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Abstract

The guided tree edit distance problem is to find a minimum cost series of edit operations
that transforms two input forests F and G into isomorphic forests F ′ and G′ such that
a third input forest H is included in F ′ (and G′). The edit operations are relabeling a
vertex and deleting a vertex. We show efficient algorithms for this problem that are faster
than the previous algorithm for this problem of Peng and Ting [5].
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1 Introduction

Tree edit distance is a popular metric for the similarity of two forests and arises in XML
comparisons, computer vision, compiler optimization, natural language processing, and com-
putational biology. The tree edit distance problem is to transform two rooted, ordered, and
labelled forests F and G into isomorphic forests F ′ and G′ by using a minimum cost series of
edit operations on F and G. The edit operation are relabeling a vertex and deleting a vertex.
Deleting a vertex v means removing v and all edges incident to v. The children of v become
children of the parent of v (if it exists) instead of v.

Tai [6] gave the first algorithm for tree edit distance. The time complexity of Tai’s algo-
rithm is O(|F | leaves(F )2 · |G| leaves(G)2), where |F | denotes the number of vertices in F and
leaves(F ) denotes the number of leaves in F . Shasha and Zhang [7] improved this result to
O(|F | cdepth(F ) · |G| cdepth(G)), where cdepth(F ) denotes the minimum between leaves(F )
and the maximum height of a tree in F . In the worst case, their algorithm runs in O(|F |2 |G|2)
time. Klein [4] gave an O(|F | log |F | · |G|2) time algorithm where |F | ≥ |G|, and Demaine et
al. [3] gave an O(|F | |G|2 (1 + log |F ||G|)) time algorithm.

Peng and Ting [5] introduced a generalization of tree edit distance called guided tree edit
distance. In this problem the input is three forests F , G, and H. The goal is to find a
minimum cost series of edit operations that transforms F and G into isomorphic forests F ′

and G′ such that H can be obtained from F ′ (or G′) by a series of vertex deletion operations.
Peng and Ting gave an algorithm for this problem with time complexity O(|F | cdepth(F ) ·
|G| cdepth(G) · |H| leaves(H)2) and space complexity O(|F | |G| |H| leaves(H)2).

In this paper we show that the guided edit distance problem can be solved inO(|F | cdepth(F )·
|G| cdepth(G)·|H| d(H)2(log log d(H))3/ log2 d(H)) time or inO(|F | |G|2 (1+log |F ||G|)·|H| d(H)2

(log log d(H))3/ log2 d(H)) time, where d(H) is the maximum between the number of trees
in H, and the maximum number of children of a vertex in H. The space complexity of our
algorithms is O(|F | |G| (d(H)2 + |H|)). As d(H) ≤ leaves(H), our first algorithm is always
faster than the algorithm of Peng and Ting and uses less memory. Moreover, if we measure the
time complexity as a function of n = |F |+ |G|+ |H| (i.e. the size of the input) the algorithm
of Peng and Ting has time complexity O(n7) while our second algorithm has time complexity
O(n6(log log n)3/ log2 n).
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2 Preliminaries

Let F be a forest with trees F1, . . . , Ft (from left to right) and let v be a vertex in F with
children v1, . . . , vd (from left to right). We define F [v, i, j] to be the subforest of F that is
induced by vi, vi+1, . . . , vj and their descendants (note that this subforest does not include
the vertex v). Moreover, we define F [φ, i, j] to be the subforest of F that contains the trees
Fi, Fi+1, . . . , Fj . If i > j then F [φ, i, j] is an empty forest. Let LF denote the leftmost tree in
a forest F , and let RF denote the rightmost tree. Let lF and rF be the roots of LF and RF ,
respectively.

Let t(F ) denote the number of trees in a forest F . For a vertex v, let d(v) denote the num-
ber of children of v. Define d(F ) = max(maxv∈F d(v), t(F )) and cdepth(F ) is the minimum
between the number of leaves in F and the maximum height of a tree in F .

