Improved Algorithms for the Random Cluster Graph Model*

Ron Shamir ${ }^{\dagger} \quad$ Dekel Tsur ${ }^{\ddagger}$

Abstract

We model noisy clustering data using random graphs: Clusters correspond to disjoint sets of vertices. Two vertices from the same set (resp., different sets) share an edge with probability p (resp., $r<p$). We give algorithms that reconstruct the clusters from the graph with high probability. Compared to previous studies, our algorithms have lower time complexity and apply under wider parameter range.

1 Introduction

Clustering is a fundamental problem that has applications in many areas. We study the clustering problem using a random graph model: A random cluster graph is a random graph $G=(V, E)$ which is built by the following process: The vertex set V is a union of disjoint sets V_{1}, \ldots, V_{m} called clusters. Each two vertices from the same set are connected by an edge with probability p, and each two vertices from different sets are connected by an edge with probability $r<p$. The random choices are all independent. The clustering problem is, given a random cluster graph G, to find the clusters V_{1}, \ldots, V_{m}.

The random cluster graph models a common situation in experimental data, where noise obscures the true clusters: The probability $1-p$ is the false negative probability, i.e., the chance of incorrectly having no edge between two vertices of a cluster. Similarly, r is the false positive probability. If errors of each type are independent and identically distributed, one gets the above model.

In this paper we give several algorithms that solve the clustering problem with high probability. When addressing the clustering problem under the random graph model, several parameters are interrelated: Obviously, the smaller the gap $\Delta=p-r$, the harder the problem. Also, the size of the smallest cluster $k=\min _{i}\left|V_{i}\right|$ is limiting the performance, as very small clusters may be undetectable due to noise. The value k also bounds the number of clusters m. The challenge is to obtain provably good performance for a wide range of values for each parameter. All previous studies

[^0]addressed the problem when the number of clusters is constant and most studied the case of two equal sized clusters. Our algorithms relax both of these assumptions simultaneously and at the same time achieve better running time.

Let us be more precise. Denote the total number of vertices in the graph by n. Our first result is an algorithm for the case when the sizes of the clusters are equal or almost equal:

Theorem 1.1. There is an algorithm that solves the clustering problem with probability $1-O(1 / n)$ when $\max _{i}\left|V_{i}\right| / k \leq 1+1 /(10000 \log n)$ and $k \geq 10^{8} \Delta^{-1} \sqrt{n} \log n$. The running time of the algorithm is $O\left(m^{4} \Delta^{-4} \log ^{3} n \cdot(m+\log n)+m \Delta^{-2} n \log n\right)=$ $O\left((m / \log n+1) n^{2}\right)$.

We also give an algorithm for the general case where the clusters have arbitrary sizes.

Theorem 1.2. For every constant $\epsilon>0$ there is an algorithm that solves the clustering problem with probability $1-O(1 / n)$ when $k \geq 10^{6} 2^{8 \cdot 3^{[1 / \epsilon]+1}} \Delta^{-1} \sqrt{n \log n}(\sqrt{\log n}+$ $\left.\Delta^{-\epsilon}\right)$. The running time of the algorithm is $O\left(m^{5} \Delta^{-4(1+\epsilon)} \log n+m^{3} \Delta^{-4} \log ^{3} n+\right.$ $\left.\left(m^{2}+m \Delta^{-2}\right) n \log n\right)=O\left(m n^{2} / \log n\right)$.

We note that we did not optimize the constants in the bounds on k in the two theorems since optimizing these constants would have complicated the proofs.

