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Abstract

Given two undirected trees T and P , the Subtree Homeomorphism Problem is to
find whether T has a subtree t that can be transformed into P by removing entire
subtrees, as well as repeatedly removing a degree-2 node and adding the edge joining
its two neighbors. In this paper we extend the Subtree Homeomorphism Problem to a
new optimization problem by enriching the subtree-comparison with node-to-node sim-
ilarity scores. The new problem, called Approximate Labelled Subtree Homeomorphism
(ALSH), is to compute the homeomorphic subtree of T which also maximizes the over-
all node-to-node resemblance. We describe an O(m2n/ log m+mn log n) algorithm for
solving ALSH on unordered, unrooted trees, where m and n are the number of vertices
in P and T , respectively. We also give an O(mn) algorithm for rooted ordered trees
and O(mn log m) and O(mn) algorithms for unrooted cyclically ordered and unrooted
linearly ordered trees, respectively.

Keywords: tree similarity, approximate labelled matching.

1 Introduction

The matching of labelled tree patterns has many important applications in areas such as
bioinformatics, semistructured databases, and linguistics. Examples include the compari-
son among metabolic pathways, the study of alternative evolutionary trees (phylogenies),
processing queries against databases and documents represented in e.g. XML, and many
fundamental operations in the analysis of natural (and formal) languages. In all these sce-
narios, both the labels on the nodes as well as the structure of the underlying trees play a
major role in determining the similarity between a pattern and the text in which it is to be
found.

There are several, increasingly complex ways to model these kinds of problems. A starting
point is the subtree isomorphism problem [17, 18, 25]: Given a pattern tree P and a text
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tree T , find a subtree of T which is isomorphic to P (i.e. find whether a subtree of T that
is identical in structure to P can be obtained by removing entire subtrees of T ) or decide
that there is no such tree. The subtree homeomorphism problem [3, 22] is a variant of the
former problem, where degree 2 nodes can be deleted from the text tree (see Figure 1). The
constrained tree inclusion problem [28] is a variant of labelled subtree homeomorphism where
label equality between pairs of aligned nodes in the compared subtrees is required. Note that
all the tree matching problems mentioned so far have efficient algorithms. The tree inclusion
problem [16] is the problem of locating the smallest subtrees of T that include P , where
a tree is included in another tree if it can be obtained from the latter by deleting nodes.
Here, deleting a node v from a tree entails deleting all edges incident on v and inserting
edges connecting the parent of v with the children of v. Tree inclusion on unordered trees
is NP -complete [16]. Schlieder and Naumann [23] extended the tree inclusion problem to
an approximate tree embedding problem in order to retrieve and rank search results using a
tree-similarity measure whose semantics are tailored to XML data. The complexity of their
algorithm, which is based in dynamic programming and processes the query tree in a bottom
up fashion, is exponential.
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Figure 1: Example for Subtree homeomor-
phism. Two subtrees in the text tree that are
homeomorphic to the pattern tree are circled
by the dashed lines. The white nodes in the
text tree are degree-2 nodes that are removed
by the homeomorphism.
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Figure 2: Approximate Labelled Subtree
Homeomorphism. The node-label similarity
scores are specified in table ∆. Note that
δ = −1. Two subtrees in the text that are
homeomorphic to the pattern are circled by
the dashed lines. The left homeomorphic sub-
tree has an LSH score of 5, while the right one
has an LSH score of 12.

This paper addresses queries on labelled trees. The trees can be either ordered or unordered,
rooted or unrooted — depending on the application at hand. The main point is, however,
that even though the trees are labelled, label equality is not required in a match. Instead, a
node-to-node similarity measure is used to rank the resemblance or distance between pairs
of aligned nodes. This extension is motivated by the aforementioned applications, where a
more meaningful match can be found if — in addition to the topological structure similarity
between subtrees — node-to-node resemblance is also taken into account. For example, in
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bioinformatics, the similarity between metabolic pathways [19, 24] is based both on the re-
semblance of the elements constituting the pathways (e.g. proteins) as well as on the likeness
of their network structure (the former would reflect closeness between proteins, based on
either a BLAST sequence comparison score or on functional homology, and the latter would
be the topological equivalent of multi-source unrooted trees [21]). A query that searches for
a small pathway fragment in a larger tree should take into account the topology similarities
(in the form of subtree homeomorphism) as well as the pairwise similarity between proteins
which make up the aligned subtree nodes. Another example is when designing a semantic
query language for semistructured databases that are represented as XML documents [23]:
here the node-to-node similarity score may reflect content or tag resemblance, and the topo-
logical difference allows flexibility in document structure matching [2]. Finally, in natural
language processing, trees are often used to represent sentences, where nodes are labelled
by words and sentential forms (or constituents); matching that takes into account synonyms
and elisions is very useful in order to detect semantically close phrases.

Thus, this paper addresses the challenge of extending labelled subtree homeomorphism into
a new optimization problem, by introducing node-to-node similarity measures that are com-
bined with the topological distance between the pattern and text to produce a single, com-
prehensive score expressing how close they are to each other. More precisely, let ∆ be a
node-to-node similarity score table and δ denote a predefined (usually negative) score for
deleting a node from a tree (Figure 2). An homeomorphism preserving mapping M from
a tree T1 to a tree T2 is a one-to-one map from the nodes of T1 to the nodes of T2 that
preserves the ancestor relations of the nodes. We define the following similarity measure for
two homeomorphic trees.

Definition 1. Let T1 and T2 be two labelled trees such that T2 is homeomorphic to T1, and
let M be a homeomorphism preserving mapping from T1 to T2. The Labelled Subtree
Homeomorphism (LSH) Similarity Score of M, denoted LSH(M), is

LSH(M) = δ · (|T2| − |T1|) +
∑

u

∆[u,M(u)].