The edit distance between two forests F and G is denoted δ(F,G). The guided edit
distance between forests F and G with guiding forest H is denoted δ(F,G,H) (note that
δ(F,G, ∅) = δ(F,G) where ∅ denotes an empty forest). We denote by cdel(v) the cost of
deleting a vertex v, and by crel(v, w) the cost of changing the label of vertex v to be equal to
the label of w.

We say that a vertex v ∈ F is to the left of a vertex w ∈ F if v appears before w in the
postorder of F and v is not a descendant of w.

The guided tree edit distance problem can be formulated in terms of matchings. Let F
and G be two forests. We say that a set M ⊆ V (F )× V (G) is an edit matching if

1. M is a matching, namely each v ∈ F appears in at most one pair of M and each v ∈ G
appears in at most one pair.

2. For every (v, v′), (w,w′) ∈M , v is an ancestor of w if and only if v′ is an ancestor of w′.

3. For every (v, v′), (w,w′) ∈M , v is to the left of w if and only if v′ is to the left of w′.

A matchings pair for F,G,H is a pair (M,M ′) where M is an edit matching between F and
G, and M ′ is a matching between F and H such that

1. All vertices of H are matched in M ′.

2. If v ∈ F is matched in M ′ then v is also matched in M .

The cost of (M,M ′) is

costF,G,H((M,M ′)) =
∑
v∈U

cdel(v) +
∑

(v,v′)∈M0

crel(v, v′) +
∑

(v,v′,v′′)∈A

(crel(v, v′′) + crel(v′, v′′)),

where U is the set of vertices in F and G that are unmatched in M , M0 is the set of all pairs
(v, v′) ∈ M such that v is not matched in M ′, and A is the set of all triplets (v, v′, v′′) such
that (v, v′) ∈M and (v, v′′) ∈M ′. It is easy to verify that δ(F,G,H) is equal to the minimum
cost of a matchings pair for F,G,H.

Several algorithms for tree edit distance are based on the following recurrence (see [3]):
For two forests F 6= ∅ and G 6= ∅,

δ(F,G) = min


δ(F − rF , G) + cdel(rF ),
δ(F,G− rG) + cdel(rG),
δ(F −RF , G−RG) + δ(RF − rF , RG − rG) + crel(rF , rG)

 (1)
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and

δ(F,G) = min


δ(F − lF , G) + cdel(lF ),
δ(F,G− lG) + cdel(lG),
δ(F − LF , G− LG) + δ(LF − lF , LG − lG) + crel(lF , lG)

 . (2)

Moreover, δ(F, ∅) =
∑

v∈F cdel(v) and δ(∅, G) =
∑

v∈G cdel(v).
A strategy algorithm for tree edit distance is an algorithm that computes δ(F,G) as follows.

Given F and G, the algorithm computes δ(F1, G1), . . . , δ(Fk, Gk) for some pairs of subforest
of F and G, with Fk = F and Gk = G. Each value δ(Fi, Gi) is computed by applying either
rule (1) or rule (2) on Fi and Gi. Each of the δ(F ′, G′) terms that appear in the right hand
side of the selected rule is a value that was computed previously by the algorithm, namely
it appears in δ(F1, G1), . . . , δ(Fi−1, Gi−1). Note that the algorithm can discard the value
δ(Fi, Gi) at some step j > i if the computation of the values δ(Fj′ , Gj′) for j′ ≥ j does not
depend on δ(Fi, Gi). Each pair (Fi, Gi) is called a relevant pair w.r.t. F,G, S, where S denotes
the strategy algorithm. We also say that Fi is a relevant subforest of F and Gi is a relevant
subforest of G (w.r.t. F,G, S).

The algorithm of Shasha and Zhang [7] is a strategy algorithm that always uses rule (1).
The time complexity of the algorithm of Shasha and Zhang is O(|F | cdepth(F )·|G| cdepth(G)).
Demaine et al. [3] gave a strategy algorithm with time complexity O(|F | |G|2 (1+log |F ||G|)) and
showed that this algorithm is asymptotically optimal among all strategy algorithms when the
time complexity is measured as a function of |F | and |G|.

