of the relation. For some properties, the number of equiva-
lence classes in the appropriate equivalence relation is large, while the value of
|≤| for the appropriate partial order is small. This generalized setting is used
in [27] in order to give polynomial algorithms to restrictions of MSP.

3 Counting families of matching subsets

In this section we describe and analyze a combinatorial problem. Its solution will
be needed for the approximation scheme that we shall develop in the next section
and for improving the time complexity of the exact algorithm. The combinatorial
problem is interesting in its own right and may have other applications.

Let T be some finite set, and let S be a multiset whose elements are from T .
We define the following mapping RS : Given a multiset of sets A = {A1, . . . , Ap}

10

such that each Ai is a subset of T , RS(A) returns the set of all multisets B such
that B ⊆ S and there is an injective mapping fB : B → A such that b ∈ fB(b)
for every b ∈ B. In words, RS(A) is the set of all sub-multisets of S that can
be constructed by taking at most one element from each set Ai. Hence, each
sub-multiset is obtained by matching to each of its elements a different set Ai

containing that element. For this reason we call RS(A) a matching subsets family.
For example,

R{1,2,3}({{1, 2}, {1, 3}}) = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}

and

R{1,1,2,2,3}({{1, 2}, {1, 3}}) = {φ, {1}, {1, 1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

For integers n and k, k ≤ n we define r(n, k) to be the maximum of |Image(RS)|
taken over all S such that |S| = n and |T | = k. For example, r(2, 2) = 5:
Take S = T = {1, 2} and the five matching subsets families in Image(RS) are
{φ}, {φ, {1}}, {φ, {2}}, {φ, {1}, {2}} and {φ, {1}, {2}, {1, 2}} (these families are
the images of φ, {{1}}, {{2}}, {{1, 2}} and {{1}, {2}}, respectively. The other
types of sets S contain identical elements and so have smaller images). Our
goal is to obtain upper and lower bounds for the maximum number of distinct
matching subsets families as a function of n and k. In particular, we will show

that r(n, k) ≤
(

n+2k−1
n

)

.

Lemma 3.1. For every multisets S and A, there is a multiset A′ ⊆ A, such that
|A′| ≤ |S| and RS(A) = RS(A′).

Proof. Build a bipartite graph G = (U, V, E), where U is a set of |S| vertices
labeled by the elements of S, V is a set of |A| vertices labeled by the sets of A,
and for a vertex u ∈ U whose label is i and a vertex v ∈ V whose label is A,
there is an edge uv ∈ E iff i ∈ A. By a theorem of Dulmage and Mendelsohn
(see, e.g., [19, p. 99]), there are a set X ⊆ U with |N(X)| ≤ |X| (if X 6= φ
then |N(X)| < |X|) and a matching M that matches all the vertices of U − X
to vertices in V − N(X). We define A′ to contain all the sets corresponding
to vertices in N(X), and all the sets corresponding to vertices of V − N(X)
which are matched in M . Clearly, |A′| ≤ |S| and since A′ ⊆ A, it follows that
RS(A′) ⊆ RS(A).

To prove that RS(A′) ⊇ RS(A), let B be any multiset in RS(A). Let fB : B →
A be the injection from the definition of R. We define f ′

B : B → A′ in the
following way: For every b ∈ B, if the vertex u corresponding to b is in X, then
let f ′

B(b) = fB(b). Otherwise, let f ′
B(b) = A, where A is the set corresponding

to the vertex that is matched to u in M . Since f ′
B is an injection, we have that

B ∈ RS(A′), and therefore, RS(A′) ⊇ RS(A), as required.

Corollary 3.2. r(n, k) ≤
(

n+2k−1
n

)

.

11

Proof. The number of multisets of size at most a whose elements are from a set
of size b is equal to the number of ways to partition a balls into b+1 cells, which
is

(

a+b
a

)

. Therefore, as |T | = k, the number of multisets of size at most n whose

elements are nonempty subsets of T is
(

n+2k−1
n

)

, and the corollary follows from
Lemma 3.1.