1.1 Previous Results

The random graph model was studied by several authors [1-6,8,9]. In these papers, the input is a random cluster graph, and the goal is to find a vertex partition which minimizes some function, e.g., the number of edges between different sets. It is not hard to show that w.h.p., the partition V_{1}, \ldots, V_{m} is optimal, and therefore these problems are asymptotically equivalent to the clustering problem. A comparison between the results of these papers and our results is given in Table 1. The algorithms presented here have a wider range of provable performance than each of the previous algorithms, and are also faster when restricted to the same parameter range. For example, for unequal sized clusters, the algorithm of Ben-Dor et al. [1] requires $k=\Omega(n)$ and $\Delta=\Omega(1)$, while our algorithm can handle instances with $k=\Theta(\sqrt{n} \log n)$, and instances with $\Delta=\Theta\left(n^{-1 / 2+\epsilon}\right)$. Furthermore, under the requirements of Ben-Dor et al., the running time of our algorithm is $O(n \log n)$. For the case of two equal sized clusters, our algorithm handles almost the same range of Δ as the algorithm of Boppana [2], but our algorithm is faster, and is also more general since it handles as many as $m=\Theta(\sqrt{n} / \log n)$ clusters.

We note that Table 1 cites results as given in the papers, even though in several cases better results can be obtained by improving the analysis or by making small modifications to the algorithms. For example, the algorithm of Condon and Karp can be extended to the case when the number of clusters is non-constant. Also, the running time of the algorithm of Ben-Dor et al. can be reduced to $O(n \log n)$ [14].

Independently, McSherry [11] gave a polynomial time algorithm for the clustering problem that requires that $k=\Omega\left(\Delta^{-1} \sqrt{n \log n}+\Delta^{-2 / 3} n^{2 / 3}\right)$. For the case of equal sized clusters, our algorithm has a wider range of k when $\Delta=\omega\left(n^{-1 / 2} \log ^{3} n\right)$, while
(a) General case.

Table 1: Results on the clustering problem (sorted in chronological order). For the comparison, the lower bound $k=\Omega\left(\Delta^{-1} \sqrt{n} \log n\right)$ of our algorithm for equal sized clusters was translated to a lower bound on Δ using the fact that $k \leq n / m$. Note that all previous papers assume $m=2$ or $m=O(1)$ (the requirement $k=\Omega(n)$ in [1] implies that $m=O(1)$), and all except [1] assume equal sized clusters. For the values that are marked by $*$, no implicit requirement is made, and the requirement is implied by the bound on the other parameter.

McSherry's algorithm has a wider range of k when $\Delta=o\left(n^{-1 / 2} \log ^{3} n\right.$) (note that McSherry's algorithm has a lower bound of $\Omega\left(n^{-1 / 2} \sqrt{\log n}\right)$ on $\left.\Delta\right)$. For the case of unequal clusters, our algorithm has a wider range of k when $\Delta \geq n^{-1 / 2+\epsilon}$ for some $\epsilon>0$, while McSherry's algorithm has a wider range of k when Δ is smaller.

1.2 Outline of our approach

In the rest of this section we outline the basic techniques that we use and their differences from previous studies. Our approach is similar to that of the algorithm of Condon and Karp [4] (we will refer to it as the CK algorithm). For a vertex v in a graph G, and a set S of vertices of G, let $d_{S}(v)$ denote the number of neighbors of v in S. We will first give a detailed description of the CK algorithm (in a slightly simplified version, for clarity):

1. Begin with empty sets L and R. Choose $n / 4$ pairs of vertices (without repetitions). Repeatedly, for each pair v, w, compute the expressions $d_{L}(v)-d_{R}(v)$ and $d_{L}(w)-d_{R}(w)$. Add the vertex whose expression is larger to L, and add the other vertex to R.
2. Sort all the vertices in decreasing order according to their $d_{L}(\cdot)$ values, and find the largest gap in the sorted sequence. If this gap is small, output V and stop. Otherwise, put the vertices before the gap into a set L^{\prime}, and the vertices after the gap into a set R^{\prime}.
3. Recursively solve the problem on the subgraph induced by L^{\prime} and on the subgraph induced by R^{\prime}.

We will say that each pair v, w in step 1 are in a duel, and the winner of the duel is the vertex whose expression is larger.

