Faster algorithms for guided tree edit distance

Dekel Tsur*

Abstract

The guided tree edit distance problem is to find a minimum cost series of edit operations
that transforms two input forests F' and G into isomorphic forests F’ and G’ such that
a third input forest H is included in F’ (and G’). The edit operations are relabeling a
vertex and deleting a vertex. We show efficient algorithms for this problem that are faster
than the previous algorithm for this problem of Peng and Ting [5].
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1 Introduction

Tree edit distance is a popular metric for the similarity of two forests and arises in XML
comparisons, computer vision, compiler optimization, natural language processing, and com-
putational biology. The tree edit distance problem is to transform two rooted, ordered, and
labelled forests F' and G into isomorphic forests F’ and G’ by using a minimum cost series of
edit operations on F and G. The edit operation are relabeling a vertex and deleting a vertex.
Deleting a vertex v means removing v and all edges incident to v. The children of v become
children of the parent of v (if it exists) instead of v.

Tai [6] gave the first algorithm for tree edit distance. The time complexity of Tai’s algo-
rithm is O(|F|leaves(F)? - |G| leaves(G)?), where |F| denotes the number of vertices in F' and
leaves(F') denotes the number of leaves in F'. Shasha and Zhang [7] improved this result to
O(|F| cdepth(F) - |G| cdepth(G)), where cdepth(F') denotes the minimum between leaves(F')
and the maximum height of a tree in F. In the worst case, their algorithm runs in O(|F|* |G/?)
time. Klein [4] gave an O(|F|log|F|-|G|?) time algorithm where |F| > |G|, and Demaine et
al. [3] gave an O(|F||G|* (1 + log %)) time algorithm.

Peng and Ting [5] introduced a generalization of tree edit distance called guided tree edit
distance. In this problem the input is three forests F', G, and H. The goal is to find a
minimum cost series of edit operations that transforms F and G into isomorphic forests F’
and G’ such that H can be obtained from F’ (or G’) by a series of vertex deletion operations.
Peng and Ting gave an algorithm for this problem with time complexity O(|F|cdepth(F) -
|G| cdepth(G) - |H|leaves(H)?) and space complexity O(|F| |G| |H|leaves(H)?).

In this paper we show that the guided edit distance problem can be solved in O(|F| cdepth(F)-
|G| cdepth(G)-|H| d(H)?(loglog d(H))?/ log? d(H)) time or in O(|F| |G|* (1+log %HH\ d(H)?
(loglog d(H))3/log® d(H)) time, where d(H) is the maximum between the number of trees
in H, and the maximum number of children of a vertex in H. The space complexity of our
algorithms is O(|F| |G| (d(H)? + |H|)). As d(H) < leaves(H), our first algorithm is always
faster than the algorithm of Peng and Ting and uses less memory. Moreover, if we measure the
time complexity as a function of n = |F| + |G|+ |H| (i.e. the size of the input) the algorithm
of Peng and Ting has time complexity O(n") while our second algorithm has time complexity
O(n8(loglogn)?/log®n).
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2 Preliminaries

Let F be a forest with trees Fi,..., F; (from left to right) and let v be a vertex in F with
children vy, ...,vq (from left to right). We define Flv,i,j] to be the subforest of F' that is
induced by v;, viy1,...,v; and their descendants (note that this subforest does not include
the vertex v). Moreover, we define F'[¢,,j] to be the subforest of F' that contains the trees
Fi, Fiq1,...,Fj. If i > j then F[¢, 1, j] is an empty forest. Let Ly denote the leftmost tree in
a forest F', and let Rr denote the rightmost tree. Let [ and rr be the roots of Ly and Rp,
respectively.

Let ¢(F") denote the number of trees in a forest F'. For a vertex v, let d(v) denote the num-
ber of children of v. Define d(F') = max(max,cr d(v),t(F')) and cdepth(F’) is the minimum
between the number of leaves in F' and the maximum height of a tree in F'.

The edit distance between two forests F' and G is denoted 0(F,G). The guided edit
distance between forests F' and G with guiding forest H is denoted 6(F,G, H) (note that
§(F,G,0) = §(F,G) where () denotes an empty forest). We denote by cqel(v) the cost of
deleting a vertex v, and by c¢e1(v, w) the cost of changing the label of vertex v to be equal to
the label of w.

We say that a vertex v € F is to the left of a vertex w € F if v appears before w in the
postorder of F' and v is not a descendant of w.