We use the following Lemma from [3].

Lemma 1. Let S be a strategy algorithm for tree edit distance and let F and G be two forests.
For every pair of vertices v ∈ F and w ∈ G we have that (F [v, 1, d(v)], G[w, 1, d(w)]) is a
relevant pair w.r.t. F,G, S.

3 The algorithm

Lemma 2. Let F ,G and H be non-empty forests. Then

δ(F,G,H) = min



δ(F − rF , G,H) + cdel(rF ),
δ(F,G− rG, H) + cdel(rG),

min
i

{
δ(F −RF , G−RG, H[φ, 1, i])
+ δ(RF − rF , RG − rG, H[φ, i+ 1, t(H)])

}
+ crel(rF , rG),

δ(F −RF , G−RG, H[φ, 1, t(H)− 1])
+ δ(RF − rF , RG − rG, H[rH , 1, d(rH)])
+ crel(rF , rH) + crel(rG, rH)



, (3)

where the inner minimum is taken over i = 0, . . . , t(H). Furthermore,

δ(F,G,H) = min



δ(F − lF , G,H) + cdel(lF ),
δ(F,G− lG, H) + cdel(lG),

min
i

{
δ(F − LF , G− LG, H[φ, i+ 1, t(H)])
+ δ(LF − lF , LG − lG, H[φ, 1, i])

}
+ crel(lF , lG),

δ(F − LF , G− LG, H[φ, 2, t(H)])
+ δ(LF − lF , LG − lG, H[lH , 1, d(lH)])
+ crel(lF , lH) + crel(lG, lH)



. (4)
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Proof. We only prove equality (3). Let α(F,G,H) denote the right hand side of (3). Let
(M,M ′) be a minimum cost matchings pair for F,G,H. If rF is not matched in M then
(M,M ′) is a matchings pair for F−rF , G,H and costF−rF ,G,H((M,M ′)) = costF,G,H((M,M ′))−
cdel(rF ) = δ(F,G,H) − cdel(rF ). Therefore, δ(F − rF , G,H) ≤ δ(F,G,H) − cdel(rF ), so
α(F,G,H) ≤ δ(F,G,H). The same is true when rG is not matched in M .

Suppose now that both rF and rG are matched in M . Since M is an edit matching, rF must
be matched to rG. Let M1 = {(v, v′) ∈ M : v ∈ RF − rF } and M2 = M \ (M1 ∪ {(rF , rG)}).
We have that M1 is an edit matching between the vertices of RF − rF and the vertices of
RG − rG, and M2 is an edit matching between the vertices of F − RF and the vertices of
G−RG.

We now consider two cases. In the first case suppose that rF is matched in M ′. rF must
be matched to rH (as M ′ is an edit matching). Let M ′1 = {(v, v′) ∈ M ′ : v ∈ RF − rF }
and M ′2 = M ′ \ (M ′1 ∪ {(rF , rH)}). Again, we have that M ′1 is an edit matching between the
vertices of RF − rF and the vertices of RH − rH , and M ′2 is an edit matching between the
vertices of F − RF and the vertices of H − RH . Moreover, (M1,M

′
1) is a matchings pair for

RF − rF , RG − rG, RH − rH and (M ′2,M2) is a matchings pair for F −RF , G−RG, H −RH .
Therefore,

costRF−rF ,RG−rG,RH−rH ((M1,M
′
1)) + costF−RF ,G−RG,H−RH

((M2,M
′
2)) =

costF,G,H((M,M ′))− crel(rF , rH)− crel(rG, rH) = δ(F,G,H)− crel(rF , rH)− crel(rG, rH),

so

δ(F −RF , G−RG, H −RH) + δ(RF − rF , RG − rG, RH − rH) ≤
δ(F,G,H)− crel(rF , rH)− crel(rG, rH).

It follows that α(F,G,H) ≤ δ(F,G,H) (as H − RH = H[φ, 1, t(H) − 1] and RH − rH =
H[rH , 1, d(rH)]).

