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Abstract

The complexity of pairwise RNA structure alignment depends on the struc-
tural restrictions assumed for both the input structures and the computed
consensus structure. For arbitrarily crossing input and consensus structures,
the problem is NP-hard. For non-crossing consensus structures, Jiang et al’s
algorithm [1] computes the alignment in O(n2m2) time where n and m de-
note the lengths of the two input sequences. If the input structures are also
non-crossing, the problem corresponds to tree editing which can be solved in
O(m2n(1+log n

m
)) time [2]. We present a new algorithm that solves the prob-

lem for d-crossing structures in O(dm2n log n) time, where d is a parameter
that is one for non-crossing structures, bounded by n for crossing structures,
and much smaller than n on many practical examples. Crossing input struc-
tures allow for applications where the input is not a fixed structure but is
given as base-pair probability matrices.
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1. Introduction

With the recent focus on non-protein-coding RNA (ncRNA) genes, inter-
est in detecting novel ncRNAs has rapidly emerged. A recent screen on ncR-
NAs has detected more than 30000 putative ncRNAs in human genome [3],
most of them with unknown function. Since the structure of RNA is evolu-
tionarily more conserved than its sequence, predicting the RNA’s secondary
structure is the most important step towards its functional analysis [4].

The secondary structure of an RNA molecule can be calculated from its
nucleotide sequence by determining a folding with minimal free energy [5, 6,
7, 8, 9]. Albeit this so-named thermodynamic approach is a success story
in the analysis of RNA, it is known that predicting the secondary structure
from a single sequence is error-prone, where the best available approaches
can correctly predict only up to 73% of the base-pairs [10]. This situation
can be improved by taking phylogenetic information into account, i.e., by
predicting a common consensus structure from a whole set of evolutionary
related RNA sequences.

There are several approaches for the comparative RNA structure predic-
tion (see [11] for an overview). One approach is to predict for every input
sequence the minimum free-energy non-crossing structure (in O(n3) time),
and then perform pairwise sequence-structure alignments. The problem of
aligning two non-crossing structures corresponds to tree editing and can be
solved in O(n3) time [2]. However, this approach crucially depends on the
quality of the initial structure prediction, which is error-prone.

Hence, the gold standard are Sankoff-like approaches [12, 13, 14, 15, 16]
which simultaneously align and fold the sequences. This approach can be
viewed as performing sequence-structure alignments, where the structure of
each input sequence consists of all possible base pairs. The complexity of the
alignment in this approach is O(n6). Will et al. [16] reduced this complexity
to O(n4) using the following approach: For each input sequence, compute
a base-pair probability matrix. Then, build a crossing structure for each
sequence by taking base pairs whose probabilities are above some threshold.
Each structure contains O(n) arcs, and therefore aligning the structures takes
O(n4) time.
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AAACAAA ACAGG UUUGUUUUGUUC GGUU

(c)

Figure 1: (a) Two structures for the sequence AAACAAACACAGGGGUUUUUGUUUUGUU with simi-
lar free energy. The stem in the second sequence is shifted by 5 nucleotides. (b) Associated
base-pair probability matrix (upper triangle) and minimum free energy structure (lower
triangle). The shifted stem is indicated by two parallel diagonals, a pattern often seen in
RNA-structures. (c) Both nested structures together form a 5-crossing structure. Note
that this structure forms a two-page embedding (or is 2-colorable, as it is called in [18]),
but our approach is not restricted to this class of structures.

In this work, we shorten the gap between structure alignment of non-
crossing structures (with a complexity of O(n3)), and the Sankoff-like ap-
proaches (with a complexity of O(n4) for alignment of sparse crossing struc-
tures) for a practical application scenario. In many practical cases, the base-
pair probability matrix gives a main structure that allows for a small de-
viation. As shown in the example in Figure 1, the alternative structures
together form a crossing input structure, where the offset between crossing
arcs is small. In this paper, we introduce a measurement for this deviation
(d-crossing), and introduce an efficient alignment algorithm with complexity
O(n3 log n) given that the deviation is small. The fast available structure
alignment methods for non-crossing input structures [17, 2] rely on a heavy
path decomposition which was so far only available for tree-like structures.
Our approach generalizes this to d-crossing structures.

2. Preliminaries

An arc-annotated sequence is a pair (S, P ), where S is a string over the
set of bases {A,U,C,G} and P is a set of arcs (l, r) with 1 ≤ l < r ≤ |S|
representing bonds between bases. We allow more than one arc to be adjacent
to one base, but require that |P | ∈ O(|S|), that is, on average each base is
adjacent to only a constant number of arcs. We denote the i-th symbol of S
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by S[i] and the substring from symbol i to symbol j with S[i . . . j]. For an arc
p = (l, r), we denote its left end l and right end r by pL and pR, respectively.
The span of p is defined as span(p) = pR − pL + 1.

