Succinct representation of labeled trees

Dekel Tsur*

Abstract

We give a representation for labeled ordered trees that supports labeled queries
such as finding the i-th ancestor of a node with a given label. Our representation is
succinct, namely the redundancy is small-o of the optimal space for storing the tree.
This improves the representation of He et al. [[SAAC 2012] which is succinct only
when the entropy of the labels is w(1).

Keywords: succinct data-structures; labeled trees.

1 Introduction

A problem which was extensively studied in recent years is representing an ordered rooted
tree using space close to the information-theoretic lower bound while supporting numerous
queries on the tree, e.g. [3-5,7,9H12]. Geary et al. [7] studied an extension of this problem,
in which the nodes of the tree are labeled with characters from alphabet {1,...,0}. The
queries on labeled trees receive a character « as an additional argument, and the goal of a
query is to locate a certain node whose label is « or to count the nodes satisfying some prop-
erty and whose labels are o. The set of queries considered by Geary et al. is given in Ta-
ble Geary et al. gave a representation that uses n log 0+2n+0O(no logloglogn/loglogn)
bits, where n is the number of nodes and o is the size of the alphabet, and answers queries
in constant time. For o = o(loglogn/logloglogn), the space is nlogo+2n+o0(n), namely,
the space is o(n) more than the information-theoretic lower bound.

Barbay et al. [1] and Ferragina et al. [6] gave labeled tree representations that use
space close to the lower bound for large alphabets, but the set of supported queries is
more restricted. He et al. [8] improved the result of Geary et al. by showing a labeled tree
representation based upon a rank-select structure on the string Pr that contains the labels
of the nodes in preorder. Using the rank-select structure of Belazzougui and Navarro [2]
the following results were obtained: (1) For o = wOPW | there is a representation that uses
nHo(Pr) + O(n) bits and answers queries in O(1) time, where w is the word size and
Hy(Pr) is the zero-order entropy of Pr. (2) For ¢ < n, there is a representation that
uses nHo(Pr) + o(nHy(Pr)) + O(n) bits. Label queries are answered in O(1) time, and
preorder_rank queries are answered in O(f(n)) time for any f(n) = w(1), or vice versa.
Other queries are answered in O(log llggg) time. The representation of He et al. supports
all the queries of Table [T] and additional queries. Note that the representation is succinct
only if Hy(Pr) = w(1).

In this paper we give a fully succinct representation of labeled trees. Our result is
given in the following theorem.

Theorem 1. Let T be a labeled tree with n nodes and labels from {1,...,0}.

*Department of Computer Science, Ben-Gurion University of the Negev. Email: dekelts@cs.bgu.ac.il

Table 1: Supported queries on a labeled tree. A node with label « is called an a-node. A
a-child of a node is a child which is an a-node. Other o- terms are defined similarly.

Query Description

label(x) The label of z.

depth,, (z) The number of a-nodes on the path from the root to z.
level _ancestor, (z,) The a-ancestor y of x for which depth, (y) = depth, (z) — .
parent,, () level_ancestor, (x,1).

deg, () The number of a-children of z.

child_rank,,(x) The rank of z among its a-siblings.

child_select, (z, 1) The i-th a-child of z.

num_descendants, (z) The number of a-descendants of x.

preorder_rank,, () The preorder rank of z among the a-nodes.

preorder _select () The i-th a-node in the preorder.

postorder_rank,, () The postorder rank of among the a-nodes.

postorder _select,, (7) The i-th a-node in the postorder.

1. For 0 = wOW, there is a representation of T that uses nHy(Pr) + 2n + o(n) bits
and answers the queries of Table[]] in O(f(n)) time for any f(n) = w(1).

2. For o < n, there is a representation of T that uses nHo(Pr) + 2n + o(nHy(Pr)) +
o(n) bits. Label queries are answered in O(1) time, and preorder_rank queries are

answered in O(f(n)) time for any f(n) = w(1), or vice versa. The rest of the queries

of Table are answered in O(log llggfu) time.

Note that our representation supports only the queries considered by Geary et al.
and it does not support the additional queries considered by He et al. The additional
queries are the queries height, (z) (the maximum number of a-nodes on a path from z to
a descendant leaf), leaf _rank, (x) (number of a-leaves with preorder number less than or
equal to x), leaf_select, (7) (i-th a-leaf in preorder), and other queries.

2 Preliminaries

This section contains known and new results that we use in our labeled tree representation.
Since the proofs of the new results are quite long, we chose to give these proofs after
Section |3| that contains the main result of this paper.

2.1 Rank-select structures

A rank-select structure stores a string S over alphabet {1,...,0} and supports the follow-
ing queries: (1) rank, (S,) returns the number of occurrences of « in the first ¢ characters
of S (2) selectq (S, 7) returns the i-th occurrence of « in S (3) access(S,4) returns the i-th
character of S. The problem of designing a succinct rank-select structure with efficient
query times was studied extensively. For our purpose, we use the following results.