We note that
(

n+2k−1
n

)

≤ min(2O(kn),
(

en
2k−1

+ e
)2k−1

). We also give lower bounds

on r(n, k):

Lemma 3.3. r(n, k) ≥
(

b n
k2k−1 c + 1

)2k−1
. Furthermore,

r(n, k) ≥

{

2
Ω(n

logk n
)

if k = log1+Ω(1) n
2Ω(k log n) if k = Ω(n

log n
)

Proof. Let T = {1, . . . , k} and let S be a some multiset containing each element
of T at least bn/kc times. We will give lower bound on r(n, k) by giving a lower
bound on the size of Image(RS). We call a mapping g : (2T −{φ}) →

�
bounded

if for all i,
∑

X:i∈X g(X) ≤ bn/kc. For a bounded mapping g, we define Ag to be
the multiset of sets obtained by taking each nonempty set X ⊆ T exactly g(X)
times.

Claim 3.4. If g 6= h are two bounded mappings, then RS(Ag) 6= RS(Ah).

Proof. Let X be a set of minimal size for which g(X) 6= h(X) and w.l.o.g. g(X) >
h(X). Build a multiset B in the following way: Begin with B = φ. For each
Y ⊆ X, choose arbitrarily i ∈ Y , and add g(Y) copies of i to B. For each
Y 6⊆ X, choose arbitrarily i ∈ Y − X, and add g(Y) copies of i to B. Since g is
bounded, we have that the multiplicity of each number i in B is at most bn/kc,
and therefore B ⊆ S. Also, it is easy to see that B ∈ RS(Ag). Let B′ be the
multiset obtained from B by removing all its elements which are in X. As B′ ⊆ B
we have B′ ∈ RS(Ag).

If B′ /∈ RS(Ah) then we are done. Otherwise, from the definition of RS

there is an injection f : B′ → Ah such that i ∈ f(i) for any i ∈ B′. Clearly,
∑

Y :Y 6⊆X g(Y) = |B′| and
∑

Y :Y 6⊆X h(Y) ≥ |B′| (
∑

Y :Y 6⊆X h(Y)−|B′| is the number
of sets Y ∈ Ah which are not in the image of f and Y 6⊆ X). If

∑

Y :Y 6⊆X h(Y) >
|B′|, select a set Z ∈ Ah which is not in the image of f and Z 6⊆ X, and build
a multiset B′′ by taking B′ and adding a number i ∈ Z − X chosen arbitrarily.
Clearly, B′′ ∈ RS(Ah). However, the number of sets in Ag which contain at least
one element from B′′ (i.e., an element from Y −X) is exactly

∑

Y :Y 6⊆X g(Y) = |B′|,
which is one less than the size of B′′. Hence B′′ /∈ RS(Ag) so we are done again.

Now, suppose that
∑

Y :Y 6⊆X h(Y) = |B′|, so
∑

Y :Y 6⊆X g(Y) =
∑

Y :Y 6⊆X h(Y).
From the minimality of X we have g(Y) = h(Y) for all Y (X. As g(X) > h(X),
we have |B| =

∑

Y g(Y) >
∑

Y h(Y) which implies that B /∈ RS(Ah).

12

By the above claim, the number of distinct bounded mappings is a lower bound
on the size of Image(RS). We will therefore give a lower bound on the number of
bounded mappings. If g(X) ≤ b n

k2k−1 c for all X, then g is bounded (as for all i,
∑

X:i∈X g(X) ≤ |X : i ∈ X|b n
k2k−1 c = 2k−1b n

k2k−1 c ≤ bn
k
c). Hence, the number of

bounded mappings is at least
(

b n
k2k−1 c + 1

)2k−1
.

We now give better lower bounds for large values of k. Let F be a set of
nonempty subsets of T such that

for all i, the number of sets in F that contain i is at most bn/kc (1)

Then any g that satisfies g(X) ≤ 1 for X ∈ F and g(X) = 0 otherwise, is
a bounded mapping, so the number of bounded mappings is at least 2|F|. We
now show how to build a set F that satisfies (1) with large size: Let l be the
maximum integer such that

(

k
l

)

≥ bn
k
c. If k = log1+Ω(1) n then l = Θ(logk

n
k
).