If rF is not matched in M ′, let i be the maximum index such that there is a vertex of F−RF
that is matched in M ′ to a vertex in H[φ, i, i]. Define M ′1 = {(v, v′) ∈M ′ : v ∈ RF − rF } and
M ′2 = M ′ \M ′1. We have that M ′1 is an edit matching between the vertices of RF − rF and
the vertices of H[φ, i+ 1, t(H)], and M ′2 is an edit matching between the vertices of F − RF
and the vertices of H[φ, 1, i]. It follows that

δ(F −RF , G−RG, H[φ, 1, i]) + δ(RF − rF , RG − rG, H[φ, i+ 1, t(H)]) ≤
δ(F,G,H)− crel(rF , rG).

Therefore, α(F,G,H) ≤ δ(F,G,H).
In all cases above we showed that α(F,G,H) ≤ δ(F,G,H). Showing the opposite direction

is similar.

Observation 3. Let H1 = H[x, a, b] for some x, a, and b, and let H2 = H1[φ, i, j]. Then
H2 = H[x, a+ i− 1, a+ j − 1].

Theorem 4. Let S be a strategy algorithm for tree edit distance with time complexity t(F,G)
and space complexity s(F,G). Then there is an algorithm for guided tree edit distance with time
complexity O(t(F,G) · |H| d(H)2(log log d(H))3/ log2 d(H)) and space complexity O(s(F,G) ·
d(H)2 + |F | |G| |H|).

Proof. We define an algorithm Ŝ for guided tree edit distance. Let F , G, and H be an input
to the algorithm. For the rest of this section, let d(φ) = t(H). Let (F1, G1), . . . , (FK , GK)
be the relevant pairs w.r.t. F,G, S according to the computation order. Algorithm Ŝ is as
follows.
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1: Initialize tables Ax for every x ∈ H ∪ {φ}.
2: for each vertex x ∈ H in postorder and for x = φ do
3: for t = 1, . . . ,K do
4: Compute δ(Ft, Gt) using the same rule as S uses to compute δ(Ft, Gt).
5: if algorithm S uses rule (1) to compute δ(Ft, Gt) then
6: Compute δ(Ft, Gt, H[x, i, j]) for all 1 ≤ i ≤ j ≤ d(x) using rule (3).
7: else
8: Compute δ(Ft, Gt, H[x, i, j]) for all 1 ≤ i ≤ j ≤ d(x) using rule (4).
9: if (Ft, Gt) = (F [v, 1, d(v)], G[w, 1, d(w)]) for some v and w then
10: Ax[v, w]← δ(Ft, Gt, H[x, 1, d(x)]).
11: for every value δ(Ft′ , Gt′) that S discards after computing δ(Ft, Gt) do
12: Discard δ(Ft′ , Gt′) and δ(Ft′ , Gt′ , H[x, i, j]) for all 1 ≤ i ≤ j ≤ d(x).
13: Discard δ(Ft, Gt) and δ(Ft, Gt, H[x, i, j]) for all t, i, and j.

By Lemma 1 after processing a vertex x, the table Ax contains the value of δ(F [v, 1, d(v)],
G[w, 1, d(w)], H[x, 1, d(x)]) for every v ∈ F and w ∈ G.

Fix some i and j, and consider the terms that appear in the computation of δ(Ft, Gt, H[x, i, j])
using rule (3). By Observation 3, these terms are of the form δ(F ′, G′, ∅) = δ(F ′, G′) or
δ(F ′, G′, H[x, i′, j′]) (where F ′ is a subforest of Ft, G′ is a subforest of Gt, and i ≤ i′ ≤
j′ ≤ j), except for the term δ(RFt − rFt , RGt − rGt , H[rH[x,i,j], 1, d(rH[x,i,j])]). For each term
δ(F ′, G′, H[x, i′, j′]) (or δ(F ′, G′)) we have that the term δ(F ′, G′) appears in the computation
of δ(F ′, G′) using rule (1). Since algorithm S must store the value of δ(F ′, G′) in memory, it
follows that algorithm Ŝ stores in memory the value of δ(F ′, G′, H[x, i′, j′]) (or δ(F ′, G′)). As
for δ(RFt − rFt , RGt − rGt , H[rH[x,i,j], 1, d(rH[x,i,j])]), this value is stored in the ArH[x,i,j]

table
(note that RFt − rFt = F [rFt , 1, d(rFt)]) .

