
Cluster Graph Modification Problems∗

Ron Shamir† Roded Sharan‡ Dekel Tsur †

December 2002

Abstract

In a clustering problem one has to partition a set of elements into homogeneous and well-separated

subsets. From a graph theoretic point of view, a cluster graph is a vertex-disjoint union of cliques. The

clustering problem is the task of making fewest changes to the edge set of an input graph so that it becomes

a cluster graph. We study the complexity of three variants of the problem. In the Cluster Completion

variant edges can only be added. In Cluster Deletion, edges can only be deleted. In Cluster Editing, both

edge additions and edge deletions are allowed. We also study these variants when the desired solution must

contain a prespecified number of clusters.

We show that Cluster Editing is NP-complete, Cluster Deletion is NP-hard to approximate to within

some constant factor, and Cluster Completion is polynomial. When the desired solution must contain

exactly p clusters, we show that Cluster Editing is NP-complete for every p ≥ 2; Cluster Deletion is

polynomial for p = 2 but NP-complete for p > 2; and Cluster Completion is polynomial for any p. We also

give a constant factor approximation algorithm for Cluster Editing when p = 2.

1 Introduction

Problem Definition and Motivation: Clustering is a central optimization problem with applications

in numerous fields including computational biology (cf. [16]), image processing (cf. [17]), VLSI design

(cf. [7]), and many more. The input to the problem is typically a set of elements and pairwise similarity

values between elements. The goal is to partition the elements into subsets, which are called clusters,

so that two meta-criteria are satisfied: Homogeneity — elements inside a cluster are highly similar to

each other; and separation — elements from different clusters have low similarity to each other. Concrete

realizations of these criteria generate a variety of combinatorial optimization problems [8].

In the basic graph theoretic approach to clustering, one builds from the raw data a similarity graph

whose vertices correspond to elements and there is an edge between two vertices if and only if the similarity

∗A preliminary version of this paper will appear in the Proceedings of the 27th International Workshop Graph-Theoretic

Concepts in Computer Science [15].
†School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Email: {rshamir,dekelts}@tau.ac.il.
‡International Computer Science Institute, 1947 Center St., Suite 600, Berkeley CA 94704, USA. Email:

roded@icsi.berkeley.edu.

1

of their corresponding elements exceeds a predefined threshold [8,9]. Ideally, the resulting graph would be

a cluster graph, that is, a graph composed of vertex-disjoint cliques. In practice, it is only close to being

such, since similarity data is experimental and, therefore, error-prone.

Following [2] we formalize the resulting problem as the task of changing (adding or deleting) fewest

edges of an input graph so as to obtain a cluster graph. We call this problem Cluster Editing. In the

related Cluster Deletion (respectively, Cluster Completion) problem one has to remove (respectively, add)

fewest edges from (to) an input graph so that it becomes a cluster graph. Completion (deletion) problems

arise when the data contains only false negative (positive) errors. The above problems belong to the class

of edge modification problems (cf. [13]), in which one has to minimally change the edge set of a graph so as

to satisfy a certain property. Another variant of these problems arises when the solution is also required

to consist of a prespecified number of clusters. This variant is motivated by many real-life applications in

which a partition of elements into a known number of categories is desired (see, e.g., [1, 6]).

Previous Results: Edge modification problems were studied extensively in [13], where earlier studies

are also reviewed. Most of these problems were shown to be NP-complete. Polynomial algorithms were

given for bounded degree input graphs. In particular, a constant factor approximation algorithm was given

for editing and deletion problems with respect to any property that can be characterized by a finite set

of forbidden induced subgraphs. Since a graph is a cluster graph if and only if it is P2-free (i.e., it does

not contain an induced path of two edges), this result implies a 3d-approximation algorithm for Cluster

Editing and Cluster Deletion on input graphs with degree bounded by d.

The Cluster Editing problem was first studied by Ben-Dor et al. [2], who presented a polynomial

algorithm that solves the problem with high probability under a stochastic data model. The complexity

of the problem was left open. Cluster Deletion was shown to be NP-complete by Natanzon [12].

Contribution of this Paper: We prove that Cluster Editing is NP-complete, Cluster Deletion is NP-

hard to approximate to within some constant factor, and Cluster Completion is polynomial. We also study

the p-Cluster versions of these problems, in which the required graph must also be a vertex-disjoint union of

p cliques. We show that p-Cluster Editing is NP-complete for every p ≥ 2; p-Cluster Deletion is polynomial

for p = 2 but NP-complete for p > 2; and p-Cluster Completion is polynomial for any p. We also give a

0.878-approximation algorithm for a weighted variant of 2-Cluster Editing.

Organization of the Paper: Section 2 contains terminology and problem definitions. In Section 3 we

prove the NP-completeness of the Cluster Editing variants, and provide a 0.878-approximation algorithm

to a weighted variant of 2-Cluster Editing. In Section 4 we give polynomial algorithms for the Cluster

Completion variants. Finally, in Section 5 we study the complexity of the Cluster Deletion variants.