First, we assume that
(

k
l

)

= bn
k
c. We take F to be all the subsets of T of size l+1

(F satisfies (1) as for each i, the number of sets in F that contain i is exactly
(

k
l

)

= bn
k
c). Then

|F| =

(

k

l + 1

)

=
k − l

l + 1

(

k

l

)

= Ω(
n

l
) = Ω(

n

logk n
)

which gives us the desired lower bound. If
(

k
l

)

> bn
k
c then let p = 0.5bn

k
c/

(

k
l

)

and build the set F by randomly adding each subset of T of size l + 1 to F with
probability p. Let Xi be the number of sets in F that contain i. Suppose that
k ≤ n/100 logn. Using Chernoff bounds [14], we have that with high probability,
Xi ≤ 2E[Xi] = 2p

(

k
l

)

= bn
k
c for all i, so F satisfies (1). Furthermore, with high

probability,

|F | ≥
1

2
E[|F |] =

1

2
p

(

k

l + 1

)

=
1

2
p
k − l

l + 1

(

k

l

)

= Ω(
k

l
) = Ω(

n

logk n
).

Finally, we prove the third lower bound. Let T1, . . . , Tl be a partition of T
into disjoint subsets, and define g(X) = 1 if X = Ti for some i, and g(X) = 0
otherwise. Since such a mapping g is bounded, we conclude that the number of
bounded mappings is at least as the number of ways to partition T into disjoint
subsets. This number is 2Θ(k log k) (see, e.g., [21]). Therefore, for k = nΩ(1) (and in
particular, for k = Ω(n/ log n)), the number of bounded mappings is 2Ω(k log n).

Note that for fixed k our bounds are optimal up to constants: In this case,
r(n, k) = Θ(n2k−1). Another interesting case is when k = n. In this case we have
2Ω(n log n) ≤ r(n, n) ≤ 2O(n2).

For Section 5 we will need a variation of the above problem. For a set T
and an integer n, we define a mappings RT,n as follows: Given a multiset A of
subsets of T , RT,n(A) is the set of all multisets of size at most n that can be

13

constructed by taking at most one element from each set in A. In other words,
RT,n(A) = RS(A)∩U , where S is a multiset containing each element of T exactly
n times, and U is the set of all multisets of size at most n with elements from
T . Therefore, we have |Image(RT,n)| ≤ r(nk, k), where k = |T |. As for a lower
bound on |Image(RT,n)|, clearly, Image(RT,n) ⊇ Image(RS) for any multiset S of
size n with elements from T . Therefore, |Image(RT,n)| ≥ r(n, k).

4 An exact algorithm

We now turn to the problem of finding an exact solution to MSP.
Given an instance (G,H) for MSP, we define a graph property P by P (G) = 1

iff H 6⊆ G. We then use algorithm MaxSubforest.
Let H be a tree and v be a vertex in H. We say that a tree J is v-subtree of

H if J is a rooted subtree of H that is induced by v and one or more connected
components of H − {v}, and whose root is v. J is called a simple v-subtree of
H if it contains exactly one connected component of H − {v}. A tree J is called
a cropped v-subtree if nr(J) is a simple v-subtree. Let u1, . . . , uk denote all the
vertices in all the trees in H. We define for every i ≤ k the set Fi to be the set of
all distinct (i.e., non-isomorphic) ui-subtrees of H, where H is the tree from H
that contains ui. Also, let F ′

i be the set of all distinct cropped ui-subtrees of H,
and let F ′′

i be the multi-set of all cropped ui-subtrees of H. Let di = |F ′′
i | (i.e.,

di is the degree of ui), Di = |F ′
i |, and F = ∪k

i=1Fi. Note that given a set H, the
set F can be built in 2O(k) time (This is done by building all the ui-subtrees for
every ui, and then for every two resulting trees checking if they are isomorphic.
The time complexity is O(

∑k
i=1(2

di)2 · k) = 2O(k).)
Now, we define a mapping h from rooted forests to 2F as follows:

h(G) = {H ∈ F : H ⊆ G ⊕ H}.