The analysis of the algorithm is based on the notion of imbalance: The L, R imbalance of a cluster V_{i} is the number of vertices of V_{i} in L minus the number of vertices of V_{i} in R. The imbalance of L, R is the maximum value amongst the L, R imbalance of the clusters, and the secondary imbalance of L, R is the second largest value. Let l_{1}, \ldots, l_{m} denote the L, R-imbalances of the cluster V_{1}, \ldots, V_{m} at some point of the algorithm, sorted in a non increasing order (namely, $l_{1} \geq l_{2} \geq \cdots \geq l_{m}$). Condon and Karp showed that during the first step of the algorithm, the imbalance of L, R behaves like a random walk with growing bias for increase. The general idea of the proof is that the imbalance changes only when there is a duel in which one vertex is from V_{1} and the other vertex is not. Furthermore, for such a duel, it is more likely that the vertex from V_{1} will win (namely, the vertex will be added to $L)$, and therefore the imbalance will increase. More precisely, given some vertices $v, w \notin L \cup R$, the random variable $X=\left(d_{L}(v)-d_{R}(v)\right)-\left(d_{L}(w)-d_{R}(w)\right)$ is a sum of $4|L|$ independent random variables. The expectation of X depends on the L, R-imbalances of the clusters that contain v and w : If $v \in V_{i}$ and $w \in V_{j}$ then the expectation of X is $\Delta|L| \cdot\left(l_{i}-l_{j}\right)$. Using estimates on sums of independent random variables (Esseen's inequality), it is shown that the probability that v will win (which is equal to the probability that $X>0$ plus half of the probability that $X=0)$ is $1 / 2+\Omega\left(\min \left(1,\left(l_{i}-l_{j}\right) \Delta / \sqrt{|L|}\right)\right)$ for $i>j$. It follows that with high probability (w.h.p.), at the end of Step 1 , the imbalance of L, R is $\Theta(n)$.

We now consider the second step of the algorithm, which we will call the splitting step, and suppose that there are at least two clusters. Using Chernoff bounds, w.h.p., for every vertex v, the deviation of $d_{L}(v)$ from its expectation is at most $\alpha=n^{1 / 2+\epsilon / 2}$. The expectation of $d_{L}(v)$ depends on the imbalance of the cluster that contains v : If $v \in V_{i}$ then the expectation of $d_{L}(v)$ is roughly $A_{i}=\Delta\left(\frac{n}{4 m}+l_{i} / 2\right)+r \frac{n}{4}$. There is an index i such that $l_{i}-l_{i+1} \geq\left(l_{1}-l_{m}\right) /(m-1)=\Omega(n / m)$ (the last equality follows from the fact that $l_{1}=\Theta(n)$ and $\left.l_{m} \leq 0\right)$. Therefore, $A_{i}-A_{i+1}=\Omega(\Delta n / m)=$ $\Omega\left(n^{1 / 2+\epsilon}\right)$, and the largest gap in the sorted sequence of $d_{L}(\cdot)$ values is at least $A_{i}-A_{i+1}-2 \alpha=\Omega\left(n^{1 / 2+\epsilon}\right)$. It follows that w.h.p., every cluster V_{i}, is contained either in L^{\prime} or in R^{\prime}.

We now give a short description of our algorithms. The main difference between our algorithm and the CK algorithm is the distribution of the l_{i}-s. The success of the splitting step in the CK algorithm depends on having a large gap in the sequence of the l_{i}-s. As shown previously, this gap is $\Omega(n / m)$, and this bound is true also in case m is not a constant (this case was not analyzed by Condon and Karp). Furthermore, this lower bound is likely to be tight: Condon and Karp conjectured (and showed in simulations) that w.h.p., at the end of Step 1 , the l_{i}-s
are distributed uniformly between $l=(1-1 / m) \frac{n}{4 m}$ and $-l$, namely $l_{1}, \ldots, l_{m} \approx$ $l,\left(1-\frac{2}{m}\right) l,\left(1-\frac{4}{m}\right) l, \ldots,-\left(1-\frac{2}{m}\right) l,-l$. This implies that the largest gap in the l_{i}-s sequence is $\Theta(n / m)$. In contrast, our algorithms were designed in order to keep the value of l_{2} much smaller than l_{1} (for example, $l_{2} \leq \frac{1}{10} l_{1}$), and use this fact to achieve a $\Theta(n)$ gap. This allows us to give better algorithms for the case where m is non-constant.