2 Preliminaries

All graphs in this paper are simple, i.e., contain no parallel edges or self-loops. Let G = (V,E) be a

graph. We denote its set of edges by E(G). For a set S ⊆ V , we denote by GS the subgraph of G

2

induced by the vertices in S. For two disjoint subsets A,B ⊆ V , we denote by EA,B (EA,B) the set

of all edges (non-edges) with one endpoint in A and the other in B. The complement graph of G is

G = (V, {(u, v) ∈ (V × V) \ E : u 6= v}). See [3] for more definitions of graphs and hypergraphs.

A graph G = (V,E) is called a cluster graph if every connected component of G is a complete graph.

G is called a p-cluster graph if it is a cluster graph with p connected components or, equivalently, if it is

a vertex-disjoint union of p cliques. If G is any graph and F ⊂ V × V is such that G ′ = (V,E4F) is a

cluster graph, then F is called a cluster editing set for G (E4F denotes the symmetric difference between

E and F , i.e., (E \ F) ∪ (F \ E)). If in addition F ⊆ E, then F is called a cluster deletion set for G. If

F ∩E = φ then F is called a cluster completion set for G. p-cluster editing set, p-cluster deletion set, and

p-cluster completion set are similarly defined. We denote by P (F) the partition of V into disjoint subsets

of vertices according to the connected components (cliques) of G′. For a partition P = (V1, . . . , Vl) of V ,

we denote by NP the size of the cluster editing set implied by P , that is,

NP ≡ |
l

⋃

i=1

{(u, v) 6∈ E : u, v ∈ Vi} ∪ {(u, v) ∈ E : u ∈ Vi, v ∈ Vj, i 6= j}| .

The problems we study in this paper are of two types:

Problem 1 (Cluster Editing/Completion/Deletion) Given a graph G and an integer k, determine

if G has a cluster editing/completion/deletion set of size at most k.

Problem 2 (p-Cluster Editing/Completion/Deletion) Given a graph G and an integer k, determine

if G has a p-cluster editing/completion/deletion set of size at most k.

3 Cluster Editing

We prove in this section that Cluster Editing is NP-complete by reduction from a restriction of exact cover

by 3-sets:

Problem 3 (3-Exact 3-Cover (3X3C)) Given a collection C of triplets of elements from a set U =

{u1, . . . , u3n}, such that each element of U is a member of at most 3 triplets, determine if there is a

sub-collection I ⊆ C of size n which covers U .

The 3X3C problem is known to be NP-complete [4, Problem SP2].

Theorem 1 Cluster Editing is NP-complete.

Proof: Membership in NP is trivial. We prove NP-hardness by reduction from 3X3C. Let m ≡ 30n.

Given an instance 〈C,U〉 of 3X3C we build a graph G = (V,E) as follows:

V =
⋃

S∈C

{vS,1, . . . , vS,m} ∪ U ,

E = E1 ∪ E2 ∪ E3 ,

E1 = {(vS,i, u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,

E2 = {(vS,i, vS,j) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} .

3

In words, we build a clique of size m + 3 around each triplet S by fully connecting S and m additional

vertices. For each triplet S ∈ C we denote VS = {vS,1, . . . , vS,m} and call the elements of VS , S-vertices.

Let q =
∑

S∈C |S| = 3|C|. Define N ≡ m(q − 3n) and M ≡ |E3| − 3n. We prove that there is an exact

cover of U if and only if there is a cluster editing set for G of size at most N + M :

(⇒) Suppose that I ⊆ C is an exact cover of U . Let F1 = {(vS,i, u) : S 6∈ I, 1 ≤ i ≤ m,u ∈ S} and let

F2 = {(u, u′) ∈ E3 : @S ∈ I s.t. u, u′ ∈ S}. It is easy to verify that F = F1 ∪ F2 is a cluster editing set for

G, whose size is |F | = |F1| + |F2| = N + M .

(⇐) Let F be an editing set of G of minimum size, such that |F | ≤ N + M . We shall prove that

|F | = N + M and one can derive from F an exact cover of U . Since each element of U occurs in at most

3 triplets, q ≤ 9n. Thus, |E3| ≤ q ≤ 9n and |F | ≤ N + M ≤ 6mn + 6n = 180n2 + 6n < m
2 (m

2 − 2).