Definition 2. The Approximate Labelled Subtree Homeomorphism (ALSH) prob-
lem is, given two undirected labelled trees P and T , and a scoring table which specifies the
similarity scores between the label of any node appearing in T and the label of any node
appearing in P , as well as a predefined node deletion penalty, to find a homeomorphism-
preserving mappingM from P to some subtree t of T , such that LSH(M) is maximal.

In this paper we show how to compute optimal, bottom-up alignments between P and any
homeomorphic subtree t of T , which maximize the LSH score between P and t. Our algo-
rithms are based on the close relationship between subtree homeomorphism and maximum
weight matchings in bipartite graphs. The ALSH problem is recursively translated into a
collection of smaller ALSH problems, which are solved using maximum weight matching algo-
rithms (Figure 3). (Simpler, maximum matching algorithms were applied in the algorithms
for exact subtree morphisms [3, 10, 15, 25, 28].)
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Our approach yields an O(m2n/ log m+mn log n) algorithm for solving ALSH on unordered,
unrooted trees, where m and n are the number of vertices in P and T , respectively. Note
that the time complexity of the exact subtree isomorphism/homeomorphism algorithms [25,
28], which do not take into account the node-to-node scores, is O(m1.5n/ log m). Thus,
the enrichment of the model with the node similarity information only increases the time
complexity by half an order. We also give an O(mn) algorithm for the problem on rooted
ordered trees and O(mn log m) and O(mn) algorithms for unrooted cyclically ordered and
unrooted linearly ordered trees respectively.

Also note that a related set of problems, where dynamic programming is combined with
weighted bipartite matching, is that of finding the maximum agreement subtree and the
maximum refinement subtree of a set of trees [14, 26]. Such algorithms utilize the spe-
cial constraints imposed by the properties of evolutionary trees (internal nodes contain less
information than leaves, similarity assumption allows for scaling, etc).

The rest of the paper is organized as follows. Section 2 includes weighted bipartite matching
preliminaries. In Section 3 we describe the basic O(m2n + mn log n) time ALSH algorithm
for rooted unordered trees and show how to extend it to unrooted unordered trees without
increasing the time complexity. These solutions are further improved in Section 4 to yield an
O(m2n/ log m+mn log n) solution for both rooted and unrooted unordered trees. In Section
5 we describe the O(mn) time ALSH algorithm for rooted ordered trees,O(mn log m) time
ALSH algorithm or unrooted cyclically ordered trees and O(mn) time ALSH algorithms for
unrooted linearly ordered trees.

2 Weighted Matchings and Min-Cost Max Flows

Definition 3. Let G = (V, E) be a bipartite graph with edge weights w(x, y) for all edges
[x, y] ∈ E. The Maximum Weight Matching Problem (also called the assignment
problem) is to compute a matching M that maximizes

∑

[x,y]∈M w(x, y).

Many researchers have developed several different algorithms for the assignment problem [1],
and some of these algorithms share common features. The successive shortest path algorithm
for the minimum cost max flow problem appears to lie at the heart of many assignment
algorithms [13]. The reduction from the assignment problem to the minimum cost max flow
problem is as follows. Let s, t be two new vertices. Construct a graph G′ with vertex set
V ∪ {s, t}, source s, sink t, and capacity-one edges: an edge [s, x] of cost zero for every
x ∈ X, an edge [y, t] of cost zero for every y ∈ Y , and and edge [x, y] of cost −w(x, y) for
every [x, y] ∈ E. An integral flow f on G′ defines a matching on G of size |f | and weight
−cost(f) given by the set of edges [x, y] such that [x, y] has one unit of flow. Conversely, a
matching M on G defines a flow of value |M | and cost

∑

[x,y]∈M −w(x, y). This means that
one can solve a matching problem on G by solving a flow problem on G′.

Edmonds and Karp’s algorithm [6] finds a minimum cost maximum flow in G′ in O(EV log V )
time. In each stage of this algorithm, Dijkstra’s algorithm [5] is used to compute an aug-
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mentation path for the existing flow f . Each run of Dijkstra’s algorithm is guaranteed to
increase the size of M by 1, and thus the algorithm requires at total of O(V ) phases to find
a maximum score matching. Fredman and Tarjan [8] developed a new heap implementation,
called Fibonacci heap, that improves the running time of Edmond and Karp’s algorithm to
O(V E + V 2 log V ). The latter bound is the best available strongly polynomial time bound
for solving the assignment problem.

Under the assumption that the input costs are integers in the range [−C, . . . , C], Gabow and
Tarjan [9] use cost scaling and blocking flow techniques to obtain an O(V 1/2E log(V C)) time
algorithm for the assignment problem. Two-phase algorithms with the same running time
appeared in [11, 20]. The scaling algorithms are conditioned by the similarity assumption
(i.e. the assumption that C = O(nk) for some constant k).

The following lemma, which was first stated and proven in [13], will serve as the basis for
the proofs of Lemma 2 and Lemma 4.

Lemma 1. ([6], [13],[27]) A flow f is minimum cost iff its residual graph R has no negative
cost cycle.

3 Dynamic Programming Algorithms for ALSH

3.1 The Basic Algorithm for Rooted Unordered Trees

Let T r = (VT , ET , r) be the text tree which is rooted at r, and P r′

= (VP , EP , r′) be the
pattern tree which is rooted at r′, respectively. For a node v of T t, let trv denote the subtree
of T r that contains v and all its descendents, and whose root is v. Similarly, we use pr′

u to
denote a subtree of P r′

.

Definition 4. For each node v ∈ VT and for each node u ∈ VP , RScores[v, u] is the maximum
LSH similarity score between pr′

u and some homeomorphic subtree of tr
v, if such subtrees exist.