In order to build the sets L and R with the desired imbalances, our algorithm performs the following steps:

Initialization Build sets L_{0} and R_{0} with "large" imbalance and "small" secondary imbalance.

Imbalance amplification For $t=1,2, \ldots$, build a pair of sets L_{t}, R_{t} from L_{t-1}, R_{t-1} such that the imbalance of L_{t}, R_{t} is at least twice the imbalance of L_{t-1}, R_{t-1}, and the secondary imbalance of L_{t}, R_{t} is much smaller than the imbalance of L_{t}, R_{t}.

For building the pair L_{t}, R_{t} from L_{t-1}, R_{t-1}, we use a process similar to the CK algorithm. We perform duels between disjoint pairs of vertices from $V-\left(L_{t-1} \cup R_{t-1}\right)$: For each pair v, w we compute the expressions $d_{L_{t-1}}(v)-d_{R_{t-1}}(v)$ and $d_{L_{t-1}}(w)-$ $d_{R_{t-1}}(w)$. The vertex whose expression is larger is added to L_{t}, and the other vertex is added to R_{t}. Our algorithm and its analysis are similar to the CK algorithm, but there are several important differences:

- As described above, the analysis of the CK algorithm involves only l_{1}, while our analysis is for all the l_{i}-s (in our algorithm, the l_{i}-s are the L_{t}, R_{t}-imbalances for the current pair L_{t}, R_{t}).
- In the CK algorithm, the outcome of a duel depends on the outcome of all previous duels. Due to the strong dependency between the duels, the analysis of the CK algorithm uses bounds on biased random walk. In our algorithm, the duels that are performed when building L_{t} and R_{t} depend only on the outcome of the duels that were performed when building L_{t-1} and R_{t-1}. Due to this limited dependency, we do not need to use random walks in our analysis, and we are able to give tighter bounds on behavior of the $l_{i}-\mathrm{s}$.
- In our algorithm, the behavior of the l_{i}-s goes a phase transition when t increases: For small t, the l_{i}-s behave "nicely", that is $l_{2} \leq \frac{1}{10} l_{1}$. However, for large t, the behavior changes, and in particular l_{2} might be very close to l_{1}. We therefore need to stop the imbalance amplification stage at the correct step. In contrast, the CK algorithm does not require stopping at a precise step.
- Since in our algorithm we have a large gap between l_{1} and l_{2}, we can use a modified splitting step: Instead of finding the maximum gap in the sorted $d_{L}(\cdot)$ values, we find the first gap which is large enough. The result is that w.h.p. the set L^{\prime} will contain only one cluster $\left(V_{1}\right)$.

We note that the algorithms presented here might not be directly applicable in reallife applications since our analysis holds only for large n, and since real life data might not behave like the random cluster graph model. However, the ideas we use may lead to improved heuristic algorithms.

The rest of this paper is organized as follows: Section 2 contains notation and estimates on the sum of independent random variables. Section 3 and Section 4 contain the basic ideas for the algorithms. The algorithm for the case of almost equal sized clusters is given in Section 5, and the algorithm for the general case is given in Section 6. We provide at the end of the paper a list of the main symbols used in the paper and their meaning.