The guided tree edit distance problem can be formulated in terms of matchings. Let F
and G be two forests. We say that a set M C V(F) x V(G) is an edit matching if

1. M is a matching, namely each v € F' appears in at most one pair of M and each v € G
appears in at most one pair.

2. For every (v,v'), (w,w") € M, v is an ancestor of w if and only if v is an ancestor of w'.

3. For every (v,v'), (w,w’) € M, v is to the left of w if and only if v is to the left of w’.

A matchings pair for F,G, H is a pair (M, M') where M is an edit matching between F' and
G, and M’ is a matching between F' and H such that

1. All vertices of H are matched in M’.

2. If v € F is matched in M’ then v is also matched in M.
The cost of (M, M) is

costpaa((M, M) = caa®)+ Y ca®)+ > (Ga®,v") +aa,v")),

vel (v,v')eMop (v’ v")eA

where U is the set of vertices in F' and G that are unmatched in M, My is the set of all pairs
(v,v") € M such that v is not matched in M’, and A is the set of all triplets (v, v’,v”) such
that (v,v") € M and (v,v") € M’. Tt is easy to verify that §(F, G, H) is equal to the minimum
cost of a matchings pair for F,G, H.

Several algorithms for tree edit distance are based on the following recurrence (see [3]):
For two forests F' # () and G # (),

(S(F —Tr, G) + Cdel(""F),
(5(F, G) = min (5(F, G — Tg) + Cdel(Tg), (1)
6(F — Rp,G — Rg) + 6(Rp —rr,Rg — @) + crel(rF, 7G)



and
S(F —1p,G) + caa(lr),
0(F,G) =ming 6(F,G —lg) + caa(lc), . (2)
S(F—Lp,G—Lg)+6(Lp —lp,Lg —lg) + cra(lp, la)
Moreover, §(F,0) =" cpcdel(v) and 6(0,G) = > c Cdel(v).

A strategy algorithm for tree edit distance is an algorithm that computes 6(F, G) as follows.
Given F' and G, the algorithm computes 0(F1,G1),...,0(Fk, Gi) for some pairs of subforest
of F and G, with F, = F and Gy = G. Each value §(F;, G;) is computed by applying either
rule (1) or rule (2) on F; and G;. Each of the §(F’,G’) terms that appear in the right hand
side of the selected rule is a value that was computed previously by the algorithm, namely
it appears in §(Fy,G1),...,0(F;—1,Gi—1). Note that the algorithm can discard the value
0(F;, G;) at some step j > i if the computation of the values 6(Fj,Gj/) for j° > j does not
depend on §(F;, G;). Each pair (F;, G;) is called a relevant pair w.r.t. F,G, S, where S denotes
the strategy algorithm. We also say that F; is a relevant subforest of F' and G; is a relevant
subforest of G (w.r.t. F,G,S).

The algorithm of Shasha and Zhang [7] is a strategy algorithm that always uses rule (1).
The time complexity of the algorithm of Shasha and Zhang is O(|F| cdepth(F)-|G| cdepth(G)).

Demaine et al. [3] gave a strategy algorithm with time complexity O(|F||G|* (1+log %)) and
showed that this algorithm is asymptotically optimal among all strategy algorithms when the
time complexity is measured as a function of |F| and |G|.

We use the following Lemma from [3].

Lemma 1. Let S be a strategy algorithm for tree edit distance and let F' and G be two forests.
For every pair of vertices v € F and w € G we have that (Fv,1,d(v)],Glw,1,d(w)]) is a
relevant pair w.r.t. F,G,S.

3 The algorithm

Lemma 2. Let F',G and H be non-empty forests. Then

(S(F—TF,G H) +Cdel(7'F)7

(5(FG rq, )—i—cdel(r(;),

min

i 0(Rp —rp,Rqg —rg,H[p,i+ 1,t(H

5(F.G. H) = min +6(Rp —rp, Rg —ra, H|¢p,i+ 1,t(H)]) ’ 3)
+ crel(ro TG),

5(F_RF7G_RG7H[¢717t(H)_1])
+5(RF—TF,Rg—Tg,H[TH,l,d(TH)])

+ crel(rp, TH) + Gel(ra, TH) )
where the inner minimum is taken over i =0, ..., t(H). Furthermore,
(6(F —Ip,G, H)—i—cdel(lp)
0(F,G—lg,H)+ cqalla),
, { §(F - Lp,G — Lg, H|,i + 1,t(H)])}
min

%

+6(Lp —lp,Lg — g, H[¢, 1,1])
+ crel(lr, la),
0(F — Lp,G— Lg,H[p,2,t(H)])
+0(Lr —lp, Lg —lg, H[lg,1,d(lg)])
+ crel(lps L) + crel(la, Ler) )

d(F,G,H) = min

3



Proof. We only prove equality (3). Let a(F,G, H) denote the right hand side of (3). Let
(M, M') be a minimum cost matchings pair for F,G,H. If rp is not matched in M then
(M, M) is a matchings pair for F—rp, G, H and costp_r, ¢ g (M, M")) = costpc u((M,M'))—
cael(rr) = 0(F,G,H) — cge(rp). Therefore, 6(F — rp,G,H) < 6(F,G,H) — cgel(rr), so
a(F,G,H) < §(F,G, H). The same is true when r¢g is not matched in M.