Theorem 2 (Belazzougui and Navarro [2]). A rank-select structure can be built on a
string S of length n over alphabet {1,...,0} such that (1) If ¢ = wP), the space is
nHy(S) + o(n) bits, and the structure answers rank queries in O(1) time (2) If o < n,
the space is nHy(S) 4+ o(nHy(S)) + o(n) bits, and the structure answers rank queries in

Table 2: Supported queries on a weighted tree. BP denotes the balanced parentheses
representation of the tree. A node is represented by the index of its opening parenthesis
in BP.

Query Description

W () The wg-weight of x.

depth,, (z) The wq-weight of the nodes of the path from the root to x.

level_ancestor,(z,) The lowest ancestor y of « for which the w,-weight of the nodes
of the path from y to z, excluding =z, is at least 3.

parent,, () level ancestor,(z, 1).

deg,(x) The wq-weight of the children of z.

child_rank, (x) The wy-weight of z and its left siblings.

child_select, (z,) The leftmost child y of = for which child_rank,(y) > 7.

num_descendants,(z) The w,-weight of the proper descendants of x.

bp_close(x) The index of the ‘0’ character in BP that corresponds to x.

bp_rank, ;(7) The wq-weight of the nodes that correspond to ‘1’ characters of

BP with index at most 4, plus the wy-weight of the nodes that
correspond to ‘0’ characters of BP with index at most i.
bp_select,, ;,(4) The minimum index j for which bp_rank, ,(j) > i.

O(log llggg) time. The structure answers access queries in O(1) time and select queries in

O(f(n)) time for any f(n) =w(l), or vice versa.

Theorem 3 (Patrascu. [13]). For any constant integer t, a rank-select structure can be
built on a binary string S of length n that contains k ones such that the space is klog(n/k)+
O(k + n/log' n) bits, and the structure answers queries in O(1) time.

2.2 Representation of unlabeled trees

We use the following result on representation of unlabeled ordered trees. We are interested
in a representation that supports the unlabeled versions of the queries listed in Table[I|and
additional queries such as lca queries (finding the lowest common ancestor of two nodes).

Theorem 4 (Navarro and Sadakane [12]). An ordered tree can be stored using 2n + o(n)
bits such that the queries on the tree are answered in O(1) time.

2.3 Representation of weighted trees

In this section we consider the problem of representing ordered trees with weights on the
nodes. We will use weighted trees in our representation of labeled trees.

Let T be a tree with weights wi(v),...,ws(v) for each node v, where each weight is
from {0,..., X — 1}. For a set of nodes U, the w,-weight of U is) iy wq(v). Through-
out this section we assume that the balanced parentheses string of a tree is a binary
string, where opening and closing parenthesis are represented by 1 and 0, respectively. A
node is represented by the index of its opening parenthesis in the balanced parentheses
representation of the string. The weighted tree queries we need are described in Table

Lemma 5. A weighted tree with n nodes and s = O(1) weight functions with weights from
{0,..., X — 1}, where X = O(logn), can be stored using at most 2nlog(2X?) + o(n) bits
such that the queries in Table[d are answered in O(1) time.

The proof of Lemma [f is given in Section

(a) (b) (c)

Figure 1: Example of tree decomposition using L = 4. Figure (a) shows the decomposition
of Farzan and Munro, and Figure (b) shows our modified decomposition. Figure (¢) shows
the tree T7,.

2.4 Tree decomposition

In the next lemma we present a tree decomposition that we will use in our labeled tree
representation. The decomposition is a slightly modified version of the decomposition of
Farzan and Munro [5]. An example for the decomposition is given in Figure

Lemma 6. For a tree T' with n nodes and an integer L, there is a collection Dt of
subtrees of T with the following properties.

1. BEvery edge of T' appears in exactly one tree of Dr ..
The size of each tree in D, is at most 2L + 1.

The number of trees in Dy 1, is O(n/L).

e

For every tree T' € Dy, there are two intervals of integers Iy and Iy such that
a node x € T is a non-root node of T" if and only if preorder rank(z) € I U I,
where preorder_rank(z) is the preorder rank of x in T'. The node with preorder rank
min(max(/;), max(l2)) is called the special node of T".

5. For every T' € Drp,, only the root and the special node of T' can appear in other
trees of Dt 1.

The proof of Lemma [6] is given in Section | For a tree T and an integer L we define
a tree T, as follows (see Figure . Construct a tree decomposition Dz according to
Lemma @ If the root r of T appears in several trees of Dr 1, add to D a tree that
consists of r. The set of nodes of T}, is the set Dr 1. For two trees z’,y' € D, 2’ is the
parent of ¢’ in T, if and only if the root of 3’ is equal to the special node of 2’ (or z’ is
the tree that consists of r).

3 Representation of labeled trees

As in He et al. [§], we build trees T* for every o € {1,...,0}. To build 7%, we temporarily
add to T a new root with label . Then, let X, be the set of all a-nodes in T' and their
parents. The nodes of T“ are the nodes of X, and «x is a parent of y in T* if and only if x
is the lowest (proper) ancestor of y that appears in X,. Unlike He et al., we do not store
the tree T*. Instead, we store a weighted tree that contains only part of the information
of T*. The weighted tree is the tree 77 obtained from the tree decomposition of Lemma@

4

For the case 0 = wPW the value of L is L = f(n), where f is a function that satisfies
f(n) =w(l) and f(n) = O(logn), and for larger o we set L = 4/log llggfu
the number of a-nodes in T. We say that a character « is frequent if n, > L. We only
construct the trees T} for frequent characters.