Two arcs p1 and p2 in an arc-annotated sequence (S, P ) are crossing if
pL1 ≤ pL2 ≤ pR1 ≤ pR2 or pL2 ≤ pL1 ≤ pR2 ≤ pR1 . Two crossing arcs p1 and p2
are d-crossing if |pL1 − pL2 | < d and |pR1 − pR2 | < d. An arc p1 is nested in an
arc p2 if pL2 < pL1 < pR1 < pR2 . An arc p1 precedes an arc p2 if pR1 < pL2 . For
every two arcs, either the two arcs are crossing, one of the arc is nested in the
other, or one of the arc precedes the other. An arc-annotated sequence (S, P )
containing crossing arcs is called crossing, otherwise non-crossing or nested.
A d-crossing sequence is a crossing sequence in which every two crossing arcs
are d-crossing.

3. Problem Definition

An alignment A of two arc-annotated sequences (S1, P1) and (S2, P2) is
a set A = Amatch ] Agap. The set Amatch ⊆ [1, n] × [1,m] of match pairs
satisfies that for all (i, j), (i′, j′) ∈ A, (1) i > i′ implies j > j′, and (2) i = i′

if and only if j = j′. Given Amatch, the set of gap pairs is implied as Agap :=
{ (i,−)| i ∈ [1, n]∧@j.(i, j) ∈ Amatch }∪{ (−, j)| j ∈ [1,m]∧@i.(i, j) ∈ Amatch }.
A consensus structure for an alignment A is a matching P ⊆ P1 × P2 that
satisfies (p1, p2) ∈ P ⇒ (pL1 , p

L
2 ) ∈ A ∧ (pR1 , p

R
2 ) ∈ A. We require a consensus

structure to be non-crossing, namely {(p1, p2), (p′1, p′2)} ⊆ P ⇒ p1 and p′1 do
not cross.

Each alignment together with some consensus structure has an associated
cost based on functions γ1 ∈ [1, n]→ N, γ2 ∈ [1,m]→ N, β ∈ [1, n]×[1,m]→
N, and α ∈ ([1, n])2 × ([1,m])2 → N. γk(i) denotes the cost to align position
i of sequence k to a gap, β(i, j) the cost for a base match, i.e. cost to align
position i of the first sequence to position j of the second sequence, provided
arcs adjacent to i and j are not contained in the consensus structure, and
α(p1, p2) denotes the cost to match arcs p1 and p2 in the consensus structure.
The cost of an alignment A with consensus structure P , denoted CP (A), is∑

(i,−)∈A

γ1(i) +
∑

(−,j)∈A

γ2(j) +
∑

(p1,p2)∈P

α(p1, p2) +
∑

(i,j)∈A′

β(i, j),

where A′ is the set of all pairs (i, j) ∈ Amatch such that no arc in P is adjacent
to i or to j. Note that this scoring scheme can easily be instantiated with the

4



edit distance scoring scheme of Jiang et al. [1] if each base is adjacent to at
most one arc. For this case we set γ1(i) = wd +ψ1(i)(

wr

2
−wd), γ2(j) = wd +

ψ2(j)(
wr

2
−wd), β(i, j) = χ(i, j)wm +(ψ1(i)+ψ2(j))

wb

2
, and α((i, j), (i′, j′)) =

(χ(i, j) + χ(i′, j′))wam

2
where ψ1, ψ2, χ, wd, wr, wm, wb, and wam are defined

as in [1]. However, we formulate the algorithm with the more general scoring
scheme, since α((i, j), (i′, j′)) can be used to encode base pair weights which is
more suitable in the presence of several adjacent arcs per base that represent
alternative structures.

The RNA structure alignment problem is given two arc-annotated se-
quences (S1, P1) and (S2, P2), to find an alignment A and a consensus struc-
ture P such that CP (A) is minimal. For the remainder of this paper we fix
two arc-annotated sequences (S1, P1) and (S2, P2) with |S1| = n, |S2| = m,
|P1| ∈ O(n) and |P2| ∈ O(m) and assume that (S1, P1) is d-crossing. We
assume w.l.o.g. that P1 contains an arc (1, n).

Arc annotated sequences are often classified as plain, nest, cross or
unlim, as originally proposed in [19]. We solve for our scoring scheme the
edit problem for a class that fully contains edit(nest,nest) and partially
contains edit(unlim,unlim) (namely those instances where one structure
is d-crossing and where on average each base is adjacent to only a constant
number of arcs).

4. The Algorithm

The algorithm consists of two stages. The first stage computes the opti-
mal costs to align certain fragments that are required for the second stage.

4.1. Stage 1

In the first stage, the algorithm computes a table M analogously to the
recurrence of Jiang et al. [1]. Let OPT(i, i′, j, j′) denote the minimal cost
of an alignment between (S1[i . . . i

′], P1 ∩ [i, i′]2) and (S2[j . . . j
′], P2 ∩ [j, j′]2).