Suppose now that both rr and rg are matched in M. Since M is an edit matching, rr must
be matched to rg. Let My = {(v,v') € M :v € Rp —rp} and My = M \ (M1 U{(rp,rq)}).
We have that M; is an edit matching between the vertices of Rp — rp and the vertices of
Rg — rg, and Ms is an edit matching between the vertices of F' — Rp and the vertices of
G — Rg.

We now consider two cases. In the first case suppose that rg is matched in M’. rg must
be matched to rgy (as M’ is an edit matching). Let M| = {(v,v') € M’ : v € Rp — rp}
and M) = M'\ (M{U{(rp,rx)}). Again, we have that M] is an edit matching between the
vertices of Rp — rp and the vertices of Ry — ry, and M/ is an edit matching between the
vertices of F' — Rp and the vertices of H — Ry. Moreover, (Mj, M7) is a matchings pair for
Rr —rp,Rg —rg, Ry — ry and (MY}, M) is a matchings pair for F — Rp,G — Rg, H — Ry.
Therefore,

COStRp—rp,Rg—ra,Ru—ru (M, M{)) + costp—Rp,G—Rg,H-Ry ((MQ, Mé)) =
costpau(M, M) = crei(rp,71) — crei(rG,re) = 0(F, G, H) — cre(rr,ri) — cra(re, 7H),

SO

5(F — Rp,G — R, H — RH) + (5(RF —rp,Rg —rq, R — T'H) <
0F,G,H) — crel(rr,TH) — crel(ra, TH)-

It follows that o(F,G,H) < §(F,G,H) (as H — Ry = H[p,1,t(H) — 1] and Ry — rg =
Hirg,1,d(rg))).

If rp is not matched in M’, let ¢ be the maximum index such that there is a vertex of F'—Rp
that is matched in M’ to a vertex in H|[¢,i,i]. Define M| = {(v,v") € M’ : v € Rp —rp} and
M} = M'\ M]. We have that M] is an edit matching between the vertices of Rp — rp and
the vertices of H[¢,i+ 1,t(H)|, and M} is an edit matching between the vertices of F' — Rp
and the vertices of H[¢, 1,i]. It follows that

5(F - RFvG_ RG7H[¢7171]) +5(RF _TFaRG - rG7H[¢7i+ 17t(H)]) S
S(F,G,H) — cral(rp,ra).

Therefore, o(F,G,H) < 6(F,G, H).
In all cases above we showed that o(F, G, H) < 6(F, G, H). Showing the opposite direction
is similar. -

Observation 3. Let H; = H|[z,a,b] for some x, a, and b, and let Hy = Hi|¢,i,j]. Then
Hy=Hlz,a+i—1la+j—1].

Theorem 4. Let S be a strategy algorithm for tree edit distance with time complexity t(F, Q)
and space complezity s(F,G). Then there is an algorithm for guided tree edit distance with time
complezity O(t(F,G) - |H| d(H)?(loglog d(H))3/log? d(H)) and space complezity O(s(F,G) -
d(H)? + |F| |G| |H]).

Proof. We define an algorithm S for guided tree edit distance. Let F', G, and H be an input
to the algorithm. For the rest of this section, let d(¢) = ¢t(H). Let (F1,G1),...,(Fk,Gk)
be the relevant pairs w.r.t. F,G,.S according to the computation order. Algorithm S is as
follows.



1. Initialize tables A, for every z € H U {¢}.

2: for each vertex © € H in postorder and for x = ¢ do

3 fort=1,...,K do

4: Compute §(Fi, Gt) using the same rule as S uses to compute d(Fy, Gy).
5: if algorithm S uses rule (1) to compute §(F;, G;) then

6 Compute §(Fi, G, H[z,1,j]) for all 1 <i < j < d(z) using rule (3).
7 else

8 Compute §(Fi, G, H[z,1,j]) for all 1 <i < j < d(z) using rule (4).
9: if (F},Gy) = (F[v,1,d(v)], Glw,1,d(w)]) for some v and w then

10 Azlv,w| «— §(F, Gy, H[z,1,d(z))]).

11: for every value §(Fy,Gy) that S discards after computing 6(F3, G¢) do
12: Discard §(Fy,Gy) and 0(Fy, Gy, H[z,i,7]) for all 1 <14 < j < d(x).
13:  Discard §(Fy, Gy) and 0(Fy, Gy, H[z, 1, j]) for all ¢, 4, and j.