For a node 2’ in T}, let V(2') be the set of all nodes in the tree z’, excluding the root
of 2/, and let V,,(z') be the a-nodes in V(2’). Let C(2’) be the leftmost a-child of the root

of ' among the nodes of V,(z"). We define the following weight functions for Tp.

Denote by ng

1. wy(2') is the number of nodes in V,(z').

2. wy(2') is the number of nodes in V,,(2’) whose preorder rank in 7 is less than or
equal to the preorder rank of the special node of z’.

3. ws(2') is equal to wy (') — wa ().

4. wy(z') is the number of nodes in V,,(z’) which are ancestors of the special node of

z'.

5. ws(2") is the number of a-children of the root of ’.

6. wg(x') is the rank of C(2’) among the nodes of V,,(2’), when the nodes are sorted
according to preorder (if C'(z’) does not exist, wg(z') = 0).

7. wr(2’) is equal to 1 if the special node of 2’ is an a-node, and 0 otherwise.

Our representation of T consists of the following data-structures. We store a rank-
select structure on Pr, using one of the structures of Theorem [2] according to the size of
the alphabet. We also store an unlabeled tree T" obtained from T’ by removing the labels.
T is stored using Theorem 4, We also store the trees T7. In order to reduce the space, we
do not store these trees individually. Instead, we merge them into a single tree T7’. The
tree T” contains a new root node, on which the trees T§" are hanged, ordered by increasing
values of a. The tree T” is stored using the representation of Lemma |5, In order to map
a node of T} to the corresponding node of 7", and vice versa, we store the rank-select
structure of Theorem [3| on the string N = 10™110™2 ..., where a; < as < --- are the
frequent characters. We also store the rank-select structure of Theorem [3] on a binary
string F' of length o in which F|a] = 1 if « is frequent. Since a mapping between nodes
of Tf* and nodes of T can be computed in constant time, in the following we shall assume
that the trees 17 are available.

We next analyze the space complexity of the representation. The space for Pr is
nHy(Pr) 4+ o(n) bits for small alphabet, and nHy(Pr) + o(nHy(Pr)) + o(n) bits for large
alphabet. The space for 7' is 2n+o(n) bits. The tree T" has O(n/L) nodes, and the weight
functions have ranges {0, ..., L}. Thus, the space for 7" is O((n/L)log L) + o(n) = o(n)
bits. The strings N and F have at most n zeros and at most n/L ones. Thus, the
space for the rank-select structures on these strings is O((n/L)log L) 4+ o(n) = o(n) bits.
Therefore, the total space of the representation is nHy(Pr)+ 2n+ o(n) for small alphabet,
and nHo(Pr) + 2n + o(nHy(Pr)) 4+ o(n) for large alphabet.

In the following, when we use an unlabeled tree operation (e.g., parent(x)) we assume
that the operation is performed on T, and when we use a weighted tree operation we
assume that the operation is performed on T7'.

3.1 Mapping from 7} to T

Let 2’ be a node of T¢. From property [4 of Lemma [6] there are two intervals [I1(z'),r1 (z')]
and [l(z), r2(2’)] such that an a-node x of T' is a non-root node of z’ if and only if the
rank of x among all the a-nodes of T', sorted in preorder, is in one of the intervals. These
intervals can be computed as follows:

/

ri(x") = bp_ranky 3(z')

h(z') =ri(z) —wa(a’) +1
ro(2") = bp_rank, 3(bp_close(z"))
la(2') = ra(a) — ws(a) + 1

The set V,(z') can be computed with
Va(2') = {preorder_select(selecty (Pr, s)) : s € [l1(2"), r1 (") U [la(z'), ro(2')]},

and C(2') can be computed with preorder_select(selecty(Pr,k)), where k = [i(2) +
we(z') — 1 if wg(z') < wq(2'), and k = la(2’) + we(z') — wa(z') — 1 otherwise.

3.2 Mapping from 7 to T}

Let x be a node of T and « be a frequent character. If x € X, we want to compute the
node z’ € T§ such that = € V(2'). We denote this node by map(z). Additionally, we
compute whether x is the special node of map(x).

We consider two cases. The first case is when x is an a-node. Then,

map(z) = bp_select, 5(preorder_rank,(z)).

Moreover, z is the special node of map(x) if and only if w7(z') = 1 and preorder rank,, (z) =
r(z).

Now suppose that x is not an a-node. The algorithm for computing map(x) is as
follows.

1. Let u and v be the a-descendants of x with minimum and maximum preorder ranks,
respectively (u,v are computed using the structures on Pr and 7T'). If u,v do not
exist return NULL.