Otherwise, RScores[v, u] is −∞.

The computation of RScores[v, u] is done recursively, in a postorder traversal of T r. First,
RScores[v, u] is computed for every leaf nodes of T r and P r′

. Next, RScores[v, u] is computed
for each node v ∈ VT and u ∈ VP , based on the values of the previously computed scores for
the children of v and u as follows. Let u be a node of P r′

with children x1, . . . , xc(u) and v be
a node of T r with children y1, . . . , yc(v). After computing RScores[yj, xi] for i = 1, . . . , c(u)
and j = 1, . . . , c(v), a bipartite graph G is constructed with bipartition X and Y , where X
is the set of children of u, Y is the set of children of v, and each node in X is connected to
each node in Y . An Edge (xi, yj) of G is annotated with weight RScores[yj, xi] (Figure 3).

RScores[v, u] is then computed as the maximum between the following two terms:

1. The node-to-node similarity value ∆[v, u], plus the maximum weight of a matching in
G. Note that this term is only computed if c(u) ≤ c(v).
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Figure 3: The bipartite graph that is built by Algorithm 1 in order to compute RScores[v, u]. wij

marks the optimal LSH similarity score for aligning the subtrees rooted at yj ∈ T and xi ∈ P .

2. The maximum value among RScores[y1, u], . . . , RScores[yc(v), u], plus δ (the penalty for
deleting v).

The optimal LSH similarity score, denoted best score, is best score = maxn
j=1 RScores[yj, xm].

Every node yj ∈ T with RScores[yj, xm] = best score is reported as a root of a subtree of T
which bears maximal similarity to P under the LSH measure.

An outline of the algorithm described above, denoted Algorithm 1, is given below.

Time Complexity Analysis

Theorem 1. Algorithm 1 computes the optimal ALSH solution for two rooted unordered
trees in O(m2n + mn log n) time. Moreover, under the similarity assumption, the algorithm
has an O(m1.5n log(nC)) time complexity.

Proof. The time complexity analysis of the algorithm is based in the following observation.

Observation 1.
∑m

u=1 c(u) = m− 1 and
∑n

v=1 c(v) = n− 1.

Algorithm 1 calls procedure ComputeScoresForTextNode once for each node pair (v ∈ T, u ∈
P ). The dominant part of this procedure’s work is spent in computing a maximum weight
matching in a bipartite graph with c(v) + c(u) nodes and c(v) · c(u) edges. Therefore, using
Fredman and Tarjan’s algorithm [8], each maximum weight matching computation takes
O(c(u)2 · c(v) + c(u) · c(v) log c(v)) time.

Summing up the work over all node pairs we get

O(

m
∑

u=1

n
∑

v=1

(c(u)2c(v)+c(u)c(v) log c(v))
obs. 1
= O(

m
∑

u=1

c(u)2n+c(u)n log n)
obs. 1
= O(m2n+mn log n).

Under the similarity assumption (namely, all scores assigned to the edges of G are integers in
the range [−C, . . . , C], where C = O(nk) for some constant k), the algorithm can be modified
to run in time O(m1.5n log(nC)) by employing the algorithm of Gabow and Tarjan [9] for
weighted bipartite matching.
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Algorithm 1 ALSH for Rooted Unordered Trees

Input: Rooted trees T = (VT , ET , r) and P = (VP , EP , r′).
Output: The root of the subtree t of T that has the highest similarity score to P , if T has

a subtree which is homeomorphic to P .
1: for each node u of P in postorder do

2: for each node v of T in postorder do

3: if u is leaf then

4: if v is leaf then

5: RScores(v, u)← ∆[v, u]
6: else

7: RScores(v, u)← ComputeScoresForTextNode(v, u)
8: end if

9: else

10: if Level(u) > Level(v) then

11: RScores(v, u)← −∞
12: else

13: RScores(v, u)← ComputeScoresForTextNode(v, u)
14: end if

15: end if

16: end for

17: end for

Procedure ComputeScoresForTextNode(v, u)

1: Let k denote the out-degree of node u and ` denote the out-degree of node v.
2: if k > ` then

3: AssignmentScore ← −∞
4: else

5: Construct a bipartite graph G with node bipartition X and Y such that X =
{x1, . . . , xk} is the set of children of u, Y = {y1, . . . , y`} is the set of children of
v, and every node ui ∈ X is connected to every node vj ∈ Y via an edge whose weight
is RScores(vj, ui).

6: Set AssignmentScore to the maximum weight of a matching in G.
7: end if

8: BestChild← max`
j=1 RScores(yj, u)

9: return max{∆[v, u] + AssignmentScore, BestChild + δ}

7



3.2 Extending the Algorithm to Unrooted Unordered Trees

Let T = (VT , ET ) and P = (VP , EP ) be two unrooted trees. The ALSH problem on P and
T can be solved in a naive manner as follows. Select an arbitrary node r of T to get the
rooted tree T r. Next, for each u ∈ P solve the rooted ALSH problem on P u and T r. This
method yields an O(m3n+m2n log n) strongly-polynomial algorithm for ALSH on unrooted
unordered trees, and an O(m2.5n log(nC)) time algorithm under the similarity assumption
with integrality cost function restriction. In this section we show how to reduce these bounds
back to O(m2n + mn log n), and O(m1.5n log(nC)) time, respectively, by utilizing the decre-
mental properties of the maximum weight matching algorithm.