Claim 4.1. G ≤P G′ iff h(G) ⊇ h(G′).

Proof. Suppose that h(G) ⊇ h(G′) for two rooted forests G, G′. We need to
show that for any rooted forest J , P (G ⊕ J) ≤ P (G′ ⊕ J). It suffices to show
that P (G′ ⊕ J) = 0 implies that P (G ⊕ J) = 0, or in other words, H ⊆ G′ ⊕ J
implies H ⊆ G⊕J . Let J be some rooted forest for which H ⊆ G′⊕J . There is a
subgraph H of G′⊕J which is isomorphic to a tree from H. Let JH be the rooted
subtree of J which is induced by the vertices of H. We have that H ⊆ G′ ⊕ JH

and therefore H ⊆ G′ ⊕ JH . Furthermore, JH ∈ F , thus JH ∈ h(G′). It follows
that JH ∈ h(G), so we have that H ⊆ G ⊕ JH . Therefore H ⊆ G ⊕ J

The second direction is straightforward: If G ≤P G′, then for every rooted
forest J , P (G′ ⊕ J) = 0 implies that P (G ⊕ J) = 0, namely H ⊆ G′ ⊕ J implies
H ⊆ G ⊕ J . In particular, this is satisfied for every J ∈ F , and therefore
h(G) ⊇ h(G′).

14

Claim 4.1 gives an efficient procedure for checking whether G ≤P G′ and there-
fore we can use algorithm MaxSubforest. In order to make the algorithm more
efficient, we need to be able to compute h(G′) efficiently for every forest G′

that is built during the execution of the algorithm. Each such forest is of
the form G1 ⊕ G2, nr(G1) or nir(G1). Suppose that G′ = G1 ⊕ G2. The
sets h(G1) and h(G2) were computed previously by the algorithm. Clearly,
h(G′) = {H1 ⊕ H2 ∈ F : H1 ∈ h(G1), H2 ∈ h(G2)}. Therefore, we can com-
pute h(G′) by building all the forests of the form H1 ⊕ H2 and then for each
forest checking if there is a forest in F that is isomorphic to it. The time com-
plexity of this procedure is O(|C(G1)| · |C(G2)| · |F |k) = O(|F |3k) = 2O(k). Simi-
larly, the value of h(nr(G1)) or h(nir(G1)) can be computed from h(G1) in 2O(k)

time. Checking whether a forest with at most n vertices has property P takes
O((k1.5/ log k)n) time [25]. Therefore, the time complexity of the MSP algorithm

is O(|P |2 · 2O(k) · n). Clearly |P | ≤ |2F | = 22O(k)
.

In the rest of this section, we give a better upper bound on |P |, using the
results of Section 3. For i = 1, . . . , k, define a mapping hi : R → 2Fi as follows:

hi(G) = {H ∈ Fi : H ⊆R G}.

Furthermore, define ĥ(G) = (h1(G), . . . , hk(G)).

Lemma 4.2. ĥ(G) = ĥ(G′) implies G =P G′.

Proof. Suppose that ĥ(G) = ĥ(G′) for two rooted forests G, G′. By symmetry, it
suffices to show that H ⊆ G ⊕ J for some rooted forest J implies H ⊆ G′ ⊕ J .
Let J be some rooted tree for which H ⊆ G ⊕ J , and let H be a subgraph of
G⊕ J which is isomorphic to a tree from H. Let GH be the rooted subtree of G
which is induced by the vertices of H. We have that GH ⊆R G and GH ∈ Fi for
some i, so GH ∈ hi(G). As ĥ(G) = ĥ(G′), we have that GH ∈ hi(G

′). Therefore
GH ⊆R G′ and it follows that H ⊆ G′ ⊕ J .