2. Compute v’ = map(u) and v = map(v).

3. If «/ is an ancestor of v’ (including v’ = v’), compute V,(v'). Scan the nodes of
Va(u') and check for each node whether it is a child of z. If no child of x was
found, return NULL. Compute C(u'). If C(u') exists and parent(C(u’)) = x then
map(x) = parent(u’) and x is the special node of map(z). Otherwise, map(z) = v’
and x is not the special node.

4. If v’ is a proper ancestor of v/, handle this case analogously to the handling of the
previous case.

5. If neither v’ or v’ is an ancestor of the other, compute y’ = child_selects(lca(u’,v'), 1).
If ¢’ does not exists, return NULL. Compute C(y’). If C(y') exists and parent(C(y)) =
x, then map(z) = lca(u/,v") and z is the special node of map(z). Otherwise, return
NULL.

We now show the correctness of the algorithm above. It is easy to verify that the algorithm
is correct when z is an a-node. Moreover, the algorithm returns a non NULL value only
after finding an a-child of . Thus, the algorithm is correct when x ¢ X,. Now, suppose
that x € X, and x is not an a-node. By definition, x has at least one a-child. Denote by
ug and vy the ancestors of u and v that are children of x in 7%, respectively (note that s
can be equal to v2), and let u5 = map(ug) and v5 = map(vs). By the definition of u and
v, every a-child of x is between uo and vy in T%.

We first claim that if v}, = v} (namely, if us and ve are in the same tree in the
decomposition of T%) then one of the nodes v’ and v’ is equal to u}, and the other node is
a descendant of uf, (or equal to u}). This claim is true since ug and vy are siblings in 7%,
and therefore at most one of them is an ancestor of the special node of u},. Thus, at most
one of ug and ve has descendants that are not in u}, and the claim follows.

Suppose that u' is an ancestor of v'. We show that u), = v}. Suppose conversely
that uf # v5. Since ug and vy are siblings in 7%, uf, and v} are siblings in T§'. Now, v/
is a descendant of u, and v’ is a descendant of v5. Thus, v/ is not an ancestor of v/, a
contradiction.

Since uh = v}, from the claim above it follows that v’ = u/,. We conclude that all the
a-children of x are in V,(u'). Therefore, the scan of V,(u’) finds an a-child of z. By the
definition of map(-), u is not the root of «/, and therefore the node x is also a node of u'.
Thus, map(z) = parent(u’) if z is the root of v/, and map(z) = v’ otherwise. Since u the
former case occurs if and only if C'(u’) exists and parent(C(u')) = x.

Now consider the case when neither u’ or v is an ancestor of the other. From the claim
above, ufy # v}. Moreover, u, and v} are children of map(z). Since «’ is a descendant of u
and v’ is a descendant of v}, it follows that map(z) = lca(u’,v’) and x is the special node
of map(z). Moreover, we have in this case that ¥’ and C(y’) exist, and parent(C(y)) = x.

3.3 Answering queries

In this section we describe how to implement the queries of Table [I The queries label,
preorder_rank, preorder_select, num_descendants and postorder_rank are answered as in [8].
Answering the remaining queries is also similar to [8], but here additional steps are re-
quired as a weighted tree T holds less information than 7“. The general idea is to use
the tree 17 to get an approximate answer to the query. Then, by enumerating the nodes
of constant number of V,(+) set, the exact answer is found. The time complexity of an-
swering a query is thus O(L - tgeect), Where tgect is the time for a select query on Pr.

Since tgelect = O(1) for small alphabet and tgeect = 0(4/log 113531) for large alphabet, it
follows that the time for answering a query is any w(1) for small alphabet and O(log llggg)

for large alphabet.
We assume that « is a frequent character until the end of the section. Handling queries
in which « is non-frequent is done by enumerating all the a-nodes in T'.
3.3.1 parent,(z) query
We consider two cases. If = is an a-node the query is answered as follows.
1. Compute ' = map(x).

2. Compute V,(2'). Scan the nodes of V,(2') in reverse order, and check for each node
v whether v is an ancestor of z. If an ancestor of x is found, return it.

3. Compute y' = parent,(z’). If ¢’ does not exist return NULL.

4. Compute V,(y'). Scan the nodes of V,(y') in reverse order, and check for each node
v whether v is an ancestor of . When an ancestor of x is found, return it.

If x is not an a-node then the query is answered as in He et al. [8].

3.3.2 depth,(x) query
1. Let y = x if x is an a-node, and y = parent, (x) otherwise.
2. Compute 3’ = map(y).

3. Compute V,(y') and scan the nodes of V,,(y'). Count the number of nodes that are
ancestors of x, and let ¢ denote this number.

4. Return i + depthy(y") — w4 (/).

3.3.3 level_ancestor,(z,7) query

1. Compute y = parent, (z). If y does not exist return NULL.
2. If i = 1 return y.
3. Compute 3’ = map(y).

4. Compute V,(y'). Scan the nodes of V,(y') in reverse order. For each node v, if v is
an ancestor of x, decrease ¢ by 1. If ¢ becomes 0 return v, and otherwise continue
with the scan.