The entry M [i, i′, j, j′] stores the value OPT(i, i′, j, j′).
The base cases where i′ = i − 1 and j′ = j − 1 are initialized with

M [i, i− 1, j, j− 1] = 0, the other entries are computed recursively as defined
in Figure 2. In the recursive computation, cases that rely on invalid items
(i.e. where any of i, i′, j, j′ are not within their allowed range) are implicitly
skipped. While Jiang et al’s algorithm computes the entire alignment based
on this recurrence, we only compute entries of M for short fragments of the
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M [i, i′, j, j′] =

min



M [i, i′ − 1, j, j′] + γ1(i
′) I

M [i, i′, j, j′ − 1] + γ2(j
′) II

M [i, i′ − 1, j, j′ − 1] + β(i′, j′) III

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0 IV

M [i, i0 − 1, j, j0 − 1] +M [i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

Figure 2: Recurrence for the table M .

first sequence that have a length of at most 2d + 2, i.e. for 1 ≤ i ≤ n,
i− 1 ≤ i′ ≤ min(i+ 2d+ 1, n), 1 ≤ j ≤ m, and j − 1 ≤ j′ ≤ m.

4.2. Stage 2

For non-crossing input structures, the correspondence of these structures
to trees allows for alignment methods that are asymptotically faster than
the recurrence used in the first stage [17, 2]. In our approach we apply a
similar technique, but since our input structures do not correspond to trees,
we select a subset PT ⊆ P1 of the arcs. The arcs in PT do not cross and at
most one of them is adjacent to each base. Hence, the arcs in PT form a tree
structure that guides the recursive decomposition during the computation of
the alignment.

4.2.1. Construction of PT

Define the inner d-range of an arc p (with span at least 2d+1) as Id(p) =
[pL + 1, pL + d − 1] × [pR − d + 1, pR − 1]. For a set of arcs P ⊆ P1, the
set tree (P ) is defined recursively as follows. If P = ∅ or all arcs in P have
span at most 2d then tree (P ) = ∅. Otherwise, let p be some arc in P with
maximum span (ties are broken arbitrarily), and

tree (P ) ={p} ∪ tree
(
P ∩ [1, pL − 1]2

)
∪ tree

(
P ∩ [pR + 1, n]2

)
∪

tree
(
(P ∩ [pL + 1, pR − 1]2) \ Id(p)

)
.

Lemma 1. Every arc in P crosses at most one arc in tree (P ).

Proof. Let p1 and p2 be two arcs in tree (P ), and assume w.l.o.g. that
pL1 < pL2 . We have that either p2 is nested in p1 or p1 precedes p2.
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If p2 is nested in p1 then by the definition of tree (P ), either pL2 − pL1 ≥ d
or pR1 − pR2 ≥ d. Suppose w.l.o.g. that pL2 − pL1 ≥ d. Let p be an arc that
crosses p1. If pL ≤ pL1 then |pL − pL2 | ≥ pL2 − pL1 ≥ d, so p does not cross p2.
If pL > pL1 then pL ≤ pL1 + d − 1 < pL2 and pR ≥ pR1 > pR2 . Therefore, p2 is
nested in p, and in particular, p does not cross p2.

If p1 precedes p2 then pL2 > pR1 = pL1 + span(p1)− 1 ≥ pL1 + 2d. Therefore,
for every arc p, either |pL − pL1 | ≥ d, or |pL − pL2 | ≥ d. We conclude that p
cannot cross both p1 and p2. �

Lemma 2. An arc p ∈ P satisfies p ∈ Id(p
′) for at most one arc p′ ∈

tree (P ). If p does not cross an arc in tree (P ) then p ∈ Id(p′) for a unique
arc p′ ∈ tree (P ).

Proof. To prove the first part of the lemma, let p1 and p2 be two arcs in
tree (P ) with pL1 < pL2 . Either p2 is nested in p1 or p1 precedes p2. If p2 is
nested in p1 then either pL2 − pL1 ≥ d or pR1 − pR2 ≥ d. In the former case, the
intervals [pL1 +1, pL1 +d−1] and [pL2 +1, pL2 +d−1] are disjoints, and therefore
Id(p1)∩ Id(p2) = φ. Similarly, Id(p1)∩ Id(p2) = φ when pR1 − pR2 ≥ d or when
p1 precedes p2. Thus, p cannot be both in Id(p1) and Id(p2).

We prove the second part of the lemma using induction on |P |. Let
P ⊆ P1 be a nonempty set of arcs, and let p be some arc in P that does
not cross an arc in tree (P ). Let p′ be the maximum span arc in P that is
chosen when computing tree (P ). Recall that tree (P ) = {p′} ∪ tree (P 1) ∪
tree (P 2)∪ tree (P 3) where P 1 = P ∩ [1, p′L − 1]2, P 2 = P ∩ [p′R + 1, n]2, and
P 3 = (P ∩ [p′L + 1, p′R − 1]2) \ Id(p′). If p ∈ Id(p′) we are done. Otherwise,
since p does not cross p′ and p /∈ Id(p

′), we have that p is in some set P i.
Since |P i| < |P |, by the induction hypothesis there is an arc p′′ ∈ tree (P i)
such that p ∈ Id(p′′). �

We define PT = tree (P1), and we call the arcs in PT tree arcs. For every
p ∈ P1 we define T (p) to be the unique tree arc p′ such that p crosses p′, if
such arc exists. Otherwise, T (p) is the unique tree arc p′ such that p ∈ Id(p′).
The definition of T (·) is valid due to Lemma 2.