The algorithm starts by selecting a vertex r of T to be the designated root. T r is then
traversed in a postorder, and each internal vertex v ∈ T r is compared with each vertex
u ∈ P . Let y1, . . . , yc(v) be the children of v ∈ T r, and let x1, . . . , xd(u) be the neighbors
of u ∈ P . When computing the score for the comparison of u and v we need to take into
account the fact that, since P is unrooted, each of the neighbors of u may serve as a parent
of u in a mapping of P with some subtree tr

v. Suppose node xi ∈ P , which is a neighbor of
u ∈ P , serves as the parent of u in one of these subtree alignments. Since xi is the chosen
parent, the children set of u includes all its neighbors but xi. Therefore, the computation
of the similarity score for v versus u requires computing the maximum weight matching
between the children of v and all neighbors of u except xi. Since each neighbor xi of u is
a potential parent of a subtree rooted in u, our algorithm will actually need to compute
maximum weight matching in a series of graphs Gi = (Xi ∪ Y, E) for i = 1, . . . , d(u), where
Y consist of all the children of v in T r, while Xi consists of all the neighbors of u except xi.
Therefore, we define the table UScores as follows.

Definition 5. For every vertex v ∈ T r, every vertex u ∈ P . and every vertex xi ∈
neighbors(u), UScores[v, u, xi] is the maximum LSH similarity score between pxi

u and some
homeomorphic subtree of tr

v, if such subtrees exist. Otherwise, UScores[v, u, xi] is −∞. More-
over, UScores[v, u, φ] is the maximum LSH similarity score between P u and some homeomor-
phic subtree of trv, if one exists.

The computation of UScores[v, u, xi] is carried out as follows. UScores[v, u, xi] is set to the
maximum between the following two terms:

1. The node-to-node similarity value ∆[v, u], plus the maximum weight of a matching in
Gi. Note that this term is only computed if d(u)− 1 ≤ c(v).

2. The maximum value among UScores[y1, u, xi], . . . , UScores[yc(v), u, xi] plus δ.

The maximal LSH similarity score between P and T is best score = maxv∈VT ,u∈VP
UScores[v, u, φ].

An outline of the second algorithm, denoted Algorithm 2, is given below.
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Algorithm 2 ALSH for Unrooted Unordered Trees

Input: Unrooted trees T = (VT , ET ) and P = (VP , EP )).
Output: The root of the subtree t of T which has the highest similarity score to P , if T

has a subtree which is homeomorphic to P .
1: Pick a vertex r of T to be the root of T .
2: for all u ∈ P , v ∈ T xi ∈ P do

3: UScores[v, u, xi]← −∞.
4: end for

5: for each leaf v of Tr do

6: for each leaf u of P do

7: UScores[v, u, parent(u)]← ∆[v, u].
8: end for

9: end for

10: for each internal node v of T in postorder do

11: ComputeScoresForTextNode(v)
12: end for

13: best score ← maxi=1,...,m,j=1,...,n UScores[j, i, φ]

Procedure ComputeScoresForTextNode(v)

1: for each node u of P do

2: BestChild(v, u, xi)← maxj=1,...,`,i=1,...,k UScores[yj, u, xi]
3: Construct a bipartite graph G with node bipartition X and Y such that X =

{x1, . . . , xk} is the set of neighbors of u, Y = {y1, . . . , y`} is the set of children of
v, and every node xi ∈ X is connected to every node yj ∈ Y via an edge whose weight
is UScores[yj, xi, u].

4: Let X0 = X and Xi = X − {xi}.
5: for all 1 ≤ i ≤ k do

6: if Level(v) < Level(u, xi) then

7: UScores[u, v, xi]← −∞
8: else

9: if k > ` then

10: AssignmentScore(Xi, Y )← −∞.
11: else

12: Compute the score AssignmentScore(Xi, Y ) of the maximum weight matching
in G.

13: end if

14: UScores[v, u, xi]← max{∆[v, u]+AssignmentScore(Xi, Y ), BestChild(v, u, xi)+δ}
15: end if

16: end for

17: if k > l then

18: UScores[v, u, φ] = −∞
19: else

20: Set UScores[v, u, φ] to the maximum weight matching in G.
21: end if

22: end for
9



Time Complexity Analysis

The time complexity bottleneck of Algorithm 2 is in the need to compute for each pair u ∈ P
and v ∈ T , maximum weight matchings in a series of bipartite graphs Gi = (Xi ∪ Y, E)
for i = 1, . . . , d(u). This, in contrast to Algorithm 1, where only one maximum weight
matching is computed for each pair u ∈ P and v ∈ T . However, the next lemma shows
that the decremental nature of weighted bipartite matching makes it possible to compute
the matchings for G1, . . . , Gd(u) in the same asymptotic time complexity as the maximum
weight matching computation for the single graph G = (X ∪ Y, E).

For the following lemma, denote k = |X| and ` = |Y |. Note that k ≤ `.

Lemma 2. Given a maximum weight matching M of G, a maximum weight matching of Gi

can be computed via one run of a single-source shortest-path algorithm.

Proof. The proof is based on the reduction of the assignment problem to min-cost max-flow,
as described in Section 2. Let f denote the minimum cost maximum flow in the graph G′

which corresponds to the matching M , and let R denote the residual graph for f (Figure 4.A).
Clearly, since f is optimal, by Lemma 1, there are no negative cost cycles in R. Also, since
` ≥ k, |M | = k.

Let yj be the vertex that is matched to xi in M . Let M ′ = M \{(xi, yj)} denote the matching
obtained by removing the pair (xi, yj) from M . We say that yj is “newly widowed” in M ′.
Let f ′ be the flow defined by M ′. Let G′′ denote the subgraph of G′ obtained by removing
the vertex xi and all the edges that are incident on xi. Let R′ be the “decremented” residual
subgraph of R, obtained by removing vertex xi and all edges incident on xi, as well as
cancelling the flow on edge [s, yj] in R. (Figure 4.B). Our objective is to compute a min-
cost max-flow (of value k − 1) of G′′, which will correspondingly define a maximum weight
matching in Gi.