By Lemma 1 after processing a vertex x, the table A, contains the value of §(F[v, 1, d(v)],
Glw,1,d(w)], H[z,1,d(x)]) for every v € F and w € G.

Fix some i and j, and consider the terms that appear in the computation of §(F;, Gy, H|[z, 1, j])
using rule (3). By Observation 3, these terms are of the form §(F',G',0) = 6(F',G") or
S(F',G',H[z,i,j']) (where F’ is a subforest of F}, G’ is a subforest of Gy, and i < i/ <
J" < j), except for the term 0(RF, — rr,, R, — ¢y, H["H{z,ij)» 1, (" H[z,,5))])- For each term
S(F',G' H[z,i,7']) (or 6(F',G")) we have that the term 6(F’, G') appears in the computation
of §(F’,G") using rule (1). Since algorithm S must store the value of 6(F’,G’) in memory, it
follows that algorithm S stores in memory the value of §(F', G, H[x,i',5']) (or 6(F',G")). As
for §(Rr, — R, Ra, — 76y H[ 2,5 1, (T H{z,,5))]), this value is stored in the A | table
(note that Ry, —rp, = Flrp, 1,d(rg,)]) .

For each relevant pair (F}, Gy), algorithm S computes the value of §(Fy, Gy, H[z,1,j]) for
every ¢ € H U {¢} and every 1 <i < j < d(x). The number of these values is

S () S awrcam X -

ze€HU{¢} reHU{¢} reHU{¢}

TH(x,i,j

Therefore, the number of § values computed by algorithm S is O(K - d(H) |H|) = O(t(F, G) -
d(H)|H]|). Moreover, computing some value 0 (F;, Gy, H [z, 1, j]) takes O(j—i+1) = O(d(x)) =
O(d(H)) time. Therefore, the time complexity of algorithm S is O(t(F,G) - |H| d(H)?).

We now show how to improve the time complexity of algorithm S. In order to compute
O(Fy, Gy, H[z,4,7]) for all 1 < i < j < d(x), we compute ¢;; = ming—; ;1 6(F; — Rp,, Gy —
Re,,H|x,i,k]) + 0(Rp, — 7F,, Ra, — 1y, Hlx, k + 1,7]) for all 1 < i < j < d(z). After the
computation of these values, computing each §(F;, Gy, H[z, 1, j]) takes constant time.

The computation of all ¢;j-s is done using distance matrix product (see also [2]). Define

matrices A = {aij}z(j@l and B = {bij}%@l, where

s — (S(Ft—RFt,Gt—RGt,H[ﬂ?,i,j]) leSJ
R S otherwise

and

b {5(RFt—TFt,RGt—TGt,H[IE,i+1,j]) 1fZ+1§]
i = -

00 otherwise

Then, ¢;; = ming{a;, + by;}. The matrix C' = {Cij}?,(]'921 is called the distance matriz product
of A and B, and can be computed in p(d(x)3(log logd(z))?/log? d(x)) time [1]. It follows
that the time complexity of algorithm S is O(t(F,G) - |H|d(H)?(loglog d(H))?/log? d(H)).



Finally, we compute the space complexity of algorithm S. The distance matrix product
computation when handling z € H U {¢} takes o(d(z)?) = o(d(H)3) = o(|F||G| |H|) space.
The space used by the A, tables is O(|F||G||H]|). For each value of 6(F’,G’) that is stored
by S at some step, algorithm S stores at most d(H)? values 6(F',G', H[z,i,j]) for all 4 and
j. Thus, the space complexity of algorithm S is O(s(F,G) - d(H)? + |F| |G| |H]). ]

The time complexity of the algorithm of Shasha and Zhang [7] is O(| F'| cdepth(F')-|G| cdepth(G)).
The algorithm of Demaine et al. [3] has time complexity O(|F||G|? (1 + log %)) Both these
algorithms have space complexity O(|F||G]).

Corollary 5. There are algorithms for guided tree edit distance with time complexities O(|F| cdepth(F')-

|G| cdepth(G) - |H| d(H)2(loglog d(H))3/log? d(H)) and O(|F||G|* (1 + log %) - |H|d(H)?
(loglogd(H))?/log? d(H)). The space complexity of these algorithms is O(|F||G| (d(H)? +

[H))-
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