Lemma 3. For every p ∈ P1, |pL − T (p)L| < d and |pR − T (p)R| < d.

Proof. If p crosses T (p) then the inequalities of the lemma are satisfied
since (S1, P1) is d-crossing. Otherwise, p ∈ Id(T (p)), and the inequalities of
the lemma are satisfied by the definition of Id(·). �
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Lemma 4. Let p ∈ P1 and let p′ ∈ PT such that p′ 6= p and p′ is nested in
T (p). Then, p′ is nested in p.

Proof. Let p and p′ be two arcs satisfying the conditions of the lemma.
From the definition of T (·), p cannot cross p′. Moreover, from Lemma 3 and
the fact that span(p) > 2d, p′ cannot precede p, or vice versa. �

For every tree arc p ∈ PT we select a tree arc denoted hchild(p) such that
hchild(p) is nested in p and span(hchild(p)) is maximum (if there is such an
arc). For p ∈ PT and p 6= (1, n), define parent(p) to be the minimum span
tree arc that p is nested in. We define parent((1, n)) = (1, n).

4.2.2. Recurrence

For each p ∈ PT we build two tables Lp and Rp. Intuitively, one obtains
the optimal alignments of the area below p or any arc crossing p by first
extending the optimal alignments of hchild(p) or any arc crossing hchild(p)
to the left (with Lp) and then to the right (with Rp). The algorithm computes
the tables in an order such that for each p, Lp is computed before Rp, and
the tables of all p′ ∈ PT that are nested in p are computed before the tables
of p.

The table entries Lp[i, i′, j, j′] and Rp[i, i′, j, j′] have the same semantics
as M [i, i′, j, j′] and only differ in the domains of the indices i, i′, j, j′ and
the recurrences according to which they are computed. Let us first assume
that hchild(p) is defined for p. Then, Lp[i, i′, j, j′] is defined for

max(pL − d, parent(p)L) ≤ i ≤ hchild(p)L − 1

hchild(p)R + 1 ≤ i′ ≤ min(hchild(p)R + d, pR)

1 ≤ j ≤ m

j − 1 ≤ j′ ≤ m.

and for Rp[i, i′, j, j′] the domains of j and j′ are the same, but i and i′ must
satisfy

max(pL − d, parent(p)L) ≤ i ≤ min(pL + d, hchild(p)L − 1)

hchild(p)R + 1 ≤ i′ ≤ min(pR + d, parent(p)R).
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d ddd

p

hchild(p)

domain of i

Lp

Rp 

Rp 

domain of i'

if hchild(p) is not defined:

Figure 3: Visualization of the domains for the different tables.

If hchild(p) is not defined for p, no Lp table is computed and the Rp tables
contain entries for

max(pL − d, parent(p)L) ≤ i ≤ pL + d

pL + d ≤ i′ ≤ min(pR + d, parent(p)R)

and j, j′ restricted as in the table Rp in the case where hchild(p) is defined.
The domains of i and i′ for the different cases are visualized in Figure 3.

Computation of Lp. All entries Lp[i, i′, j, j] with i ≥ max(hchild(p)L − d, pL)
are initialized as Lp[i, i′, j, j′] = Rhchild(p)[i, i′, j, j′]. All other entries are com-
puted according to the recurrence shown in Figure 4. Again cases relying on
invalid items are implicitly skipped. The last three cases of the recurrence
are visualized in Figure 5.

Computation of Rp. The computation of the Rp tables is similar to the com-
putation of the Lp tables, only that the fragments are extended to the right
instead of to the left. If hchild(p) is defined, we initialize all entries with
i′ ≤ min(hchild(p)R+d, pR) asRp[i, i′, j, j′] = Lp[i, i′, j, j′]. All other items are
computed according to the recurrence shown in Figure 6. If hchild(p) is not
defined, we initialize all items with i′ = pL + d as Rp[i, i′, j, j′] = M [i, i′, j, j′].
The recurrence for Rp in this case includes lines I, II, III, and V from Figure 6.

Once the tables are computed, the actual alignment can be constructed
using the usual backtrace technique.

4.3. Correctness

Let (A,P ) be an optimal alignment and consensus structure for the
fragments corresponding to some table entry M [i, i′, j, j′], Lp[i′, i, j′, j], or
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Lp[i, i′, j, j′] =

min



Lp[i+ 1, i′, j, j′] + γ1(i) I

Lp[i, i′, j + 1, j′] + γ2(j) II

Lp[i+ 1, i′, j + 1, j′] + β(i, j) III

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,

and hchild(p) is nested in p1 IV

Lp[i+ 1, i0 − 1, j + 1, j0 − 1] +M [i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,

hchild(p) is not nested in p1, and span(p1) ≤ 2d V

M [i+ 1, i0 − 1, j + 1, j0 − 1] + Lp[i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,

hchild(p) is not nested in p1, and span(p1) > 2d VI

RT (p1)[i+ 1, i0 − 1, j + 1, j0 − 1] + Lp[i0 + 1, i′, j0 + 1, j′] + α(p1, p2)

Figure 4: Recurrence for the table Lp.
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0
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case R (IV)

case L  (IV)
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T(p
1
)

T(p
1
)

Figure 5: Visualization of the recurrence cases. The arc bounding the gray area denotes
hchild(p).