5. Compute 2’ = level_ancestory(y’, 7). If 2’ does not exist return NULL.
6. Set i < i — (depthy(parent(y’)) — depth,(2')).

7. Compute V,(z'). Scan the nodes of V,(2’) in reverse order. For each node v, check
whether v is an ancestor of z. If v is an ancestor, decrease ¢ by 1. If ¢ becomes 0
return v, and otherwise continue with the scan.

3.3.4 deg,(z) query

1. Compute ' = map(x). If 2’ does not exist return 0.

2. If x is not the special node of 2/, compute V,(z’) and scan the nodes of V().
Return the number of nodes that are children of x.

3. Return degs(z’).

We now explain the correctness of the algorithm above. If x is not the special node of
2’ then all the children of z in 7% are in the tree /. Thus, it suffices to scan V,(z'). If =
is the special node, the set of a-children of x is precisely the set of a-children of the roots
of all trees y such that ¢’ is a child of ' in T. Therefore, deg, (z) = degs(z’).

3.3.5

child_rank,(z) query

If x is an a-node the query is answered as follows.

1.

2.

3.
4.
5.

Compute 2’ = map(z).

Compute V,(z') and scan the nodes of V,(z'). Count the number of nodes that are
left siblings of x, and let ¢ denote this number.

Compute u = parent(z) and v’ = map(u).
If u is not the special node of «’ return .

Return ¢ + child_ranks(z’) — ws(2').

The case when z is not an a-node is handled as follows.

1.

2.

3.3.6

1.

2.

Compute u = parent(z) and v/ = map(u). If v’ does not exist return 0.

If w is not the special node of «/, compute V,(u’) and scan the nodes of V().
Return the number of nodes that are left siblings of x.

Let v be the a-predecessor of x. If v does not exist or if preorder_rank(v) <
preorder_rank(u) return 0.

. Compute v' = map(v).
. Let w’ be the child of «' which is an ancestor of v'.

. Compute V,(w') and scan the nodes of V,(w’). Count the number of nodes that are

left siblings of x, and let i denote this number.

Return i + child ranks(w’) — ws(w’).

child_selecty(z,7) query

Compute 2 = map(z). If 2/ does not exist return NULL.

If x is not the special node of x, compute V,(2’) and scan the nodes of V,(z). For
each node v, check whether v is a child of x. Return the i-th child.

. Compute y' = child_selects (2, 7).
. Set i < i — (child_ranks(y") — ws(y')).

. Compute V,(y') and scan the nodes of V,,(y’). For each node v, check whether v is

a child of z. Return the i-th child.

3.3.7 postorder_select, (i) query

1.

Return bp_selecty (7), where wg(v) is assumed to be 0 for all v.

4 Proof of Lemma 5

The representation is a variation of the unweighted tree representation of Navarro and
Sadakane [12]. We first review the latter representation. Let T be an unweighted tree,
and let P be its balanced parentheses representation. Navarro and Sadakane showed that
queries on the tree can be implemented by supporting a set of base queries that include (1)
the queries deg, child_rank, and child_select, which we call child queries (2) the following
queries on P and a function f: {0,1} — {—1,0, 1} from a fixed set of functions F:

sum(P, f,i,7) Zf

fwd_search(P, f,i,d) =
bwd_search(P, f,i,d) = max{j <i:sum(P, f,i,j) = d}
rmdai(P, f,4,7) = argmin{sum(P, f,1,k) : i < k < j}
RMQIi(P, f,i,j) = argmax{sum(P, f,1,k) : 1 < k < j}

mm{] >i:sum(P, f,i,7) =d}

For example, level ancestor(v, i) = bwd_search(P, 7,v— 1,1), where 7 is a function defined
by 7(0) = =1 and «(1) = 1.

The representation of Navarro and Sadakane is based on partitioning of P into blocks
of size N = D¢ for some constant integer ¢, where D = ©(w/(clogw)). Each block of P
is stored using an aB-tree [13] which is able to support the base queries on the block in
constant time. The space of an aB-tree is O(1) bits more than the information-theoretic
lower bound. Since P is a binary string, the space of one aB-tree is N + O(1), and the
space for all trees is 2n 4+ o(n). In order to support base queries on the entire string
P, Navarro and Sadakane added additional data-structures. The space of the additional
data-structures is O((n/N)1log®® n). Thus, by choosing large enough ¢, the additional
space is o(n).

We now describe the aB-trees in more details. An aB-tree over a block @ is a full
tree of height ¢ in which each internal node has D children. The N leaves of the tree
correspond to the IV characters of (). Each internal node x corresponds to a substring
Q[lz..rz] of Q, where I, and r, are the ranks of the leftmost and rightmost descendant
leaves of x in the left-to-right order of the leaves. Each leaf of the aB-tree stores a value
which is a function of the character corresponding to the leaf. Moreover, each internal
node stores a value which is a function of the values stored at the children of the node.
The values stored at the nodes of the aB-tree are tuples, and the elements of these tuples
will be described below.