By Lemma 4.2, we have that |P | ≤ |Image(ĥ)| ≤
∏k

i=1 |Image(hi)|. We now give
an upper bound on |Image(hi)| for some fixed i. Define a mapping R′ in the
following way: Given a multiset of sets A = {A1, . . . , Ak}, where each Aj is a
subset of F ′

i , let

R′(A) = {⊕H∈Bnr(H) : B ∈ RF ′′

i
(A),B 6= φ} ∪ {P̂1}

i.e., for every nonempty multiset B from RF ′′

i
(A), R′(A) contains the rooted tree

formed by taking the trees in B and connecting their roots to a new vertex that
becomes the new root. By definition, |Image(R′)| = |Image(RF ′′

i
)| ≤ r(di, Di).

Let G be some rooted forest and let J ∈ Fi. We decompose G by G =
nr(G1) ⊕ · · · ⊕ nr(Gc), where c is the number of the children of the root of G.
Also, we decompose J by J = nr(J1) ⊕ · · · ⊕ nr(Jd), where each Jj is in F ′

i . For
each j ≤ c, let Aj = {H ∈ F ′

i : H ⊆R Gj}. Then, J ⊆R G iff for each j ≤ d,

15

PSfrag replacements

G G1 G2

H ui

J J1 J2

Figure 4: The connection between MSP and the matching subsets problem. Sup-
pose that H consists of the tree H. We have F ′

i = {J1, J2} and F ′′
i = {J1, J2, J2}.

Consider the the rooted forest G and the rooted tree J from Fi. We decom-
pose G by G = nr(G1) ⊕ nr(G2), and decompose J by J = nr(J1) ⊕ nr(J2).
We have A1 = {J1} and A2 = {J1, J2}, so {J1, J2} ∈ RF ′′

i
({A1, A2}) =

{φ, {J1}, {J2}, {J1, J2}}. Therefore, J ⊆R G. More generally, we have that
hi(G) = R′({A1, A2}) = {P̂1, nr(J1), nr(J2), J}.

there is a distinct j ′ such that Jj ∈ Aj′. This is a case of the matching subsets
problem:

J ⊆R G ⇐⇒ {J1, . . . , Jd} ∈ RF ′′

i
({A1, . . . , Ac})

⇐⇒ J ∈ R′({A1, . . . , Ac}).

(See Figure 4 for an example). Since every tree in R′({A1, . . . , Ac}) is in Fi, we
have that hi(G) = R′({A1, . . . , Ac}). Hence,

|Image(hi)| ≤ |Image(R′)| ≤ r(di, Di).

Using Corollary 3.2 we have

|P | ≤
k

∏

i=1

r(di, Di) ≤
k

∏

i=1

2O(diDi) ≤ 2O(
Pk

i=1 diDi) = 2O(k2/ log k),

16

where the last equality follows from an analysis similar to the one in [25]. We
therefore have the following theorem:

Theorem 4.3. The maximum subforest problem can be solved in 2O(k2/ log k)n
time.

We also note that the same approach can be used to solve the maximum subgraph
problem for the case when G is a sparse graph: If G is a connected graph with n
vertices and n + p edges then we can find a maximum H-free subgraph of G in
2O(k5)n + 2O(k5p) time.

5 A polynomial time approximation scheme

In this section we give a polynomial time approximation scheme for MSP. The
basic idea behind the algorithm is as follows: We partition the trees in H into
two kinds: “small” trees and “big” trees. We first find an optimal subforest G′ of
G that does not contain a subforest that is isomorphic to a “small” tree. Due to
the “smallness” of the forbidden trees, this stage will be done in polynomial time.
In the second stage, we need to remove edges from G′ such that at least one edge
is removed from each subforest that is isomorphic to a “big” tree. Since each
of these trees is “big”, we can perform this task by deleting at most a constant
fraction of the edges in G′.

A vertex x in a tree H is called an l-separator if every connected component
in H − {x} has at most l vertices. A tree H is called l-separable if it has an
l-separator. We now describe a family {Al}l≥1 of approximation algorithms for
MSP. Algorithm Al is as follows:

1. Let Hl = {H ∈ H : H is l-separable}. Find a maximum Hl-free subforest
of G, and call it G′.

2. Go over all connected components of G′. For each component T , select a
root r and scan its vertices in postorder. When reaching a vertex v 6= r
such that the number of unmarked descendent vertices of v (including v) is
at least l + 1, tag the edge between v and its parent and also mark v and
its descendents.