Let G′ = (V,E4F) be the cluster graph obtained by editing G according to F . We shall prove that

for every subset S ∈ C there is a unique clique in G′ which contains VS . To this end, we first show that

there is a clique KS in G′ such that |KS ∩ VS| ≥ m/2 + 3: Suppose that the vertices of VS are partitioned

among k cliques X1, . . . , Xk in G′. Let s(Xi) = |VS ∩ Xi|, i = 1, . . . , k. Suppose to the contrary that

s(Xi) ≤ m/2 + 2 for all i. Therefore,

|F | ≥
1

2

k
∑

i=1

s(Xi)(m − s(Xi)) ≥
1

2

k
∑

i=1

s(Xi)(
m

2
− 2) =

m

2
(
m

2
− 2) .

A contradiction follows.

Let KS be the clique Xi for which s(Xi) is maximum (|KS ∩ VS | ≥ m/2 + 3). We next prove that

VS ⊆ KS ⊆ VS ∪S. Let x = |KS \(VS ∪S)|. Consider a new partition P ′ of V , which is obtained from P (F)

by splitting KS into KS ∩ (VS ∪ S) and KS \ (VS ∪ S). Clearly, NP (F) − NP ′ ≥ (m/2 + 3)x − 3x = xm/2.

Since F is an optimum cluster editing set, we conclude that x = 0 and KS ⊆ VS ∪S. To see that KS ⊇ VS ,

suppose to the contrary that there is some index 1 ≤ i ≤ m such that vS,i 6∈ KS . Let K ′ be the clique in

G′ which contains vS,i. Let P ′′ be a new partition of V , which is obtained from P (F) by moving vS,i from

K ′ to KS . Then NP (F) −NP ′′ ≥ m/2+3− (m/2− 4+3) = 4, a contradiction. We conclude that for every

S ∈ C there is a unique clique in G′ which contains VS and is contained in VS ∪ S.

Let F1 = F ∩ E1. Examine an element u ∈ U which is a member of (at least) two subsets S1, S2 ∈ C.

By the previous claim, VS1
and VS2

are subsets of distinct cliques in G′. Hence, either EVS1
,{u} ⊆ F , or

EVS2
,{u} ⊆ F (or both). Therefore, |F1| ≥ N . Moreover, since |F1| ≤ N + M and M ≤ 6n, each vertex

u ∈ U must be adjacent in G′ to the S-vertices of exactly one set S where u ∈ S. Call this set the S-set

of u.

Let F2 = F \F1. For every two vertices u, u′ ∈ U such that (u, u′) ∈ E, and the S-sets of u and u′ differ,

we must have (u, u′) ∈ F2. Since each subset in C contains 3 elements, G′
U is a union of cliques of size at

most 3. It is easy to verify that the maximum number of edges in such a 3n-vertex graph is 3n, and that

number is obtained if and only if G′
U is a union of triangles only. Therefore, |F2| = |E3| − |E(G′

U)| ≥ M

with equality if and only if there is a partition of U into triplets of elements, such that the elements of each

triplet have the same S-set. Since |F | ≤ N + M , we must have |F | = N + M and the implied partition

into triplets induces an exact cover of U .

We note, that the same construction can be used to show that Cluster Deletion is NP-complete.

4

3.1 p-Cluster Editing

In this section we study the p-Cluster Editing problem. We first show that 2-Cluster Editing is NP-

complete. We then conclude that p-Cluster Editing is NP-complete for every p ≥ 2.

To prove the hardness of 2-Cluster Editing, we define the following problem:

Problem 4 (Balanced 2-coloring of a 3-Uniform Hypergraph) Given a 3-uniform hypergraph G,

determine if there is a 2-coloring of G such that the number of vertices that are colored by each color is the

same.

This problem can be shown to be NP-complete by a trivial reduction from 2-Coloring of a 3-Uniform

Hypergraph, whose NP-completeness was proven by Lovasz [11].

Theorem 2 2-Cluster Editing is NP-complete.

Proof: Membership in NP is trivial. We reduce from Balanced 2-Coloring of a 3-Uniform Hypergraph.

Given a hypergraph G = (V,E), we build an instance of 2-Cluster Editing 〈G′ = (V ′, E′), k〉 as follows: Let

n and m be the number of vertices and hyperedges, respectively, in G, and assume that V = {1, . . . , n}.

Let M ≡ 2n3. Each vertex i of G is associated with a set of M vertices Vi = {vi,j : j = 1, . . . ,M} in G′,

which we call a cluster. We define V ′ = ∪n
i=1Vi. For a triplet of indices 1 ≤ i < j < l ≤ n define the set

Ei,j,l = {(vi,r, vj,r), (vj,r+1, vl,r), (vl,r+1, vi,r+1)}, where r = 2(n2i+nj + l)−1. The edge set of G′ is defined

as

E′ =
⋃

i<j<l,(i,j,l)/∈E

Ei,j,l ∪
n
⋃

i=1

{(vi,j , vi,k) : j 6= k}.

In words, we build a clique around each Vi, and add the edges of Ei,j,l for every non-hyperedge of G.