Clearly, the value of f ′ is k − 1. But is f ′ min-cost? By Lemma 1, if there are no negative
cost cycles in R′, then f ′ is a min-cost flow among all k − 1-valued flows in G′′. Otherwise,
there are one or more negative cost cycles in R′. Each one of these negative cost cycles in
R′ must contain the edge [s, yj], since this edge is the only edge of R′ which does not exist
in R, and R has no negative cost cycles.

Among all the negative cost cycles in R′, we wish to find the one which contributes the
most to decrementing the value of f ′. More precisely, define the correction path for R′, to
be the minimum cost cycle in R′ that contains the edge [s, yj] (Figure 4.C). Denote by p the
correction path for R′.

We claim that:

1. If p has negative total cost, then M ′ is not optimal.

2. If M ′ is not optimal, then p is the optimal correction path for R′. That is, the flow
obtained by pushing one unit of flow in R′ from s through yj and back to s through

10
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Figure 4: The computation of a maximum weight matching in Gi. Note that, for the sake of
graphical clarity, some of the edges of the graph are not shown in the figure. (A) The residual
graph R for flow f .The dashed lines denote the backward edges and the solid lines denote the
forward edges. The white circle denotes vertex xi and the lined circle denotes its matched neighbor
yi. (B) The residual graph R′ received from R by removing xi and its adjacent edges, as well as
reversing the flow on edge [s, yi]. (C) The augmentation path p in R′ is marked by grey edges. (D)
The negative cost cycle c is marked by curves. Edges [a,b,c,g] correspond to the correcting path p,
edges [g,d,e,f] correspond to the negative cost cycle c, and edges [a,b,c,d,e,f] mark the path p ′ with
a cost which is less then that of p.

the path p, is a minimal cost maximum flow for the network graph G′′ and defines, a
maximum weight matching in Gi.

The above claims are proven as follows.

1. This is immediate from Lemma 1, since p is by definition a cycle in R′.

2. Let f ′′ be obtained from f ′ by correcting along p, and let R′′ denote the residual graph
for flow f ′′. We will prove that f ′′ is min-cost in G′′, by proving that there are no
negative cost cycles in R′′. Suppose conversely that there is some negative cost cycle
c in R′′. Since R has no negative cost cycles, and the only new edge [s, yj] ∈ R′ has
been saturated by p in R′′ (therefore all previous cycles are broken in R′′), we know
that c has at least one edge which is the reversal of an edge in p. Therefore, the cycle
c consists of edges in R′ and one or more edges whose reversals are on p. In particular,
p and c share at least one vertex.

Let p⊕ c be the set of edges on p or on c except for those occurring on p and reversed
on c. The cost of p ⊕ c is cost(p) + cost(c), since the ⊕ operation has removed pairs
of edges and their reversals (the score is negated in the reversal) in p ∪ c. Since c is a
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negative cost cycle, cost(p) + cost(c) < cost(p). Furthermore, p⊕ c can be partitioned
into a cycle p′ that contains the edge [s, yj], plus a collection of additional cycles (note
that none of these cycles includes the edge [s, yj], since this edge is already occupied
by p′). By Lemma 1 all the cycles must have nonnegative cost since they consist of
edges only from R′ which has no negative cost cycles. Thus, the cost of the cycle p′ is
less than the cost of p (Figure 4.D). This contradiction implies the lemma.

Lemma 3. Computing the maximum weight matchings for the bipartite graphs G1, . . . , Gk

can be done in O(k2`+k` log `) time. Moreover, under the similarity assumption, computing
these matchings can be done in O(k1.5` log(`C)) time.

Proof. The computation can be carried on as follows. First construct the network flow graph
corresponding to G and find the minimum cost maximum flow which defines a maximum
weight matching in G. This can be done in O(V E +V 2 log V ) = O(k2`+ `2 log `) time using
the algorithm of [8]. Then, for each xi, i = 1, . . . , k, construct the corresponding residual
network graph, and compute the correction path pi in order to obtain an maximum weight
matching in Gi. By Lemma 2, the amount of work for each correction path computation is
bounded by the complexity of a single-source shortest path computation on a graph with
ell vertices and k` edges. Using the variation of Dikjstra’s algorithm described in [8], each
correction path computation can be done in O(k` + ` log `) time. Summing over the graphs
G1, . . . , Gk, we get a total time of O(k2` + k` log `).

The second part of the lemma follows from [14].

Theorem 2. Algorithm 2 computes the optimal ALSH solution for two unrooted unordered
trees in O(m2n + mn log n) time. Under the similarity assumption, the time complexity of
the algorithm is O(m1.5n log(nC)).

Proof. For the proof of the theorem, we use the following observation.

Observation 2. The sum of vertex degrees in an unrooted tree P is
∑m

u=1 d(u) = 2m− 2.

Algorithm 2 calls to procedure ComputeScoresForTextNode once for each node pair (v ∈
T, u ∈ P ). The algorithm computes, in the loop of step 4 of procedure ComputeScoresForTextNode,
maximum weight matchings in several bipartite graphs. By Lemma 3, computing these
matchings takes O(d(u)2c(v) + d(u)c(v) log c(v)) time. Therefore, the total complexity is:

O(
m

∑

u=1

n
∑

v=1

(d(u)2c(v))+d(u)c(v) log c(v))
obs. 1
= O(

m
∑

u=1

d(u)2n+d(u)n log n)
obs. 2
= O(m2n+mn log n).