Rp[i, i′, j, j′] (note the swapped indices in the entry of Lp). In all recurrences,
lines I and II cover the cases where A aligns i′ or j′ to a gap. Line III covers
the cases where (i′, j′) ∈ A and no arcs of P are adjacent to i′ or j′. Fur-
thermore i′ and j′ can never be adjacent to arcs of the consensus structure
whose other end is outside of the current fragment (due to the semantics of
the table entries). Hence, the case that remains is where i′ and j′ are one
end of some arc of the consensus structure whose other end is also contained
in the current fragment. In the recurrence for M , this case is covered in
line IV, and in the recurrences for L and R this case is further decomposed
into subcases corresponding to lines IV to VI. In all those cases, the fragment
is decomposed in the arc match (p1, p2), the fragment below the arc match
and the fragment before it (or behind it, in the case of the table L). This
decomposition is correct since the consensus structure is nested and hence
cannot contain other arc pairs whose arcs cross p1 and p2 to connect the
fragments before and below (p1, p2). It remains to show that in each case the
table entries we recursively descend to exist.

Fix an arc p ∈ PT for which hchild(p) is defined (the case where hchild(p)
is not defined is similar). Let p1 = (i0, i

′) be an arc considered in lines IV
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Rp[i, i′, j, j′] =

min



Rp[i, i′ − 1, j, j′] + γ1(i
′) I

Rp[i, i′, j, j′ − 1] + γ2(j
′) II

Rp[i, i′ − 1, j, j′ − 1] + β(i′, j′) III

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0,

and hchild(p) is nested in p1 IV

M [i, i0 − 1, j, j0 − 1] +Rp[i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0,

hchild(p) is not nested in p1, and span(p1) ≤ 2d V

Rp[i, i0 − 1, j, j0 − 1] +M [i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0,

hchild(p) is not nested in p1, and span(p1) > 2d VI

Rp[i, i0 − 1, j, j0 − 1] +RT (p1)[i0 + 1, i′ − 1, j0 + 1, j′ − 1] + α(p1, p2)

Figure 6: Recurrence for the table Rp.
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to VI of the recurrence for Rp.

Lemma 5. p1 does not cross hchild(p).

Proof. Since the case i′ ≤ min(hchild(p)R + d, pR) is handled by the ini-
tialization of Rp, we have i′ > min(hchild(p)R + d, pR). Therefore, either
i′ > hchild(p)R + d or i′ > pR. In the former case we have from the assump-
tion that (S1, P1) is d-crossing that p1 does not cross hchild(p). In the latter
case we also have that p1 does not cross hchild(p) since otherwise, p1 would
also cross p, contradicting Lemma 1. �

By Lemma 5, either hchild(p) is nested in p1 or hchild(p) precedes p1. The
case where hchild(p) is nested in p1 is handled in line IV of the recurrence.
In this case we have that either T (p1) = p or p is nested in p1. In both cases
we have that i0 ≤ pL + d − 1 (due to Lemma 3). From this inequality we
obtain that (i0 − 1) − i = (i0 − pL) + (pL − i) − 1 ≤ 2d − 2, so the entry
M [i, i0 − 1, j, j0 − 1] exists. Moreover, from the inequality i0 ≤ pL + d − 1
and the assumption that hchild(p) is nested in p1 we obtain that the entry
Rp[i0 + 1, i′ − 1, j0 + 1, j′ − 1] exists.

Now consider the case where hchild(p) precedes p1 which is handled in
lines V and VI of the recurrence. In both lines, the common entry Rp[i, i0 −
1, j, j0 − 1] exists.

If span(p1) ≤ 2d then the entry M [i0 + 1, i′ − 1, j0 + 1, j′ − 1] exists since
(i′ − 1) − (i0 + 1) = span(p1) − 3 ≤ 2d − 3. If span(p1) > 2d then we need
to show that the entry RT (p1)[i0, i

′, j0, j
′] exists. We have that pL1 − pL >

span(hchild(p)) > 2d, and therefore p1 does not cross p and p1 /∈ Id(p).
It follows that T (p1) 6= p. Therefore, T (p1) is nested in p, so the table
RT (p1) was already filled by the algorithm when the table Rp is filled. From
Lemma 3 and Lemma 4 we conclude that the entry RT (p1)[i0, i

′, j0, j
′] exists.

The correctness arguments for the recurrence for Lp are analogous.