2 Preliminaries

For a graph $G=(V, E)$ and a vertex $v \in V$, we denote by $N(v)$ the set of neighbors of v. We use $d(v)$ to denote the degree of a vertex v, namely $d(v)=|N(v)|$. For a vertex v and a set S of vertices, denote $d_{S}(v)=|N(v) \cap S|$. In particular, for $u \neq v, d_{\{u\}}(v)$ is equal to 1 if $(u, v) \in E$ and 0 otherwise. For a set of vertices S, let G_{S} denote the subgraph of G induced by S. When we need to distinguish between several graphs, we will use n_{G} to denote the number of vertices in the graph G, and we will do the same for other parameters of G.

For proving the correctness of our algorithms we need the following known results which give estimates on the sum of independent random variables.

Theorem 2.1 (Esseen's Inequality). Let X_{1}, \ldots, X_{n} be independent random variables such that $E\left[\left|X_{i}\right|^{3}\right]<\infty$ for $i=1, \ldots, n$. Let $X=\sum_{i=1}^{n} X_{i}, B_{n}=\sum_{i=1}^{n} E\left[X_{i}^{2}\right]$, and $L_{n}=B_{n}^{-3 / 2} \sum_{i=1}^{n} E\left[\left|X_{i}-E\left[X_{i}\right]\right|^{3}\right]$. Then $\left|P[X>0]-\Phi\left(E[X] / \sqrt{B_{n}}\right)\right| \leq$ $A L_{n}$, where A is an absolute constant and $\Phi(x)$ denotes the normal $(0,1)$ cumulative distribution function.

For a proof of Esseen's inequality see [12, p. 111]. Esseen's inequality holds for $A=\frac{4}{5}$ [13].

Esseen's inequality gives an estimate on the distribution of a sum of independent random variables. A stronger estimate on the tail of this distribution and other distributions is given by the following theorem of McDiarmid [10] (this theorem generalizes previous results by Hoeffding [7] and others).
Theorem 2.2. Let X_{1}, \ldots, X_{n} be random variables, with $0 \leq X_{i} \leq 1$ for all i, and let $Y_{i}=\sum_{j=1}^{i} X_{j}$. If for all $i \geq 2, E\left[X_{i} \mid Y_{i-1}=x\right]$ is a non-increasing function of x, then $P\left[Y_{n}-E\left[Y_{n}\right] \geq a\right] \leq L\left(n, E\left[Y_{n}\right], a\right)$ for every $a \leq n-E\left[Y_{n}\right]$, where $L(n, \mu, a)=\left(\frac{\mu}{\mu+a}\right)^{\mu+a}\left(\frac{n-\mu}{n-\mu-a}\right)^{n-\mu-a}$.
We shall use Theorem 2.2 on two types of distributions: sum of independent random variables distribution and the hypergeometric distribution (see [10]). Using standard bounds on $L(n, \mu, a)$ we obtain the following corollaries:

Corollary 2.3. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables, and let $X=\sum_{i=1}^{n} X_{i}$. If $E[X] \leq y$ then $P[|X-E[X]|>a] \leq 2 e^{-a^{2} / 3 y}$ for every $0 \leq a \leq y$.

Corollary 2.4. Let A be a set with n elements, and B be a subset of A with k elements. Let S be a random subset of A of size s. If $\frac{k}{n} s \leq y$ then $P\left[\left.|B \cap S|-\frac{k}{n} s \right\rvert\,>a\right] \leq$ $2 e^{-a^{2} / 3 y}$ for every $0 \leq a \leq y$.
In the next sections, we use Corollary 2.4 in a slightly different scenario: The set S is chosen randomly from $A-S^{\prime}$, where S^{\prime} is a random set subset of A that is chosen before S is chosen. Choosing $S^{\prime} \subseteq A$ and then $S \subseteq A-S^{\prime}$ is equivalent to choosing $S \subseteq A$ and then $S^{\prime} \subseteq A-S$. Therefore, we can still use Corollary 2.4 on S.