Fix a function f € F. Let Ef be an array defined by E[i| = sum(Q, f,1,4). In order to
support sum, fwd_search and bwd_search on) and f, the aB-tree stores at each internal
node x the values e¢[z] = E¢[ry], my¢[z] = min E¢[l,..r,], and Mylx] = max Ef[l,..r,).
Answering a fwd_search(Q, f,i,d) query is equivalent to finding the smallest index j > i
such that sum(Q, f,1,5) = d', where d = sum(Q, f,1,i — 1) + d. In order to find j
(assuming that j exists), start at the root of the aB-tree and descend toward the j-th leaf.
The navigation at a node x is done as follows. Let z1,...,zp be the children of z. If z is
an ancestor of the i-th leaf of the tree, let i’ be the index such that x; is an ancestor of
the i-th leaf. Otherwise, i’ = 0. We have that the j-th leaf is a descendant of zj, where
k >4’ is the minimum index such that my¢[xy] < d’ < My[zg]. This property follows from
the fact that the image of f is {—1,0,1}. Finding k& can be done in constant time using a
lookup table. Since each value of my or My is from {—N,..., N}, the size of the lookup
table is 20(Plog N) — ¢(p),

10

In order to support child queries on @), the aB-tree stores at each internal node = a
value n[z] which is the number of times m,[z] appears in E.[l,..r;]. We now describe
how to answer a deg(v) query. We have that deg(v) is equal to the number of times the
value depth(v) appears in Er[v..bp_close(v)]. Moreover, depth(v) is the minimum value
in E;[v..bp_close(v)]. Let and 2’ be the v-th and bp_close(v)-th leaves of the aB-tree,
respectively, and let y be the lowest common ancestor of z and z’. Computing deg(v)
is done by descending from y toward z and toward z’, and updating a counter during
these descents. During the descent toward x, the counter is updated as follows. Let z
be the current node. Let z1,...,zp be the children of z, and let z; be the child which
is an ancestor of . The values n[z;| are added to the counter for every j > i for which
my[zj] = depth(v). This can be performed in constant time using a lookup table of size
o(n). The descend toward 2’ is similar, except that indices j smaller than i are considered.
The queries child_rank and child_select are also answered using the n[x] values.

We next describe the additional data-structures needed to answer queries on P. Let
b(i) denote the number of the block that contains the i-th character of P.

For supporting fwd_search on P for a function f, trees T and T} are constructed with
weights from {0,..., N} on their edges, and weighted ancestor data-structures are built
over these trees. The tree Ty is defined as follows. Let m; (resp., M;) be the minimum
(resp., maximum) value of sum(P, f,1,7) for an index j that belongs to the i-th block
of P. The nodes of Ty are {0,1,...,n/N}. A node ¢ > 0 is a child of node j, where
J is the minimum index for which j > i and m; < m;. The edge between these nodes
has weight m; — m;. If no such index exists, ¢ is a child of node 0. The tree T} is built
analogously from the M; values. A fwd_search(P, f,i,d) query is answered by first checking
whether the answer lies in the block b(i) (using the aB-tree that stores the block). If not,
a weighted ancestor query on T’ or Tj’c finds the block in which the answer lies, and the
location inside the block is found using the aB-tree storing this block. In more details,
computing fwd_search(P, f,7,d) is equivalent to finding the rightmost index j > i such
that sum(P, f,1,7) = d’, where d’ = sum(P, f,1,7 — 1) + d. If the answer is not in block
b(i), then it is inside the first block k > b(i) for which my < d’ < Mj. Again, this follows
from the fact that the image of f is {—1,0,1}. Suppose that d’ < my(;)- Then, k is the
minimum index greater than b(i) such that d > my. Finding k is done by computing
the lowest ancestor of b(i) in Ty whose weighted distance to b(i) is at least myg;y — d'. If
d > my(;) then k is found by computing the lowest ancestor of b(i) in T]Q whose weighted
distance to b(i) is at least d’ — M.

Navarro and Sadakane showed that for a tree with n nodes and edge weights from
{0,..., W}, and for every constant integer ¢, there is a weighted ancestor data-structure
that uses O(nlognlog(nW)+nW/log!(nW)) bits. Since a tree Ty has O(n/N) nodes and
the weights of the edges are at most N, the weighted ancestor data-structure over T’ uses
O((n/N)log(n/N)logn + n/log’ n) bits.

In order to support the child queries, additional structures are built over a subset of
the nodes of the tree. A node v of T is marked if (1) b(bp_close(v)) — b(v) > 2 (2) There
is no child v’ of v for which b(v") = b(v) and b(bp_close(v’)) = b(bp-close(v)). A block k
is contained in a marked node v if b(v) < k < b(bp_close(v)) and this inequality is not
satisfied for a child v’ of v. The representation of T' includes the following structures: (1)
The rank-select structure of Theorem [3[on a bitmap B of length 2n in which B[i] = 1 if
P[i] = 1 and i is a marked node. (2) An array that stores the degrees of the marked nodes,
sorted according to postorder. (3) The rank-select structure of Theorem [3|on a bitmap B’
defined as follows. For each marked node v generate a bitmap B, = 00101 -, where
¢; is the number of children of v whose opening parentheses are in the i-th block that is

11

contained in v. Then, B’ is the concatenation the bitmaps of the marked nodes, ordered
according to preorder. (4) For each marked node v, the indices i, j such B'[i..j] = B,. (5)
For each marked node v, a list of the blocks contained in v. (6) For each block k, the rank
of the block among the blocks that are contained in the same marked node as k.