Finally, we set k ≡ 2
(

n/2
2

)

(M2 − (n − 2)) + (n
2)2(n − 2) − m. For convenience we also define a graph

G′′ = (V ′, E′′), which is built like G′ except that it contains the edges in Ei,j,l for every triplet i < j < l,

that is,

E′′ = E′ ∪
⋃

i<j<l,(i,j,l)∈E

Ei,j,l .

We now prove that there is a balanced 2-coloring of G if and only if there is a 2-cluster editing set of G ′

of size at most k.

(⇒) Suppose that f :V → {0, 1} is a balanced 2-coloring of G. Let S = ∪i:f(i)=0Vi, and let F ′, F ′′

be the 2-cluster editing sets of G′ and G′′, respectively, that correspond to the partition P = (S, V \ S).

Since f is balanced, each side of P consists of n/2 clusters. We first compute the size of F ′′. For two

distinct clusters Vi and Vj (i < j), each set of the form Ei,j,l, Ei,l,j, or El,i,j contains exactly one edge

between Vi and Vj. Therefore, there are exactly n − 2 edges between every pair of clusters in G ′′. It

follows that F ′′ contains 2
(n/2

2

)

(M2 − (n − 2)) edges that are not in E ′′ between clusters on the same side

of the partition, and (n
2)2(n − 2) edges in E ′′ between clusters on different sides of the partition. Thus,

|F ′′| = 2
(n/2

2

)

(M2−(n−2))+(n
2)2(n−2). We now compute the size of F ′. For each hyperedge (i, j, l) ∈ E,

the edges of Ei,j,l in G′′ contribute two edges to F ′′ (as the clusters Vi, Vj, and Vk are not all on the same

5

side of the partition), while the non-existence of the edges of Ei,j,l in G′ contributes only one edge to F ′

(between the two clusters on the same side of the partition). It follows that |F ′| = |F ′′| − m = k.

(⇐) Suppose that F is a 2-cluster editing set of G′ of minimum size, and |F | ≤ k. We shall prove that

|F | = k and one can construct from F a balanced 2-coloring of G. We say that a partition (S, V ′ \S) splits

a cluster Vi if Vi ∩ S 6= φ and Vi 6⊆ S. Let P (F) = (S, V ′ \ S). We first claim that P (F) splits no cluster.

Suppose to the contrary that P (F) splits at least one cluster.

If P (F) splits more than one cluster then let Vi be a split cluster whose intersection with S has minimum

cardinality, and let Vj be a split cluster whose intersection with S has maximum cardinality and j 6= i.

Denote a = |Vi ∩ S| and b = |Vj ∩ S|. Choose some vertex u ∈ Vi ∩ S and a vertex w ∈ Vj \ S. Let

S′ = S ∪ {w} \ {u}, and let F ′ be the 2-cluster editing set that corresponds to the partition (S ′, V ′ \ S′).

We will show that |F | − |F ′| ≥ 0. Note that if {i, j, l} 6= {i′, j′, l′} then the edges of Ei,j,l are incident on

different vertices than the edges of Ei′,j′,l′ . Therefore, every v ∈ Vi has at most one neighbor outside of Vi.

If such a neighbor exists, denote it by nv.

The edges in F that are incident on u or w are:

1. M − a edges (in E ′) between u and Vi \ S.

2. A possible edge (in E ′) between u and nu (if nu exists and nu ∈ V ′ \ S).

3. Either |S| − a or |S| − a− 1 edges (not in E ′) between u and S \ (Vi ∩ S) (the second term is for the

case that nu exists and nu ∈ S).

4. b edges (in E ′) between w and Vj ∩ S.

5. A possible edge (in E ′) between w and nw (if nw exists and nw ∈ S).

6. Either nM −|S|− (M − b) or nM −|S|− (M − b)−1 edges (not in E ′) between w and V ′ \S \ (Vj \S)

(the second term is for the case when nw exists and nw ∈ V ′ \ S).

The total number of these edges is at least nM − 2a+2b− 2. Similarly, the number of edges in F ′ that are

incident on u or w is at most a + (nM − |S| − (M − a)− 1) + (M − b) + (|S| − b− 1) = nM + 2a− 2b− 2.

It follows that

|F | − |F ′| ≥ (nM − 2a + 2b − 2) − (nM + 2a − 2b − 2) = 4(b − a) ≥ 0.

If a < b, we have that |F ′| < |F |, in contradiction to the minimality of F . If a = b, we have that

|F ′| = |F |. In this case we build a set S ′′ from S′ using the same process as above, and since |Vl ∩ S′| is

not equal amongst the clusters, it follows that the 2-cluster editing set F ′′ that corresponds to S ′′ satisfies

|F ′′| < |F ′| = |F |, and again we arrive at a contradiction.