3. Output the untagged edges of G′.

Lemma 5.1. Algorithm Al returns a H-free subforest of G with a number of
edges that is at least l/(l + 1) times the number of edges in a maximum H-free
subforest of G.

Proof. We denote by GA the solution returned by the algorithm. We first show
that GA is H-free. Suppose that H ⊆ GA for some H ∈ H. Since H is connected,

17

we have that H is isomorphic to a subtree of some connected component S of
GA. Step 2 of the algorithm ensures that in GA every connected component is
l-separable. Since H is isomorphic to a subtree of S, we have that H is also
l-separable, hence H ∈ Hl. But as H ⊆ GA, we conclude that H ⊆ G′, a
contradiction to the fact that G′ is Hl-free. Therefore, H 6⊆ GA.

We now prove the stated approximation factor. Note that for each edge of G′

that was tagged in step 2, there are at least l edges which were not tagged (the
edges in the subtree under the tagged edge). Hence, e(GA) ≥ l

l+1
e(G′).

Let OPT denote the number of edges in a maximum H-free subforest of G.
Since Hl is a subset of H, we have that the number of edges in a maximum
Hl-free subforest of G is at least OPT, namely, e(G′) ≥ OPT. Thus, e(GA) ≥

l
l+1

OPT.

To show that the algorithms family {Al}l≥1 is a polynomial time approximation
scheme, we need to show that for every fixed l, finding the maximum Hl-free
subforest of a tree G is polynomial in n and k. We now proceed to give an
algorithm for this problem, based on the framework described in Section 2.

Define a property P by by P (G) = 1 iff Hl 6⊆ G. From the previous section,
the time for finding the maximum Hl-free subforest of a tree G is O(|P |2·|F |3·kn).
The bounds on |P | and |F | which were given in the previous section do not suffice
here. We will give better bounds using the fact that the trees in Hl are l-separable.

We denote by d the maximum degree of a vertex in a tree in H. Let B0 be
the set of all l-separable rooted trees with degree at most d, and let B be the
set of all distinct (i.e., non isomorphic) rooted trees in B0 in which the root is
an l-separator. Since F ⊆ B0, we have that |F | ≤ |B0|. Any tree in B0 can be
obtained by taking a tree in B, and choosing a new root. A tree in B has at most
dl + 1 vertices, hence |B0| ≤ (dl + 1)|B|.

Let C be the set of all rooted trees with at most l vertices and degree at most
d, and let q = |C|. It is known that q = 2Θ(l) (see, e.g., [21, p. 1197]). Any tree
in B can be obtained by choosing at most d trees from C, with repetitions, and
connecting their roots to a new vertex, and conversely, any tree that is built using
this process is in B. Therefore |B| =

(

d+q
q

)

= O(dq) (the last equality follows from

the fact that l is constant, so q is also constant), so |F | ≤ (dl + 1)|B| = d2O(l)
.

Define mappings h1, h2, ĥ as follows:

h1(G) = {H ∈ B : H ⊆R G}

h2(G) = {H ∈ C : Hl ⊆ G ⊕ H}

ĥ(G) = (h1(G), h2(G)).

For an example of these definitions, see Figure 5.

Lemma 5.2. ĥ(G) = ĥ(G′) implies G =P G′.

18

PSfrag replacements

GP̂1 P̂2 B2,2

Figure 5: Example of the definition of h. Here l = 2, d = 10. In this case the
set C consists of the two rooted trees P̂1 and P̂2. For any pair x, y of positive
integers with x+ y ≤ 10 we match the rooted tree Bx,y from B which is obtained

by taking x copies of P̂1 and y copies of P̂2, adding a new vertex and connecting
it by edges to all the roots of the trees, and making the new vertex the new root.
If Hl consists of an unrooted tree isomorphic to B2,2, then for the graph G above,

h1(G) = {Bx,y : 0 ≤ y ≤ 2, 0 ≤ x ≤ 3 − y} and h2(G) = {P̂2}.