Given a deg(v) query, if v is a marked node, the query is answered using the stored
value. Otherwise, the parentheses of each child of v are contained either in block b(v)
or in block b(bp_close(v)), except perhaps one child whose opening parenthesis is in the
former block and its closing parenthesis is in the latter block. Therefore, the query can
be answered using the aB-trees holding these blocks. A child_select(v, i) query for a non-
marked node can be again answered using the aB-trees of blocks b(v) and b(bp_close(v)).
For a marked node v, if the opening parenthesis of the answer node is in block b(v) or
b(bp_close(v)), the query can be answered using the aB-trees. Otherwise, the bitmap B’
is used to find the block that contains the opening parenthesis of the answer node, and
then the aB-tree of this block is used to locate the answer.

We now describe our representation for weighted trees. Let T be a weighted tree, and
let BP be the balanced parentheses representation of 1. Define a string P of length 2n
in which each character is a tuple of s + 1 elements. For an index i, the tuple P[i] is
(w1 (v), wa2(v),...,ws(v), BP[i]), where v is the node that corresponds to BP]i]. As for the
case of unweighted trees, it suffices to support a set of base queries that include (1) the
weighted tree queries deg, child_rank, and child_select (2) sum, fwd_search and bwd_search
queries on the string P and a function f (from a fixed set of functions F) which has the

form
if =1 if =1
¢a’b(x) — xa % x5+1 or 7ra<$) — $a % xS"rl
xp ifzg1 =0 —xq ifxgy1=0

where x, denotes the a-th coordinate of x. Note that we do not support rmqi and RMQi
queries as these queries are needed only to answer tree queries that are not supported
by our weighted tree representation (e.g., lca and height queries). Recall that the rep-
resentation of Navarro and Sadakane relies on the property that the image of the func-
tion f is {—1,0,1}, which is not true in our case. Therefore, instead of supporting the
fwd_search and bwd_search queries of Navarro and Sadakane, we support the following
modified queries

fwd search’(P, f,i,d) = min{j > i : sum(P, f,i,j) > d}
bwd_search’ (P, f,i,d) = max{j <1 :sum(P, f,i,j) > d}

It is easy to verify that the queries of Table [2| can be answered using the modified base
queries. For example, level_ancestor, (v,i) = bwd_search’ (P, 7y, v — 1,1).

To support the base queries, P is partitioned into blocks of size N = D¢ and each block
is stored using an aB-tree. The space of one aB-tree is N log(2X*)+O(1). Thus, the total
space of the aB-trees is 2nlog(2X?*)+o(n). Additionally, since now the image of a function
fis {—X,..., X} whereas the image is {—1,0,1} for unweighted trees, the space of the
additional data-structures is increased by a factor of at most X. Since X = O(logn), we
can ensure the additional space is o(n) by increasing ¢ by 1.

In the aB-tree of a block @) we store at each node x the values e¢[z] and m[z] for every
function f, as before. Additionally, for every weight function w,, we store a value n,|[x]
which is equal to the wy-weight of the set of nodes v for which I, < bp_close(v) < r, and
E[bp_close(v)] = my[z]. Performing queries on @ is almost the same as in the unweighted
case. For a fwd_search’(Q, f,i,d) query, during the traversal of the aB-tree we need to
compute at a node z the minimum index k > i’ such that d’ > my[x;]. For a deg,(v)

12

query, during the traversal of the aB-tree, the values n,[z;] are added to the counter for
every j > i (or for every j < i) for which my[z;] = depth(v). Since X = O(logn), the
sizes of the lookup tables remain o(n).

For answering fwd_search’ queries on P, we build Ty trees. The edge weights of
these trees are bounded by NX. Therefore one tree takes O((n/N)log(n/N)log(nX) +
nX/log'(nX)) bits (where ¢ is some constant integer), and the total space is o(n). As for
the structures for child queries, we now need to store the w,-degrees of the marked nodes for
every weight function w,. The space is O((n/N)log(nX)) = o(n) bits. Moreover, we need
a rank-select structure on a bitmap B/, which is defined similarly to B’, except that now ¢;
is the w,-weight of the children of v whose opening parentheses are in the i-th block that is
contained in v. The space of this structure is (n/N)log(NX)+O(n/N+NX/log'(NX)) =
o(n) bits.

5 Proof of Lemma

The decomposition is based on the decomposition of Farzan and Munro [5]. For complete-
ness, we first describe the latter decomposition. During the run of the algorithm, two
kinds of subtrees of T" are maintained: temporary and permanent. A permanent tree does
not change after it is created, and at the end of the algorithm, the decomposition consists
of all permanent trees. A temporary tree has at most L nodes, and a permanent tree has
at most 2L nodes.