Under the (similarity) assumption that all scores assigned to the edges of G are integers in
the range [−C, . . . , C], where C = O(nk) for some constant k, the algorithm can be modified
to run in time O(m1.5n log(nC)) by employing the algorithm of Gabow and Tarjan [9] for
weighted bipartite matching with scaling and [14] for cavity matching.
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Figure 5: (A) Graph G with a bipartition of its vertices into sets X and Y , and the compressed
graph G∗ that contains an additional layer C. (B) The mappingM of subunits of sub-paths from
G∗ into subunits of sub-paths in G.

Note that the first term of the sum O(m2n + mn log n) dominates the time complexity of
Algorithm 2, since the second term only takes over when m ≤ log n. Therefore, in the next
section we will show how to reduce the first term in the time complexity of Algorithm 2 by
a log m factor.

4 A More Efficient ALSH Algorithm for Unordered

Trees

In this section we show how the dominant term in the time complexity of the algorithm
described in the previous section can be reduced by a log m factor, assuming a constant-
sized label alphabet. We will use the previous algorithm but solve the matching problems
more efficiently by employing the notion of clique partition of a bipartite graph [7, 25]. The
modified algorithm, denoted Algorithm 3, is the same as Algorithm 2 with the exception
that, in step 12 we solve the assignment problems differently. Let v be some vertex in T r

whose children are y1, . . . , yc(v) and let u be a vertex in P whose neighbors are x1, . . . , xd(u).
Denote X = {x1, . . . , xd(u)} and Y = {y1, . . . , yc(v)}. Let G be the corresponding complete
bipartite graph on X ∪ Y . We compute a maximum weight matching in G as follows. Let
N(xi) be the sequence of the weights of the edges [xi, y1], . . . , [xi, yc(v)]. We sort the vertices
of X where the key of a vertex x is N(x). Afterwards, we split X into sets of equal keys
X1, X2, . . . , Xclustersu (i.e., for every two vertices x, x′ ∈ X i, every edge [x, yj] has the same
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cost as the edge [x′, yj]). Note that every set X i ∪ Y induces a complete bipartite subgraph
of G.

We now build a network G∗ whose vertices are V ∗ = X ∪ Y ∪ {c1, . . . , cclustersu
, s, t}. The

edges are E∗ = E1 ∪E2 ∪E3 where E1 = {[s, xi] : xi ∈ X}∪ {[yi, t] : yi ∈ Y }, E2 = {[xi, cj] :
j ≤ clustersu, xi ∈ Xj}, and E3 = {[cj, yi] : j ≤ clustersu, yi ∈ Y }. All edges have capacity
1. Edges from sets E1 and E2 are assigned a cost of zero. An edge of type E3 from cj to
yi is assigned a cost which is identical to the cost of the edge [x, yi] where x is any vertex
belonging to set Xj. The source is s and the sink is t. We find a min-cost max flow f ∗ in
G∗ and construct from this flow a maximum weight matching in G.

Let G′ be the network that corresponds to G as defined in Section 2.

Lemma 4. A min-cost mas flow in G′ can be found by finding a min-cost max flow in G∗.

Proof. We define a mappingM that maps paths in G∗ to paths in G′. The mappingM is by
partitioning sub-paths in G∗ into subunits which are then mapped onto their corresponding
subunits in G′. Consider the 6 cases of sub-unit mappings shown in Figure 5. Note that this
mapping preserves the endpoints and the costs of each subunit except the subunit of type
4 which does not have a mapping. Thus we can partition a path in G∗ into subunits, map
each subunit into subunit in G′ and then reconstruct the path in G′ with exactly the same
cost end the same endpoints. A subunit of type 4 can be omitted during the mapping since
it donates only 0 cost to the pathway in which it participates.

Following the algorithm of [4] for computing minimum cost maximum flow, a series of d(u)
stages is executed, where in each stage a new flow f ∗

i is computed which is an increment
by one of the previous flow. Each increment step is realized by computing the minimum
cost path from s to t and infusing one flow unit along this path. Using the mapping M as
demonstrated in Figure 5, each such increment path in the graph G∗ can be mapped into a
corresponding minimum cost increment path in G′. Therefore, in any stage i of the min-cost
max-flow computation on G∗, f ∗

i is equal in cost and value to the corresponding flow fi in
G′, as induced by M. Clearly, any cycle in G∗ is mapped by M onto a cycle in G′ with
exactly the same cost. Thus, if there is a negative cost cycle in the residual graph of G∗ at
any stage of the min-cost max flow computation, then it immediately follows that there is
a corresponding negative cost cycle in the residual graph of G′. According to Lemma 1, if
there is a negative cost cycle in the residual graph of G′, then the flow is not minimum cost.
Thus if there is a negative cost cycle in residual graph of G∗ then the corresponding flow in
graph G′ is not minimal, in contradiction to [4].

We denote by D(u) the number of distinct trees in the forest pu
x1

, . . . , pu
xd(u)

.

Lemma 5. The maximum weight matching in the bipartite graph corresponding to u ∈ P
and v ∈ T can be computed in O(d(u) · (D(u)c(v) + c(v) log c(v))) time.

Proof. If some pair of rooted trees pu
xi

and pu
xj

are isomorphic, then in the graph G, the
vertices xi and xj have exactly the same neighbors, and this remains true in G∗. Therefore
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clustersu ≤ D(u). The time for constructing G is O(d(u)c(v)) and the time for constructing
G∗ is O(d(u)c(v) log c(v)). We now bound the time for finding a min-cost max flow in G∗:
The size of E1 is at most |X|+ |Y | = d(u)+c(v). The size of E2 is |X| = d(u) and the size of
E3 is |clustersu · c(v)|. Hence, the number of edges in G∗ is O(clustersu · c(v)). The number
of vertices in G∗ is at most d(u) + c(v) + clustersu + 2 = O(c(v)), since d(u) − 1 ≤ c(v).
Now, the maximum weight matching algorithm performs d(u) stages, and each stage takes
O(E∗ + V ∗ log V ∗) time. Hence, the total time is O(d(u) · (clustersu · c(v) + c(v) log c(v))) =
O(d(u) · (D(u)c(v) + c(v) log c(v))) time.