Now suppose that the partition P (F) splits exactly one cluster, and denote this cluster by Vi. Let

a = |Vi∩S|. Out of the rest n−1 clusters, suppose that r clusters are contained in S, and n−r−1 clusters

are contained in V ′ \ S. W.l.o.g. suppose that n− r− 1 ≤ r, and since n is even we have n− r− 1 ≤ r − 1.

Define S′ = S \ Vi, and let F ′ be the corresponding 2-cluster editing set. For each v ∈ Vi ∩ S, there are

at least rM − 1 edges in F between v and S \ Vi (the term −1 is due to the possibility that nv exists and

6

nv ∈ S \ Vi), and M − a edges between v and Vi \ S. Hence, the number of edges in F that are incident

on v is at least rM − 1 + M − a. On the other hand, an edge in F ′ that is incident on v is either between

v and nv, or between v and (V ′ \ S) \ Vi. The number of edges of the latter type is (n − 1 − r)M , so the

number of edges in F that are incident on v is at most (n − 1 − r)M + 1 ≤ (r − 1)M + 1. It follows that

|F | − |F ′| ≥ a (rM − 1 + M − a − ((r − 1)M + 1)) = a (2M − a − 2) > 0,

in contradiction to the minimality of F . Therefore, F splits no cluster.

We now claim that the number of clusters that are contained in S is exactly n/2. Conversely, suppose

w.l.o.g. that r > n/2. Let Vi be some cluster contained in S. Let S ′ = S\Vi and let F ′ be the corresponding

2-cluster editing set. Similarly to the above, we have that

|F | − |F ′| ≥ M((r − 1)M − 1 − ((n − r)M + 1)) ≥ M(M − 2) > 0,

a contradiction. Hence, S contain n/2 clusters. We conclude that |F | = k.

Define a coloring f :V → {0, 1} by f(i) = 0 if and only if Vi ⊆ S. By the argument above, f is

balanced. It remains to show that f is a legal 2-coloring. For a hyperedge (i, j, k) ∈ E, if i, j, k have the

same color then |F ∩ Ei,j,l| = 3. Otherwise, |F ∩ Ei,j,l| = 1 since two of the edges in Ei,j,l must cross the

partition (S, V ′\S). Hence, each monochromatic hyperedge increases |F | by 2. By the first direction of the

proof, the editing set that corresponds to a legal 2-coloring is of size exactly k. Thus, no monochromatic

hyperedge is possible in f . It follows that f is a balanced 2-coloring of G.

Corollary 1 p-Cluster Editing is NP-complete for any p ≥ 2.

Proof: Fix p > 2. We provide a reduction from 2-Cluster Editing. Given an input instance 〈G =

(V,E), k〉 of 2-Cluster Editing, |V | = n, we form an instance 〈G′ = (V ′, E′), k〉 of p-Cluster Editing as

follows: Define V ′ = V ∪ ∪p−2
i=1 Vi, where Vi = {wi,j : j = 1, . . . , n2}. Define E ′ = E ∪ {(wi,j , wi,k) : k 6= j}.

That is, we add to G p − 2 disjoint cliques of size n2 each.

Clearly, every 2-cluster editing set of G is a p-cluster editing set of G′ (of the same size). Conversely,

suppose that F ′ is a p-cluster editing set of G′ of size at most k, and let P (F ′) = (S1, . . . , Sp) be the

corresponding partition. We show that F ′ is also a 2-cluster editing set for G.

If there is a set Vi such that Vi ∩ Sj 6= φ and Vi 6⊆ Sj for some j, then F ′ contains EVi∩Sj ,Vi\Sj
. The

number of such edges is at least n2 − 1 > k, a contradiction. Therefore, every set Vi is contained in some

set Sj. Furthermore, every set Sj contains at most one set Vi since, otherwise, we have |F ′| ≥ n4 > k, a

contradiction. If Sj ⊇ Vi then Sj = Vi using a similar argument. It follows that all edges in F ′ are incident

on vertices of V , implying that F ′ is a 2-cluster editing set of G.

3.2 A 0.878-Approximation Algorithm

We give in this section a polynomial approximation algorithm for a weighted variant of 2-Cluster Editing

which is defined as follows:

7

Problem 5 (Weighted 2-Cluster Editing) Given a graph G and a weight function on vertex pairs

w:E(G)∪E(G) → N , find in G a 2-cluster editing set with maximum total weight of unedited vertex pairs.

Note, that the decision version of Weighted 2-Cluster Editing reduces to that of 2-Cluster Editing when

w ≡ 1 (i.e., w(e) = 1 for every e ∈ E(G) ∪ E(G)).