3 The basic algorithm

In this section we give a top-level description of our algorithms.
Let $G=(V, E)$ be a random cluster graph. Denote $A_{i}=\left|V_{i}\right|$ and $a_{i}=\left|V_{i}\right| / n$. We also denote $A_{\max }=\max _{i} A_{i}$ and $a_{\max }=A_{\max } / n$. A set $S \subseteq V$ is called a subcluster if $S \subseteq V_{i}$ for some cluster V_{i}. An induced subgraph G_{S} is called a cluster collection if for all i, either $V_{i} \subseteq S$ or $V_{i} \subseteq V-S$. Suppose we have a procedure $\operatorname{Find}\left(G, S, \Delta_{e}\right)$ that receives a random cluster graph $G=(V, E)$, a set $S \subseteq V$ and a lower bound Δ_{e} on Δ. $\operatorname{Find}\left(G, S, \Delta_{e}\right)$ returns a subcluster of G of $\operatorname{size} \Omega\left(\log n / \Delta_{e}^{2}\right)$ that is contained in S. To compute this subcluster, procedure Find only considers vertices and edges in G_{S}. Now, we use the following algorithm for solving the clustering problem: Repeatedly, find a subcluster S in the input graph, find the cluster that contains S (using a procedure similar to the splitting step of the CK algorithm), and remove the cluster from the graph. We now give a formal description of the algorithm. The input to algorithm Solve is an input graph G, and a lower bound Δ_{e} on the value of Δ. In the following, when we write $t-1$, the subtraction is performed modulo 3 , that is $t-1=3$ when $t=1$.

Solve (G, Δ_{e}):
while True
Randomly partition the vertices of G into equal sized sets W_{1}, W_{2}, and W_{3}. $S_{0} \leftarrow \operatorname{Find}\left(G, W_{3}, \Delta_{e}\right)$.
Let n be the number of vertices of $G, s=200 \log n / \Delta_{e}^{2}$ and $D=4 \sqrt{3} \sqrt{s \log n}$.
For $t=1,2,3$ do
If $t=1$ then let $S^{\prime}{ }_{t-1}$ be a random subset of S of size s. else let $S^{\prime}{ }_{t-1}$ be a random subset of S_{t-1} of size s.
Let $v_{1}^{t}, \ldots, v_{n / 3}^{t}$ be an ordering of W_{t} such that $d_{S^{\prime} t-1}\left(v_{1}^{t}\right) \geq d_{S^{\prime} t-1}\left(v_{2}^{t}\right) \geq$ $\cdots \geq d_{S^{\prime} t-1}\left(v_{n / 3}^{t}\right)$.
If $\max _{j}\left\{d_{S^{\prime} t-1}\left(v_{j}^{t}\right)-d_{S^{\prime} t-1}\left(v_{j+1}^{t}\right)\right\} \leq D$ then output V and stop.
Let j be the index such that $d_{S^{\prime} t-1}\left(v_{j}^{t}\right)-d_{S^{\prime} t-1}\left(v_{j+1}^{t}\right)$ is maximum.
Let $S_{t}=\left\{v_{1}^{t}, \ldots, v_{j}^{t}\right\}$.
If $\left|S_{t}\right|<s$ then stop.
Output $S_{1} \cup S_{2} \cup S_{3}$ and delete the vertices in $S_{1} \cup S_{2} \cup S_{3}$ from G.
See also Figure 1. For simplicity, we omit floors and ceilings from the description of the algorithm and its proof.