For each relevant pair (Ft, Gt), algorithm Ŝ computes the value of δ(Ft, Gt, H[x, i, j]) for
every x ∈ H ∪ {φ} and every 1 ≤ i ≤ j ≤ d(x). The number of these values is∑

x∈H∪{φ}

(
d(x) + 1

2

)
≤

∑
x∈H∪{φ}

d(x)2 ≤ d(H)
∑

x∈H∪{φ}

d(x) = d(H) |H| .

Therefore, the number of δ values computed by algorithm Ŝ is O(K · d(H) |H|) = O(t(F,G) ·
d(H) |H|). Moreover, computing some value δ(Ft, Gt, H[x, i, j]) takes O(j−i+1) = O(d(x)) =
O(d(H)) time. Therefore, the time complexity of algorithm Ŝ is O(t(F,G) · |H| d(H)2).

We now show how to improve the time complexity of algorithm Ŝ. In order to compute
δ(Ft, Gt, H[x, i, j]) for all 1 ≤ i ≤ j ≤ d(x), we compute cij = mink=i,...,j−1 δ(Ft − RFt , Gt −
RGt , H[x, i, k]) + δ(RFt − rFt , RGt − rGt , H[x, k + 1, j]) for all 1 ≤ i ≤ j ≤ d(x). After the
computation of these values, computing each δ(Ft, Gt, H[x, i, j]) takes constant time.

The computation of all cij-s is done using distance matrix product (see also [2]). Define
matrices A = {aij}d(x)i,j=1 and B = {bij}d(x)i,j=1, where

aij =

{
δ(Ft −RFt , Gt −RGt , H[x, i, j]) if i ≤ j
∞ otherwise

and

bij =

{
δ(RFt − rFt , RGt − rGt , H[x, i+ 1, j]) if i+ 1 ≤ j
∞ otherwise

.

Then, cij = mink{aik + bkj}. The matrix C = {cij}d(x)i,j=1 is called the distance matrix product
of A and B, and can be computed in O(d(x)3(log log d(x))3/ log2 d(x)) time [1]. It follows
that the time complexity of algorithm Ŝ is O(t(F,G) · |H| d(H)2(log log d(H))3/ log2 d(H)).
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Finally, we compute the space complexity of algorithm Ŝ. The distance matrix product
computation when handling x ∈ H ∪ {φ} takes o(d(x)3) = o(d(H)3) = o(|F | |G| |H|) space.
The space used by the Ax tables is O(|F | |G| |H|). For each value of δ(F ′, G′) that is stored
by S at some step, algorithm Ŝ stores at most d(H)2 values δ(F ′, G′, H[x, i, j]) for all i and
j. Thus, the space complexity of algorithm Ŝ is O(s(F,G) · d(H)2 + |F | |G| |H|).

The time complexity of the algorithm of Shasha and Zhang [7] isO(|F | cdepth(F )·|G| cdepth(G)).
The algorithm of Demaine et al. [3] has time complexity O(|F | |G|2 (1 + log |F ||G|)). Both these
algorithms have space complexity O(|F | |G|).

Corollary 5. There are algorithms for guided tree edit distance with time complexities O(|F | cdepth(F )·
|G| cdepth(G) · |H| d(H)2(log log d(H))3/ log2 d(H)) and O(|F | |G|2 (1 + log |F ||G|) · |H| d(H)2

(log log d(H))3/ log2 d(H)). The space complexity of these algorithms is O(|F | |G| (d(H)2 +
|H|)).
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