Let G = (V,E,w) be an input weighted graph with n vertices. Let Sn denote the n-dimensional unit

sphere. We define the following semi-definite relaxation of Weighted 2-Cluster Editing:

max
1

2
[

∑

(i,j)∈E

(w((i, j))(1 + vi · vj)) +
∑

(i,j)6∈E

(w((i, j))(1 − vi · vj))]

s.t. vi ∈ Sn ∀i

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing, that is, for every partition

P = (A,B) of G there exist vectors v1, . . . , vn ∈ Sn such that the total weight of unedited vertex pairs as

implied by P is 1
2 [

∑

(i,j)∈E(w((i, j))(1 + vi · vj)) +
∑

(i,j)6∈E(w((i, j))(1 − vi · vj))]. Indeed, let (A,B) be

a partition of G. Let v0 be any unit vector in Sn. For every i ∈ A set vi = v0, and for every i ∈ B set

vi = −v0. The claim follows.

Our approximation algorithm solves this semi-definite relaxation and then rounds the solution obtained

using the random hyperplane technique [5].

Theorem 3 The algorithm approximates Weighted 2-Cluster Editing with an expected approximation ratio

of at least 0.878.

Proof: Follows directly from [5, Theorem 6.1].

4 Cluster Completion

The cluster completion problem is trivially polynomial: The optimum solution is obtained by simply

transforming each connected component of the input graph into a complete graph. In this section we give

a polynomial algorithm for p-Cluster Completion, for any fixed p ≥ 2.

Let G = (V,E) be an input graph with n vertices and t connected components. If t < p we output

False. We assume henceforth that t ≥ p. To find the optimum completion set we compute partitions of

the t components of G into p sets (splitting no connected components) and choose the partition which

results in a minimum completion set. Using dynamic programming, we only need to consider a polynomial

number of partitions. Note that since we only add edges, we seek to minimize the sum of the number of

edges in each of the p sets of the partition, or equivalently, the sum of the squared sizes of the sets.

Let C1, . . . , Ct be the cardinalities of the connected components in G. Our algorithm will denote each

possible partition by a (p − 1)-long vector of integers which describes the sizes of the sets in the partition

(the size of the last set is the difference from n). We will maintain a set Si of the vectors that correspond

to all possible partitions of the first i connected components. The algorithm is given in Figure 1. The

actual partition can be obtained by maintaining for each v ∈ Si a pointer to its parent vector in Si−1.

8

S0 = {(0, . . . , 0)}

For i = 1 to t do:

Si = Si−1 ∪ {v + Ciej : v ∈ Si−1, j = 1, . . . , p − 1}.

Pick in St a vector v∗ minimizing
∑p−1

i=1 v2
i + (n −

∑p−1
i=1 vi)

2.

Figure 1: An algorithm for p-Cluster Completion. ej denotes a (p − 1)-dimensional unit vector with 1 in

position j.

Theorem 4 The algorithm correctly solves the p-Cluster Completion problem in O(tnp−1) time.

Proof: Let v∗ be the vector returned by the algorithm and let F be the implied p-completion set. It

suffices to prove that F is optimal. Let P (F) = (S1, . . . , Sp). Then

|F | =

p
∑

i=1

(

|Si|

2

)

− |E| =
1

2

p
∑

i=1

(|Si|
2 − |Si|) − |E| =

1

2

p
∑

i=1

|Si|
2 −

n

2
− |E|.

Let F ∗ be an optimal p-cluster completion set of G, and let P (F ∗) = (S∗
1 , . . . , S∗

p). Then |F ∗| =
1
2

∑p
i=1 |S

∗
i |

2 − n
2 − |E|. It follows from the algorithm that |F | ≤ |F ∗| which implies that F is an op-

timal solution.

5 Cluster Deletion

In this section we study the cluster deletion problem. We shall give a gap preserving reduction (cf. [10])

from a restricted version of SET-COVER to Cluster Deletion. This reduction implies that there is some

constant ε > 0 such that it is NP-hard to approximate Cluster Deletion to within a factor of 1 + ε. We

begin by introducing the SET-COVER restriction.

Problem 6 (Minimum Restricted Exact Cover (REC)) The input is a set of elements U = {u1, . . . , ut},

and a collection C of subsets of U which satisfies the following conditions:

• There is a constant k1 > 0 such that for each S ∈ C, |S| ≤ k1.

• There is a constant k2 > 0 such that for all u ∈ U , |{S ∈ C : u ∈ S}| ≤ k2.

• If S ∈ C and S ′ ⊂ S then S′ ∈ C.

The goal is to find a sub-collection I ⊆ C of minimum cardinality, such that
⋃

S∈I S = U , and the sets in

I are pairwise-disjoint.

Note, that the third condition guarantees that a solution to REC always exists (we assume that
⋃

S∈C S = U). REC can be shown to be MAX-SNP complete by a simple L-reduction from a restric-

tion of SET-COVER in which the size of every set is bounded and each element occurs in a bounded

number of sets. The latter problem is known to be MAX-SNP complete [14]. Hence, there is a constant

δREC > 0 such that it is NP-hard to approximate REC to within a factor of 1 + δREC .