4.4. Time Complexity

Let dRk (i) (resp., dLk (i)) denote the number of arcs p in Pk with pR = i
(resp., pL = i) plus one. In stage 1, the time complexity for computing
an entry M [i, i′, j, j′] is O(dR1 (i′)dR2 (j′)). For fixed i′ and j′, the number of
entries of the form M [i, i′, j, j′] that are computed by the algorithm is O(dm).
Therefore, the time complexity of stage 1 is

O

(
n∑

i′=1

m∑
j′=1

dm · dR1 (i′)dR2 (j′)

)
= O

(
dm

n∑
i′=1

dR1 (i′)
m∑

j′=1

dR2 (j′)

)
= O(dnm2).
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For p ∈ PT , the time complexity of computing an entry Lp[i, i′, j, j′] is
O(dL1 (i)dL2 (j)), and the time complexity of computing an entry Rp[i, i′, j, j′] is
O(dR1 (i′)dR2 (j′)). Let cpi,j denote the number of computed entries of the form

Lp[i, i′, j, j′] or Rp[i′, i, j′, j]. Then stage 2 requires O
(∑

p∈PT

∑n
i=1

∑m
j=1 c

p
i,j ·

(dL1 (i)dL2 (j) + dR1 (i)dR2 (j))
)

time.

For every p ∈ PT and every i and j, cpi,j ∈ O(dm). Assuming i and j are
fixed, we now count the number of arcs p ∈ PT for which cpi,j > 0. Let p0 be
the minimum span tree arc such that i ∈ [pL0 , p

R
0 ] (p0 exists as (1, n) is a tree

arc).

Lemma 6. Every tree arc p with cpi,j > 0 satisfies one of the following:

1. pR < i and pR is maximal among all tree arcs whose right ends are
smaller than i.

2. pL > i and pL is minimal among all tree arcs whose left ends are bigger
than i.

3. p0 is nested in p and i /∈ [hchild(p)L, hchild(p)R].

Proof. Suppose conversely that there is a tree arc p1 with cp1i,j > 0 that
does not satisfy properties 1–3 above. If hchild(p1) is defined, then by
definition, cp1i′,j = 0 for every i′ ∈ [hchild(p1)

L, hchild(p1)
R], and therefore

i /∈ [hchild(p1)
L, hchild(p1)

R]. From the assumption that p1 does not satisfy
property 3, it follows that p0 is not nested in p. Therefore, by the definition
of p0, i /∈ [pL1 , p

R
1 ]. Thus, either pR1 < i or pL1 > i.

Without loss of generality, assume that pR1 < i. Let p be the arc such that
pR < i and pR is maximal among all tree arcs whose right ends are smaller
than i. By definition, cp1i′,j = 0 for every i′ > min(pR1 + d, parent(p1)

R), so

i ≤ min(pR1 +d, parent(p1)
R). From the maximality of p we have that either p1

is nested in p, or p1 precedes p. In the former case we obtain a contradiction
as i > pR ≥ parent(p1)

R. In the latter case, we obtain a contradiction as
i > pR ≥ pR1 + span(p) ≥ pR1 + 2d+ 1. �

There are at most two arcs of types 1 and 2 above. Let p0, p1, . . . , pk be
all the tree arcs of the third type, such that pi is nested in pi+1 for all i.
Since span(pi) ≤ span(hchild(pi+1)), we have that span(pi+1) > 2 · span(pi)
for all i and therefore k < log2 n. Thus, the time complexity of stage 2 is

O
(∑n

i=1

∑m
j=1 dm log n · (dL1 (i)dL2 (j) + dR1 (i)dR2 (j))

)
= O(dm2n log n).
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4.5. Space complexity

We now show how to implement the algorithm in O(nm + dm2) space.
The main idea is to split the tables M , {Lp}p∈PT

and {Rp}p∈PT
into smaller

tables, and keep only one of these tables in memory at each point during the
run of the algorithm. More precisely, we define tables Mi,j, where Mi,j[i

′, j′]
stores the value of OPT(i, i′, j, j′). The range of the indices i, i′, j, j′ is the
same as in the definition of M . For every tree arc p for which hchild(p) is
defined:

• We define tables Lp
i′,j′ , where Lp

i′,j′ [i, j] stores the value of OPT(i, i′, j, j′).
The range of the indices i′, j, j′ is the same as in the definition of Lp.
The range of i is

max(pL − d, parent(p)L) ≤ i ≤ max(hchild(p)L − d, pL).

• We define tables Rp
i,j, where Rp

i,j[i
′, j′] stores the value of OPT(i, i′, j, j′).

The range of the indices i, j, j′ is the same as in the definition of Rp.
The range of i′ is

min(hchild(p)R + d, pR) ≤ i′ ≤ min(pR + d, parent(p)R).

For a tree arc p for which hchild(p) is not defined, we define tables Rp
i,j,

where Rp
i,j[i
′, j′] stores the value of OPT(i, i′, j, j′). The range of i, i′, j, j′ is

the same as in the definition of Rp.
Since the algorithm discards the tables Mi,j, L

p
i′,j′ , and Rp

i,j after it com-
putes these tables, it needs to store some values from these table for later
use. For this purpose, the algorithm keeps tables A, Bp

L and Bp
R that are

defined below. The table Bp
L (resp., Bp

R) is used to initialize the Lp
i′,j′ (resp.,

Rp
i,j) tables, and the A table is used in the recurrences of the Lp

i′,j′ and
Rp

i,j tables. Moreover, some values from the Mi,j tables will be recomputed
when needed. This is done using the Mp

L,i′,j′ and Mp
R,i,j tables defined below.