Note that the partition of the graph into three parts is done in order to avoid dependencies. This partition guarantees that on step 8 of the algorithm when $t=1$,

Figure 1: The sets created by algorithm Solve. The edges represented are counted by the algorithm. For example, the set S_{1} is built by looking at the edges between W_{1} and $S_{3}^{\prime \prime}$.
for every $u \in S_{3}^{\prime}$ and $v \in W_{1}$, the existence of an edge between u and v is independent of the choice of the set S_{3}^{\prime}. To see this, suppose that the edges of the graph are not chosen before the algorithm begins, but instead, the existence of an edge is determined randomly when the algorithm first checks the existence of that edge. Since procedure Find only considers edges with both endpoints in W_{3}, the existence of the edges between W_{3} and W_{1} has not been determined when the algorithm enters step 8 , so for each $u \in W_{3}$ and $v \in W_{1}$, the event that there is an edge between u and v is independent of the choice of S_{3}^{\prime}. In fact, this would remain true, even if the set S_{3}^{\prime} is chosen by an adversary that can only look at edges in $G_{W_{3}}$. We note that it is suffices to partition the input graph G into two parts. However, we chose to use three parts to simplify the presentation.

The above principle will be used in other parts of our algorithms: We say that a pair of vertices (u, v) is considered in some step of the algorithm if in that step, the existence of an edge (u, v) is checked by the algorithm (for example, (u, v) is considered when the value of $d_{S}(u)$ is computed for some set S that contains v). A main design principle in our algorithms is to try to consider each pair (u, v) only once during the run of the algorithm.

Unfortunately, we cannot meet the goal above: During algorithm Solve, a pair (u, v) is considered only once in each iteration of the algorithm, but can be considered several times in different iterations. Thus, we need to change our goal of considering each pair only once. We assume that procedure Find consists of two stages. The first stage determines the cluster V_{i} from which the procedure will return a subcluster, and the second stage finds a subcluster of V_{i}. We say that a pair of vertices (u, v) is important if it is considered during the first stage of some call to procedure Find. We will design our algorithms so they will have the following property:

Property 1. Each important pair is considered only once during the entire run of the algorithm.

This property suffices for avoiding dependencies between the iterations of algorithm Solve as the remaining graph G in the i-th iteration of the algorithm depends only on the important pairs of the first $i-1$ calls to procedure Find (assuming that the first $i-1$ iterations successfully found $i-1$ clusters of the graph). In other
words, the unimportant pairs that were considered during the first $i-1$ iterations (in the second stage of procedure Find or in steps 5-12 of algorithm Solve) have no influence on the i-th iteration, so we can assume for the analysis that there were no unimportant edges in the first $i-1$ iterations.

Let $t(G)$ be an upper bound on the running time of procedure Find on an input graph G. The bounds we will use below have the property that $t\left(G^{\prime}\right) \leq t(G)$ for every every cluster collection G^{\prime} of G (this follows from the fact that $t(G)$ will be a polynomial in $m_{G}, \log n_{G}$, and Δ_{G}^{-1}, and we have that $m_{G^{\prime}} \leq m_{G}, n_{G^{\prime}} \leq n_{G}$, and $\Delta_{G^{\prime}}=\Delta_{G}$). We use this property in the proof of the following lemma.

Lemma 3.1. Suppose that $\operatorname{Find}\left(G, S, \Delta_{e}\right)$ returns a subcluster of size at least $1200 \log n / \Delta_{e}^{2}$ with probability $1-O\left(1 / n^{3}\right)$. If $k \geq \sqrt{n}$ and $\Delta_{e} \leq \Delta$ then algorithm Solve solves the clustering problem with probability $1-O(1 / n)$. The running time of algorithm Solve is $O\left(m t(G)+m n \log n / \Delta_{e}^{2}\right)$ with probability $1-O(1 / n)$.

Proof. The main idea for the proof is that the number of edges between a vertex v and a set $S \subseteq V_{i}$ is a random variable whose distribution depends on whether $v \in V_{i}$. With high probability, the values $d_{S}(v)$ for all $v \in V_{i}$ are significantly larger than the values $d_{S}(v)$ for all $v \notin V_{i}$, so the algorithm correctly separates the vertices of V_{i} from the rest of the vertices.