Time Complexity Analysis

By Lemma 5, the total time complexity is

O(
m

∑

u=1

n
∑

v=1

(d(u)(clustersu · c(v)) + c(v) log c(v)))
obs. 1
= O(

m
∑

u=1

d(u) · clustersu · n + d(u)n log n)

obs. 2
= O(n

m
∑

u=1

d(u)D(u) + mn log n).

We now turn to bound the summation O(
∑m

u=1 d(u)D(u)). The following lemma sets an
asymptotically tight bound on the number of distinct labelled rooted trees in a forest of n
vertices, denoted f(n).

Lemma 6. Assuming constant label alphabet, f(n) = O(n/ logn)

Proof. We will prove that for any forest with n vertices labelled by an alphabet of size σ,
f(n) = O(n log σ/ log n). It is known that the number of distinct rooted unlabeled trees
with i vertices is at most ci for some constant c. Therefore, the number of distinct rooted
labelled trees with i vertices is at most (cσ)i.

If we have a forest of labeled rooted trees and ri is the number of trees with i vertices, then
the number of distinct trees in this forest is at most

∑n
i=1 min(ri, (cσ)i). Hence,

f(n) ≤ max

{

n
∑

i=1

min(ri, (cσ)i : r1, . . . , rn ∈ N,
n

∑

i=1

iri ≤ n

}

Let x be the minimum integer for which
∑x

i=1 i(cσ)i ≥ n. Let r1, . . . , rn be the integers that
maximize

∑n
i=1 min(ri, (cσ)i) under the constraint

∑n
i=1 iri ≤ n. Using the arguments of [25],

we can assume that ri ≤ (cσ)i for all i and ri = 0 for all i > x. Therefore, f(n) ≤
∑x

i=1(cσ)i =
O((cσ)x). The lemma follows from the fact that x = logcσ n− logcσ logcσ n−O(1).

Lemma 7.
∑m

u=1 d(u)D(u) = O(m2/ log m).
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Proof. Let ε denote some constant 0 < ε < 1/2. We call a vertex of P heavy if its degree is
at least 2m1−ε, otherwise the vertex is called light. Clearly, the number of heavy vertices is
at most mε. If u is a heavy vertex and v is a neighbor of u such that pu

v does not contain a
heavy vertex, then we call every vertex in pu

v a private vertex of u. Denote the vertices of P
by v1, . . . , vm. We denote by `j the number of the private vertices of a heavy vertex of vj.

We split
∑m

u=1 d(u)D(u) into two sums. Summing over the light vertices of P we have

∑

j:vj is light

d(vj)D(vj) ≤
∑

j:vj is light

d(vj)
2 ≤ (2m1−ε)

∑

j:vj is light

d(vj)
obs. 2

≤ (2m1−ε2m) = 22m2−ε.

Shamir and Tsur [25] proved that, for any heavy vertex vj, d(vj) ≤ mε + `j and D(vj) ≤
mε + f(`j). Therefore, summing over the heavy vertices we have

∑

j:vj is heavy

d(vj)D(vj) ≤
∑

j:vj is heavy

(mε + `j)(m
ε + f(`j)).

Since f(`j) ≤ `j ≤ m and since the number of heavy vertices is at most mε, we have

≤
∑

j:vj is heavy

(m2ε + m1+ε + m1+ε + `j(f(`j))) ≤ 3m1+2ε +
∑

j:vj is heavy

`jf(`j).

By Lemma 6, the fact that
∑

j:vj is heavy `j ≤ m (as each vertex can be a private vertex of at

most one heavy vertex), and the fact that the function h(x) = x2/ log x is convex,

≤ 3m1+2ε +
∑

j:vj is heavy

c`j
2/ log `j ≤ 3m1+2ε + cm2/ log m.

We have thus proved the following theorem.

Theorem 3. Algorithm 3 computes the optimal ALSH solution for two unrooted unordered
trees in O(m2n/ log m + mn log n) time.

5 Solving ALSH on Ordered Trees

5.1 Ordered Rooted Trees

A simplified version of Algorithm 1 can be used to solve the ALSH problem on ordered
rooted trees. The simplification is based on the fact that the assignment problems now
turn into maximum weight matching problems on ordered bipartite graphs, where no two
edges are allowed to cross in the matchings. (We refer the reader to [28] for a discussion of
non-crossing plain bipartite matching in the context of exact ordered tree homeomorphism.)
Also note that, in the context of our ALSH solutions, we apply a rectangular case of the
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perfect assignment problem on the graph G = (X ∪ Y, E), i.e. |X| ≤ |Y | and all nodes in
X must eventually be paired with some node in Y . Therefore, the assignment computation
reduces to the Approximate Weighted Episode Matching optimization problem, as defined
below.

Definition 6. The Approximate Weighted Episode Matching Problem is given a
pattern string X, a source string Y , and a character-to-character similarity table ∆[ΣX , ΣY ],
to find among all |X|-sized subsequences of Y , a subsequence Q which is most similar to X

under ∆ (i.e. a subsequence Q that maximizes the sum
∑|X|

i=1 ∆[Qi, Xi]).

Lemma 8. The Approximate Weighted Episode Matching problem can be solved in O(|X| ·
|Y |) time.