The additional tables are defined as follows. A[p1, p2] stores the value of
OPT(pL1 + 1, pR1 − 1, pL2 + 1, pR2 − 1) for every p1 ∈ P1 and p2 ∈ P2. For every
tree arc p for which hchild(p) is defined, the following tables are used by the
algorithm:

• Bp
L[i′, j, j′] stores the value of OPT(max(hchild(p)L − d, pL), i′, j, j′).

The range of the indices i′, j, j′ is the same as in the definition of Lp.
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Mi,j[i
′, j′] =

min



Mi,j[i
′ − 1, j′] + γ1(i

′) I

Mi,j[i
′, j′ − 1] + γ2(j

′) II

Mi,j[i
′ − 1, j′ − 1] + β(i′, j′) III

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0 IV

Mi,j[i0 − 1, j0 − 1] + A[p1, p2] + α(p1, p2)

Figure 7: Recurrence for the table Mi,j .

• Bp
R[i, j, j′] stores the value of OPT(i,min(hchild(p)R+d, pR), j, j′). The

range of the indices i, j, j′ is the same as in the definition of Rp.

• Mp
L,i′,j′ [i, j] stores the value of OPT(i, i′, j, j′). The range of the indices

i′, j, j′ is the same as in the definition of Lp. The range of the index i
is hchild(p)R + 1 ≤ i ≤ i′ + 1.

• Mp
R,i,j[i

′, j′] stores the value of OPT(i, i′, j, j′). The range of the indices
i, j, j′ is the same as in the definition of Rp. The range of the index i′

is i− 1 ≤ i′ ≤ min(pL + d, hchild(p)L − 1).

At any step of the algorithm, the algorithm keeps only a constant number
of the tables defined above. Since the size of every table is either O(nm) or
O(dm2), it follows that the space complexity is O(nm+ dm2).

4.5.1. Stage 1

The algorithm first computes the Mi,j tables. The order of computing
these tables is arbitrary. Fix some i and j. The table Mi,j is initialized
with Mi,j[i − 1, j − 1] = 0, and the other entries are computed using the
recurrence of Figure 7 (which is straightforward adaptation of the recurrence
of Figure 2). During the computation of Mi,j, the algorithm copies values
corresponding to the same subproblems from Mi,j to A, namely, after com-
puting an entry Mi,j[i

′, j′], if (i− 1, i′ + 1) ∈ P1 and (j − 1, j′ + 1) ∈ P2, the
entry Mi,j[i

′, j′] is copied into A[(i − 1, i′ + 1), (j − 1, j′ + 1)]. After all the
values of Mi,j are computed, the table Mi,j is discarded from memory. The
table A is the only table kept in memory when stage 1 finishes.
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1: Let p1, . . . , pk be the heavy path of P .
2: for p = p1, p2, . . . , pk−1 do
3: Compute the tables for the arcs in P ∩ [pL + 1, hchild(p)L − 1]2.
4: Compute the tables for the arcs in P ∩ [hchild(p)R + 1, pR − 1]2.
5: for i = max(pLk + d, parent(pk)L), . . . , pLk − d do
6: for j = m, . . . , 0 do
7: Compute Rpk

i,j

8: for p = pk−1, pk−2, . . . , p1 do
9: for i′ = hchild(p)R, . . . ,min(hchild(p)R + d, pR) do

10: for j′ = 0, . . . ,m do
11: Compute Lp

i′,j′

12: for i = max(pL + d, parent(p)L), . . . ,min(pL − d, hchild(p)L) do
13: for j = m, . . . , 0 do
14: Compute Rp

i,j

Figure 8: Computation order of the tables Lp
i′,j′ and Rp

i,j for all p ∈ P .

4.5.2. Stage 2

In the second stage the algorithm computes the Lp
i′,j′ and Rp

i,j tables. De-
fine the heavy path of a set of arcs P ⊆ PT as the sequence of arcs p1, p2, . . . , pk
that satisfies (1) p1 be the maximum span arc in P , (2) pi+1 = hchild(pi) for
all i, and (3) hchild(pk) is not defined. The computation order of the Lp

i′,j′

and Rp
i,j tables is defined recursively in Figure 8.