Proof. Suppose that ĥ(G) = ĥ(G′) for two rooted forest G, G′. We need to show
that Hl ⊆ G ⊕ J for some rooted forest J implies Hl ⊆ G′ ⊕ J .

Let J be some rooted tree for which H ⊆ G ⊕ J , and let H be a subgraph of
G ⊕ J which is isomorphic to a tree from H. The tree H is l-separable, and let
x be an l-separator of J . Let GH and JH be the rooted subforests of G and J ,
respectively, which are induced by the vertices of H. We consider two cases.

If x is the root of GH (and JH), then the root of GH is an l-separator of
GH . If x is a vertex from JH (except the root), then GH is a subgraph of some
connected component of H − {x} and therefore the number of vertices in GH is
at most l. In particular, the root of GH is an l-separator of GH . In both cases
it follows that GH ∈ B and since GH ⊆R G we have that GH ∈ h1(G) = h1(G

′).
Therefore, GH ⊆R G′ so H = GH ⊕ JH ⊆ G′ ⊕ J . Hence, Hl ⊆ G′ ⊕ J .

Now suppose that x in a vertex from GH which is not the root. JH is a
subgraph of some connected component of H −{x} and therefore the number of
vertices in JH is at most l. Thus, we have JH ∈ C. As H ⊆ G ⊕ JH , we have
Hl ⊆ G ⊕ JH implying that JH ∈ h2(G) = h2(G

′). Thus, Hl ⊆ G′ ⊕ JH and we
conclude that Hl ⊆ G′ ⊕ J .

By Lemma 5.2 we have that

|P | ≤ |Image(ĥ)| ≤ |Image(h1)| · |Image(h2)|.

Clearly, |Image(h2)| ≤ |2C | = 2q. Define a mapping R′ in the following way:
Given a multiset of sets A = {A1, . . . , Ak}, where each Ai is a subset of C, let

R′(A) = {⊕H∈Bnr(H) : B ∈ RC,d(A)}.

19

Input: A tree G and a tree H = K1,d.
Output: A maximum H-free subforest G′ of G.

Select a vertex r of G to be the root of G.
For all vertices v in a postorder of Gr

do

If v 6= r and the degree of v is at least d
then remove the edge between v and its parent.

While the degree of v is at least d do

remove an edge between v and some child of v.
end for

return G.

Figure 6: Algorithm for the maximum subforest problem when the obstruction
set consists of a single 1-separable tree.

Similarly to Section 4, we have that for any rooted tree G, h1(G) = R′(A) ∩ B
for some A. Hence,

|Image(h1)| ≤ |Image(R′)| = |Image(RC,d)| ≤ r(qd, d) ≤ (qd)2q−1,

and therefore |P | = d22O(l)

. We therefore proved the following theorem:

Theorem 5.3. The algorithms family {Al}l≥1 is a polynomial time approxima-
tion scheme for the maximum subforest problem. In particular, algorithm Al gives

an l/(l + 1)-approximation in d22O(l)

n time.

The above theorem is of theoretical interest, but practically, the time complexity
of the above approximation scheme is too large even for modest values of l. The
bottleneck in the complexity is finding a maximum H-free subforest of a tree G,
where all trees in H are l-separable. However, we can give faster implementations
of A1 and A2. To improve the running time of A2 we need to describe how to find
a maximum H-free subforest of a tree G, for a set of 2-separable trees H. Each
2-separable tree has diameter of at most 4, and by a result from [27], finding such
subforest can be done in O(|H|n) time. Hence, A2 can be implemented in O(pn)
time, where p is the number of 2-separable trees in H (note that p ≤

(

d+2
2

)

=
O(d2)).

The same algorithm can also find a H-free subforest of a tree when all trees
in H are 1-separable in O(n) time, because in this case we can assume that H
contains a single tree H (if it is not the case, we can remove from H all its trees
but the smallest one). In fact, for this case we can give a much simpler algorithm.
The algorithm is given in Figure 6. Hence, A1 can be implemented in O(n) time.

20

6 Acknowledgments

We thank Noga Alon for helpful discussions.