The algorithm uses a procedure pack(v,uy,...,u;) that receives a node v and some
children wuq,...,u; of v, where each u; is a root of a temporary tree. The procedure
combines the temporary trees into larger trees as follows.

1. Let u; be the first unhandled node (initially, ¢ = 1). Add v to the temporary tree of
;.

2. Combine the tree of u; with the trees of w;y1,uit2,... (by adding the nodes of the
latter trees to the former tree) and stop when the combined tree has at least L nodes,
or when there are no more children of v.

3. If i = 1 and the size of the combined tree is less than L, declare the tree temporary.
Otherwise, declare the tree permanent and go to step 1.

We say that a node v is heavy if the number of its descendants (including v) is at least
L. The decomposition algorithm works recursively on the tree T, starting from the root.
The handling of a node v is done as follows.

1. If v is a leaf, create a temporary tree that consists of v, and stop the recursive call.

2. Otherwise, let uq,...,ur be the children of v. Run the algorithm recursively on
ui,...,u. After the recursive calls, each u; is a root of a subtree of T

3. If v has no heavy children, call pack(v,uq, ..., ug).

4. If v has a single heavy child u;, then if the subtree of u; is temporary, call pack(v, uq, . . .

Otherwise, call pack(v,uy, ..., Ui—1,Ujt1,. .., Ug).

5. If v has at least 2 heavy children, let u;,, ..., u;, be the heavy children of v. Declare
the subtrees of u;,, ..., u;, permanent. If all the children of v are heavy, create a tem-

porary tree that consists of v. Otherwise, for every j < d, call pack(v, u;; 11, ..., ui;, 1)

13

An example for the decomposition of Farzan and Munro is given in Figure

We now describe our decomposition. We first construct the decomposition of Farzan
and Munro, which satisfies the properties of the lemma, except for property It also
satisfies stronger versions of properties [2| and [5f Each tree in the decomposition has size
at most 2L, and the common node of two trees in the decomposition can be only the root
of both trees. Moreover, for a tree 7" in the decomposition, for every edge (v, w) between
anode v € 77 and a node w ¢ T', v is the root of T”, except perhaps for one edge.

We now change the decomposition as follows (see Figure [Lb)). First, for every edge
(v,w) for which v and w are in different trees, if v is not the root of a tree in the decom-
position, add the node w to the unique tree containing v. Note that in this case, the tree
also contains the predecessor of v in the preorder, so property 4] is maintained. Otherwise
(if v is the root of a tree), add a new tree to the decomposition that consists of the nodes
v and w. After the first step is performed, remove from the decomposition all trees that
consist of a single node. It is easy to verify that the new decomposition satisfies all the
properties of the lemma.

References

[1] J. Barbay, A. Golynski, J. I. Munro, and S. S. Rao. Adaptive searching in succinctly
encoded binary relations and tree-structured documents. Theoretical Computer Sci-
ence, 387(3):284-297, 2007.

[2] D. Belazzougui and G. Navarro. New lower and upper bounds for representing se-
quences. In Proc. 20th European Symposium on Algorithms (ESA), pages 181-192,
2012.

[3] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Rep-
resenting trees of higher degree. Algorithmica, 43(4):275-292, 2005.

[4] Y.-T. Chiang, C.-C. Lin, and H.-I. Lu. Orderly spanning trees with applications.
SIAM J. on Computing, 34(4):924-945, 2005.

[5] A. Farzan and J. I. Munro. A uniform approach towards succinct representation of
trees. In Proc. 11th Scandinavian Workshop on Algorithm Theory (SWAT), pages
173-184, 2008.

[6] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and index-
ing labeled trees, with applications. J. of the ACM, 57(1), 2009.

[7] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms, 2(4):510-534, 2006.

[8] M. He, J. I. Munro, and G. Zhou. A framework for succinct labeled ordinal trees
over large alphabets. In Proc. 23rd International Symposium on Algorithms and
Computation (ISAAC), pages 537-547, 2012.

[9] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th Symposium on
Foundation of Computer Science (FOCS), pages 549-554, 1989.

[10] J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Succinct representations of per-
mutations and functions. Theoretical Computer Science, 438:74—88, 2012.

14

[11] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. on Computing, 31(3):762-776, 2001.

[12] G. Navarro and K. Sadakane. Fully-functional static and dynamic succinct trees.
ACM Transactions on Algorithms, 10(3):article 16, 2014.

[13] M. Patragcu. Succincter. In Proc. 49th Symposium on Foundation of Computer
Science (FOCS), pages 305-313, 2008.

15

	Introduction
	Preliminaries
	Rank-select structures
	Representation of unlabeled trees
	Representation of weighted trees
	Tree decomposition

	Representation of labeled trees
	Mapping from TL to T
	Mapping from T to TL
	Answering queries
	parent(x) query
	depth(x) query
	level_ancestor(x,i) query
	deg(x) query
	child_rank(x) query
	child_select(x,i) query
	postorder_select(i) query

	Proof of Lemma 5
	Proof of Lemma 6