9

Theorem 5 There is some constant ε > 0 such that it is NP-hard to approximate Cluster Deletion to

within a factor of 1 + ε.

Proof: By a gap preserving reduction from REC (similar to the one in Theorem 1). For an instance

IREC of REC, the reduction produces in polynomial time an instance ICD of Cluster Deletion such that

opt(IREC) ≤ c implies opt(ICD) ≤ c′ and opt(IREC) > (1 + δREC)c implies opt(ICD) > (1 + ε)c′, where

opt(I) denotes the optimal value for instance I.

We now describe the reduction. Let IREC = 〈U,C〉, and let |U | = t. Suppose that each set in C has

size at most k1, and each element occurs in at most k2 sets. Let m ≡
k2

1
k2

δREC
and let q ≡

∑

S∈C |S|. We

build an instance ICD = 〈G = (V,E)〉 of Cluster Deletion as follows:

V =
⋃

S∈C

{vS,1, . . . , vS,m, wS} ∪ U ,

E = E1 ∪ E2 ∪ E3 ∪ E4 ,

E1 = {(vS,i, u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,

E2 = {(vS,i, vS,j) : S ∈ C, 1 ≤ i < j ≤ m} ,

E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} ,

E4 = {(vS,i, wS) : S ∈ C, 1 ≤ i ≤ m} .

In words, for each S ∈ C we form a clique on S and a set of m new vertices, and also connect all

the new vertices to a single extra vertex wS. For each subset S ∈ C we denote VS = {vS,1, . . . , vS,m}

and call the elements of VS, S-vertices. Note, that |E3| ≤ (k1 − 1)k2t/2 < k1k2t/2 and q ≤ k2t. Clearly,

t/k1 ≤ opt(IREC) ≤ t. Let c be any constant such that t/k1 ≤ c ≤ t. Define c′ ≡ (q − t + c)m + |E3| and

ε ≡ δREC

2k1k2+δREC
. We prove that this reduction is gap preserving:

(⇒) Suppose that opt(IREC) ≤ c. Let I ⊆ C be an exact cover of U , |I| ≤ c. For u ∈ U denote by Iu

the set in I which contains u. Let Ī = C \ I.

To obtain a cluster subgraph G′ of G we delete the following edges:

1. For all S ∈ Ī , u ∈ S delete all the edges in EVS ,{u}.

2. For all S ∈ I delete all the edges in EVS ,{wS}.

3. For all u ∈ U, u′ ∈ U \ Iu delete the edge (u, u′) if it exists.

One can easily verify that G′ is a cluster graph and, therefore, opt(ICD) ≤ (q − t + c)m + |E3| = c′.

(⇐) Suppose that opt(IREC) > (1 + δREC)c. We can make the following observations with respect to

opt(ICD):

1. In any cluster subgraph of G, every u ∈ U is adjacent to the S-vertices of at most one set S ∈ C.

Therefore, opt(ICD) ≥ (q − t)m.

2. There exists an optimum solution F of ICD for which: If a vertex u ∈ U is adjacent to an S-vertex

in (V,E \ F), for some S ∈ C, then F contains all the edges in EVS ,{w(S)}. Indeed, if F ′ is a cluster

deletion set such that u1, . . . , ur (1 ≤ r ≤ k1) are adjacent to an S-vertex in (V,E \ F ′), then

10

F ′′ = (F ′ ∪ EVS ,{w(S)}) \ (
⋃r

i=1 EVS ,{ui} ∪ {vS,i, vS,j : i 6= j}) is also such a cluster deletion set, and

|F ′′| ≤ |F ′|. Examine now F . For each u ∈ U , either EV \U,{u} ⊆ F or there exists a single set S ∈ C

such that EVS ,{u} 6⊆ F and EVS ,{w(S)} ⊆ F . Let k be the number of vertices u ∈ U for which the latter

case applies, and let T be the collection of all sets S such that (vS,i, u) ∈ E \ F for some u ∈ U, i. It

follows that |F | ≥ (q − k + |T |)m. The sets in T cover k elements of U , so |T | ≥ opt(IREC)− (t− k).

Thus, we have opt(ICD) ≥ (q − t + opt(IREC))m > (q − t + (1 + δREC)c)m.

We conclude that

opt(ICD) > (q − t + (1 + δREC)c)m = c′ + (δRECcm − |E3|)

> c′(1 +
δRECcm − |E3|

qm + |E3|
) > c′(1 +

δREC(t/k1)m − k1k2t/2

k2tm + k1k2t/2
)

= c′(1 +
2δRECm/k1 − k1k2

2k2m + k1k2
) = c′(1 +

δREC

2k1k2 + δREC
) = c′(1 + ε) .

5.1 p-Cluster Deletion

In this section we give a polynomial algorithm for the optimization version of 2-Cluster Deletion. We then

show that p-Cluster Deletion is NP-complete for every p > 2.