Proof. The matching problem is solved by applying the classical dynamic programming
string alignment algorithm on a |X| + 1 rows by |Y | + 1 columns graph (Figure 6). All
horizontal edges in the graph, corresponding to character deletions from Y , are assigned a
score of zero. All vertical edges in the graph, corresponding to character deletions from X,
are assigned a score of −∞. A diagonal edge leading into vertex (xi, yj) corresponds to the
string-edit operation of substituting the ith character of X with the jth character of Y , and
is therefore assigned the score ∆[i, j]. During the initialization stage, scores of all vertices in
the first row of the dynamic programming graph are set to zeros. The dynamic programming
algorithm is then applied to this alignment graph.
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Figure 6: Approximate Weighted Episode Matching
Calculation. The matching is computed on the dy-
namic programming graph with score −∞ on vertical
the edges, score 0 on the horizontal edges and ∆[xi, yj ]
scores on the diagonal edges.
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Figure 7: The calculation of the best
possible alignment between X−xi and
Y .

When the algorithm completes, all vertices in the last row of the graph are scanned for the
best score. Any vertex in the last row which carries the optimal score represents a highest
scoring approximate weighted episode of X in Y .

Clearly, after running the algorithm described in the proof of Lemma 8 on the alignment
graph constructed for strings X and Y , a highest-scoring path P in the alignment graph will
correspond to a maximum weight matching M in the corresponding ordered bipartite graph
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G = (X ∪ Y, E), where no two edges in the matching are allowed to cross. A diagonal edge
in P connecting vertex (xi− 1, yj− 1) with vertex (xi, yj), corresponds to a pairing of xi and
yj in M .

Time Complexity Analysis

Theorem 4. The ALSH problem on rooted ordered trees can be solved in O(mn) time.

Proof. By Lemma 8, the time complexity is

n
∑

v=1

m
∑

u=1

O(c(v) · c(u))
obs. 1
=

n
∑

v=1

O(m · c(v))
obs. 1
= O(mn).

5.2 Ordered Unrooted Trees

In this section we extend the algorithm for ordered rooted trees to apply to unrooted trees.
There are two standard ways to order unrooted trees: the cyclic order and the linear one.

A linearly ordered set X of children of a node u is a poset (X,≤) (partial order relation on
X) which has the property of comparability:

for all x, y ∈ X, either x ≤ y or y ≤ x.

The binary relation ≤ is then called a linear ordering.

A cyclic order on a set X of children of node u with k elements is an arrangement of X as on
a clock face, for an k-hour clock. That is, rather than an order relation on X, we define on X
just functions “element immediately before” and “element immediately following” any given
xi, in such a way that taking predecessors, or successors, cycles once through the elements
as x1, x2, . . . , xk.

Both orders are illustrated in Figure 8.
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Figure 8: Cyclic and linear orders of unrooted trees.
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5.2.1 Cyclically Ordered Unrooted Trees.

The problem of ALSH on cyclically ordered unrooted trees can be reduced to the Cyclic
Sting Comparison problem, defined as follows: Given two strings P and T , find a cyclic shift
of P which can be best aligned with T . More precisely, let T = T1 · · ·T` and P = P1 · · ·Pk.
We wish to find an index i for which the optimal alignment of PiPi+1 · · ·PkP1 · · ·Pi−1 with
T gives the best score. An O(kl log k) algorithm for the Cyclic String Comparison problem,
which applies to general weights scoring schemes, was described in [?]. An O(kl) algorithm
which applies to rational number scoring schemes was given in [?].

An efficient solution to ALSH on Cyclically Ordered Unrooted Trees can be obtained by
applying the following reduction. Consider computing the (2k + 1)× (l + 1) grid graph for
the comparison of the string PP (P concatenated with P ) versus T . (see Figure 9.A). Each
cyclic shift of P defines a starting point in the source area for the alignment path to the
appropriate point in the destination area. The alignment scores can be computed efficiently
in an incremental manner using [?, ?]. Our problem is actually a variant of this problem
where in each increment step another neighbor of node u serves as its parent and thus can
not participate in the alignment. Therefore, the sliding window in our problem is of size
k − 1 instead of k (see Figure 9.B).
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Figure 9: Cyclic string comparison problem.

Time Complexity Analysis

The time complexity for each pair of vertices is is O(kl log k) using the algorithm of Maez [?]
or O(kl) for rational number scoring scheme using the algorithm of Schmidt [?]. Therefore,
summing up the work over pairs of vertices yields a total time complexity of O(mn log m)
and O(mn), respectively.
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Linearly Ordered Unrooted Trees As mentioned above, the naive extension of rooted
case requires an additional order in the time complexity since each of the neighbors of node
u in pattern tree eventually could serve as the parent of u and will not participate in the
children’s matching for this computation. In this section we use the decomposition technique
for the linearly ordered case to reduce the complexity to the rooted case bounds.

Our technique is based on Hirschberg’s algorithm for the linear space sequence alignment [12].
Similar to Hirschberg, we calculate the Forward “alignment” using the algorithm for the
rooted ordered trees and Backward “alignment” which is the same as the Forward, but in
the opposite direction. Then we throw out the line i, which represent the the current father
of node u and stitch Forward and Backward “alignments” by finding the best stitching point
(see Figure 7):

stitching point = max{F [i− 1, j] + B[i + 1, j + 1]} for j = 0, . . . , n− 1.

Clearly, the value F [i−1, j] represents the best alignment between X[0 . . . i−1] and Y [0 . . . j].
The value B[i+1, j+1] represents the best alignment between X[m . . . i+1] and Y [n . . . j+1].
Therefore, the maximal sum corresponds to an an optimal alignment of X − xi and Y .

Time Complexity Analysis The calculations of both Forward and Backward alignments
requires O(mn) time. The calculation of the stitching point requires O(n) time. Therefore,
the overall time complexity is O(mn).
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