Fix some tree arc p and suppose that hchild(p) is defined. Fix i′ and
j′. Before the algorithm computes the table Lp

i′,j′ , it computes the table
Mp

L,i′,j′ using the recurrence of Figure 9. The table Lp
i′,j′ is initialized with

Lp
i′,j′ [max(hchild(p)L − d, pL), j] = Bp

L[i′, j, j′] for all j. The other entries are
computed using the recurrence of Figure 10. The algorithm copies values
from Lp

i′,j′ into the tables A and Bp
R as follows: If (i − 1, i′ + 1) ∈ P1 and

(j − 1, j′ + 1) ∈ P2, the entry Lp
i′,j′ [i, j] is copied into A[(i − 1, i′ + 1), (j −

1, j′ + 1)]. Moreover, if i′ = min(hchild(p)R + d, pR), Lp
i′,j′ [i, j] is copied into

Bp
R[i, j, j′]. After all the values of Lp

i′,j′ are computed, the tables Lp
i′,j′ and

Mp
L,i′,j′ are discarded from memory. After the tables Lp

i′,j′ are computed for
all i′ and j′, the table Bp

L is discarded from memory.
The computation of an Rp

i,j is done as follows. First, the table Mp
R,i,j is

computed using the recurrence of Figure 11. Then, the table Rp
i,j is initialized

with Rp
i,j[min(hchild(p)R +d, pR), j′] = Bp

R[i, j, j′] for all j′. The other entries
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Mp
L,i′,j′ [i, j] =

min



Mp
L,i′,j′ [i+ 1, j] + γ1(i) I

Mp
L,i′,j′ [i, j + 1] + γ2(j) II

Mp
L,i′,j′ [i+ 1, j + 1] + β(i, j) III

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′ IV

Mp
L,i′,j′ [i0 + 1, j0 + 1] + A[p1, p2] + α(p1, p2)

Figure 9: Recurrence for the table Mp
L,i′,j′ .

Lp
i′,j′ [i, j] =

min



Lp
i′,j′ [i+ 1, j] + γ1(i) I

Lp
i′,j′ [i, j + 1] + γ2(j) II

Lp
i′,j′ [i+ 1, j + 1] + β(i, j) III

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,

and hchild(p) is nested in p1 IV

A[p1, p2] +Mp
L,i′,j′ [i0 + 1, j0 + 1] + α(p1, p2)

for all p1 = (i, i0) ∈ P1, p2 = (j, j0) ∈ P2 with i0 ≤ i′, j0 ≤ j′,

and hchild(p) is not nested in p1 V

A[p1, p2] + Lp
i′,j′ [i0 + 1, j0 + 1] + α(p1, p2)

Figure 10: Recurrence for the table Lp
i′,j′ .
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Mp
R,i,j[i

′, j′] =

min



Mp
R,i,j[i

′ − 1, j′] + γ1(i
′) I

Mp
R,i,j[i

′, j′ − 1] + γ2(j
′) II

Mp
R,i,j[i

′ − 1, j′ − 1] + β(i′, j′) III

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0 IV

Mp
R,i,j[i0 − 1, j0 − 1] + A[p1, p2] + α(p1, p2)

Figure 11: Recurrence for the table Mp
R,i,j .

are computed using the recurrence of Figure 12. If (i − 1, i′ + 1) ∈ P1 and
(j − 1, j′ + 1) ∈ P2, the entry Rp

i,j[i
′, j′] is copied into A[(i − 1, i′ + 1), (j −

1, j′ + 1)]. Moreover, if i = max(pL − d, parent(p)L), Rp
i,j[i
′, j′] is copied into

B
parent(p)
L [i′, j, j′]. Finally, after all the values of Rp

i,j are computed, the tables
Rp

i,j and Mp
R,i,j are discarded from memory. Moreover, after the tables Rp

i,j

are computed for all i and j, the table Bp
R is discarded from memory.

We now analyze the time complexity of the new algorithm. Stage 1 of
the algorithm is equivalent to stage 1 of the previous algorithm. That is,
the total number of cells in all Mi,j tables is the same as the number of
cells in the M table, and the computation of a cell Mi,j[i

′, j′] has the same
time complexity as the computation of M [i, i′, j, j′]. Therefore, the time
complexity of stage 1 is O(dnm2). In stage 2, the computation of all Lp

i′,j′

and Rp
i,j tables is equivalent to the computation of all Lp and Rp tables

in the previous algorithm, and thus this computation takes O(dm2n log n)
time. The computation of all Mp

L,i′,j′ and Mp
R,i,j tables takes O(dnm2) time.

It follows that the time complexity of the algorithm is O(dm2n log n).

5. Conclusion

We presented an algorithm that computes the optimal sequence structure
alignment for a nested consensus structure and crossing input structures. In
practice, crossing input structures can be used to represent several subopti-
mal structures simultaneously, from which the alignment effectively selects
the most appropriate one. On the theoretical side, we generalized the opti-
mizations developed by Klein [17] to crossing input structures.
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Rp
i,j[i, i

′, j, j′] =

min



Rp
i,j[i
′ − 1, j′] + γ1(i

′) I

Rp
i,j[i
′, j′ − 1] + γ2(j

′) II

Rp
i,j[i
′ − 1, j′ − 1] + β(i′, j′) III

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0,

and hchild(p) is nested in p1 IV

Mp
R,i,j[i0 − 1, j0 − 1] + A[p1, p2] + α(p1, p2)

for all p1 = (i0, i
′) ∈ P1, p2 = (j0, j

′) ∈ P2 with i ≤ i0, j ≤ j0,

and hchild(p) is not nested in p1 V

Rp
i,j[i0 − 1, j0 − 1] + A[p1, p2] + α(p1, p2)

Figure 12: Recurrence for the table Rp
i,j .
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