Let G = (V,E) be an input graph with n vertices. W.l.o.g., G is connected, as otherwise, either G is

already a 2-cluster graph, or we output False. The algorithm is described in Figure 2.

Theorem 6 The algorithm correctly solves 2-Cluster Deletion in O(n + |E(G)|) time.

Proof: Correctness: Since the complement of a 2-cluster graph is a complete bipartite graph, a solution

exists if and only if G is bipartite. Hence, the algorithm outputs False if and only if no solution exists.

Moreover, the partition produced by the algorithm has the property that if two vertices are assigned to the

same set then they are adjacent. Therefore, the set of edges F returned by the algorithm is a 2-deletion

set of G. Hence, it suffices to prove that F is optimal.

Denote S1 = A1 ∪ . . . ∪At and S2 = B1 ∪ . . . ∪Bt. Clearly, F consists of edges in G with one endpoint

in S1 and the other in S2. Therefore,

|F | = |ES1,S2
| = |S1||S2| − E(G) = |S1|(n − |S1|) − E(G).

Let C1, . . . , Ct be the connected components of G.

For i = 1, . . . , t do:

If Ci is not bipartite then output False and halt.

Else find a bipartition (Ai, Bi) of Ci such that |Ai| ≥ |Bi|.

Output the partition (A1 ∪ . . . ∪ At, B1 ∪ . . . ∪ Bt).

Figure 2: An algorithm for 2-Cluster Deletion.

11

Let F ∗ be a smallest 2-deletion set of G, and let P (F ∗) = (S∗
1 , S∗

2), where |S∗
1 | ≤ |S∗

2 |. It follows that

|F ∗| = |S∗
1 |(n− |S∗

1 |)−E(G). For every i ≤ t, either Ai ⊆ S∗
1 or Bi ⊆ S∗

1 and, therefore, |S1| ≤ |S∗
1 | ≤ n/2,

implying that |F | ≤ |F ∗|. Hence, F is an optimal 2-deletion set of G.

Complexity: The bottleneck in the complexity of the algorithm is computing the connected compo-

nents of G and finding a bipartition for each of them. These tasks can be performed in O(n+ |E(G)|) total

time.

Theorem 7 p-Cluster Deletion is NP-complete for any p ≥ 3.

Proof: Membership in NP is trivial. We provide a reduction from p-Coloring. Given an input graph

G = (V,E), the reduction outputs its complement G and a bound k = |E|. A p-coloring f of G trivially

translates into a p-deletion set {(u, v) /∈ E : f(u) 6= f(v)} of G of size at most k. Conversely, suppose that

F is a p-deletion set of G with |F | ≤ k, and let C1, . . . , Cp be the cliques of (V,E \ F). The coloring f

defined by f(v) = i for all v ∈ Ci is a p-coloring of G.

Note that the reduction works with any k ≥ |E| and in fact shows that even deciding whether a graph

has a p-cluster deletion set is NP-hard, for p ≥ 3.

Acknowledgments

R. Shamir was supported in part by the Israel Science Foundation (grant number 565/99). R. Sharan was

supported by a Fulbright grant and an Eshkol fellowship from the Ministry of Science, Israel.

References

[1] A. A. Alizadeh, M. B. Eisen, et al. Distinct types of diffuse large B-cell lymphoma identified by gene

expression profiling. Nature, 403(6769):503–511, 2000.

[2] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of Computational

Biology, 6(3/4):281–297, 1999.

[3] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman and Co., San Francisco, 1979.

[5] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and

satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145, 1995.

[6] T. R. Golub, D. K. Slonim, et al. Molecular classification of cancer: Class discovery and class prediction

by gene expression monitoring. Science, 286:531–537, October 1999.

[7] C. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

12

[8] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Mathematical Program-

ming, 79:191–215, 1997.

[9] J.A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

[10] D. S. Hochbaum, editor. Approximation Alogrithms for NP-Hard Problems. PWS Publishing, Boston,

1997.

[11] L. Lovasz. Covering and coloring of hypergraphs. In Proc. 4th Southeastern Conf. on Combinatorics,

Graph Theory, and Computing. Utilitas Mathematica Publishing, 1973.

[12] A. Natanzon. Complexity and approximation of some graph modification problems. Master’s thesis,

Department of Computer Science, Tel Aviv University, 1999.

[13] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge modification problems.

Discrete Applied Mathematics, 113:109–128, 2001.

[14] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. of

Computer and System Science, 43:425–440, 1991.

[15] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proceedings of the 27th

International Workshop Graph-Theoretic Concepts in Computer Science (WG), 2002. To appear.

[16] R. Sharan and R. Shamir. CLICK: A clustering algorithm with applications to gene expression

analysis. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular

Biology (ISMB), pages 307–316, 2000.

[17] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its ap-

plication to image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(11):1101–1113, 1993.

13