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability. BIT, 25:2–33, 1985.

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. on Algebraic and Discrete Methods, 8:277–284,
1987.

[3] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic
theory of graph reduction. J. Assoc. Comput. Mach., 40:1134–1164, 1993.

[4] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable
graphs. J. of Algorithms, 12:308–340, 1991.

[5] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard prob-
lems on graphs embedded in k-trees. Discrete Applied Math, 23:11–24, 1989.

[6] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of
optimal subgraphs of decomposable graphs. J. of Algorithms, 8(2):216–235,
1987.

[7] H. L. Bodlaender. Dynamic programming on graphs with bounded
treewidth. In Proc. 15th Int. Colloq. Automata, Languages and Program-
ming, LNCS 317, pages 105–118. Springer-Verlag, 1988.

[8] H. L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proc.
19th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG
93), pages 112–124, 1993.

[9] H. L. Bodlaender. On reduction algorithms for graphs with small treewidth.
In Proc. 19th Int. Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG 93), pages 45–56, 1993.

[10] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Computing, 25:1305–1317, 1996.

[11] H. L. Bodlaender and B. de Fluiter. Reduction algorithms for construct-
ing solutions of graphs with small treewidth. In Proc. 2nd Int. Conf. on
Computing and Combinatorics (COCOON 96), LNCS 1090, pages 199–208.
Springer-Verlag, 1996.

21

[12] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup
for bounded treewidth. In Proc. 22nd Int. Colloq. on Automata, Languages
and Programming, LNCS 944, pages 268–279. Springer-Verlag, 1995.

[13] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear
algorithms from predicate calculus descriptions of problems on recursively
constructed graphs. Algorithmica, 7:555–581, 1992.

[14] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Statis., 23:493–507, 1952.

[15] E. Cockayne, S. Goodman, and S. Hedetniemi. A linear algorithm for the
domination number of a tree. Information Processing Letters, 4(2):41–44,
1975.

[16] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets
of finite graphs. Information and Computation, 85:12–75, 1990.

[17] T. Kikuno, N. Yoshida, and Y. Kakuda. A linear algorithm for the domi-
nation number of series-parallel graphs. Discrete Applied Math, 37:299–311,
1983.

[18] R. Laskar, J. Pfaff, S. M. Hedetniemi, and S. T. Hedetniemi. On the algo-
rithmic complexity of total domination. SIAM J. on Algebraic and Discrete
Methods, 5(3):420–425, 1984.

[19] L. Lovasz and M. D. Plummer. Matching Theory. North-Holland, Amster-
dam, 1986.

[20] S. Mahajan and J. G. Peters. Algorithms for regular properties in recur-
sive graphs. In Proc. 25th Allerton Conf. on Communications, Control and
Computing, pages 14–23, 1987.

[21] A. M. Odlyzko. Asymptotic enumeration methods. In R. L. Graham,
M. Grotschel, and L. Lovasz, editors, Handbook of Combinatorics, volume 2,
pages 1063–1229. Elsevier and the MIT press, 1995.

[22] P. Scheffler. Linear-time algorithms for NP-complete problems restricted to
partial k-trees. Technical Report R-Math-03/87, Karl-Weierstrass-Inst. für
Mathematik, Berlin, 1987.

[23] P. Scheffler and D. Seese. A combinatorial and logical approach to linear-
time computability. In Proc. European Conference on Computer Algebra,
LNCS 378, pages 379–380. Springer-Verlag, 1989.

22

[24] D. Seese. Tree-partite graphs and the complexity of algorithms. Techni-
cal Report P-MATH-08/86, Akademie der Wissenschaften der DDR, Karl-
Weierstrass-Inst. für Mathematik, Berlin, 1986.

[25] R. Shamir and D. Tsur. Faster subtree isomorphism. J. of Algorithms,
33:267–280, 1999.

[26] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of
combinatorial problems on series-parallel graphs. J. Assoc. Comput. Mach.,
29:623–641, 1982.

[27] D. Tsur. Tree deletion problems with bounded-diameter obstruction sets.
Manuscript, 2004.

23