Consider the first iteration of the algorithm. Assuming that $\operatorname{Find}\left(G, W_{3}, \Delta_{e}\right)$ did not fail, let V_{i} be the cluster for which $S_{0} \subseteq V_{i}$. We shall show that if G consists of one cluster, then with probability $1-O\left(1 / n^{3}\right)$ the algorithm stops at Step 9 , and otherwise, $S_{1} \cup S_{2} \cup S_{3}=V_{i}$ with probability $1-O\left(1 / n^{3}\right)$.

We claim that the first iteration fails only if at least one of the following events happens:

1. $\left|d_{S_{t-1}^{\prime}}^{\prime}(v)-E\left[d_{S_{t-1}^{\prime}}(v)\right]\right|>\frac{1}{2} D$ for some $t \in\{1,2,3\}$ and some vertex $v \in W_{t}$ (assuming that the set S_{t-1}^{\prime} was built by algorithm Solve).
2. $\left|V_{j} \cap W_{t}\right|<\frac{1}{6} A_{j}$ for some j and t.
3. $\operatorname{Find}\left(G, W_{3}, \Delta_{e}\right)$ failed.

We will first bound the probability of these events, and then we will show that if none of these events happens, then the first iteration does not fail.

To bound the probability of the first event, note that $E\left[d_{S_{t-1}^{\prime}}(v)\right] \leq s, 2 \sqrt{3} \sqrt{s \log n} \leq$ s, and the edges between W_{t-1} and W_{t} are independent of the choice of S. Therefore, using Corollary 2.3 we get that for a fixed t and a fixed $v \in W_{t}$, the probability that $\left|d_{S_{t-1}^{\prime}}(v)-E\left[d_{S_{t-1}^{\prime}}(v)\right]\right|>2 \sqrt{3} \sqrt{s \log n}=\frac{1}{2} D$ is $O\left(e^{-\left(2 \sqrt{3} \sqrt{s \log n)^{2} / 3 s}\right.}\right)=O\left(n^{-4}\right)$. Thus, event 1 happens with probability $O\left(n^{-3}\right)$.

For fixed j and t, Corollary 2.4 gives that the probability that $\left|\left|V_{j} \cap W_{t}\right|-\frac{1}{3} A_{j}\right|>$ $\frac{1}{3} A_{j}$ is $O\left(e^{-\left(\frac{1}{3} A_{j}\right) / 3}\right)=O\left(e^{-\frac{1}{9} \sqrt{n}}\right)$. Therefore, event 2 happens with probability $O(3 m$. $\left.e^{-\frac{1}{9} \sqrt{n}}\right)=o\left(n^{-3}\right)$. Finally, event 3 happens with probability $O\left(n^{-3}\right)$.

Now assume that events $1-3$ do not happen, and consider the first iteration of steps 5-12 (namely, $t=1$). For $v \in V_{i}$ we have that $E\left[d_{S_{3}^{\prime}}(v)\right]=s p$, and for $v \notin V_{i}$ we have $E\left[d_{S_{3}^{\prime}}(v)\right]=s r$. Using the assumption that event 1 does not
happen, we have that if G consists of one cluster, then $\left|d_{S_{3}^{\prime}}(v)-d_{S_{3}^{\prime}}\left(v^{\prime}\right)\right| \leq D$ for all $v, v^{\prime} \in W_{1}$, and therefore, algorithm Solve stops at Step 9. Otherwise, for two vertices $v, v^{\prime} \in W_{1}$, if either $v, v^{\prime} \in V_{i}$ or $v, v^{\prime} \notin V_{i}$ then $\left|d_{S_{3}^{\prime}}(v)-d_{S_{3}^{\prime}}\left(v^{\prime}\right)\right| \leq D$, and if $v \in V_{i}$ and $v^{\prime} \notin V_{i}$ then $d_{S_{3}^{\prime}}(v)-d_{S_{3}^{\prime}}\left(v^{\prime}\right) \geq s p-s r-D \geq s \Delta_{e}-D>D$. It follows that algorithm Solve does not stop at Step 9 when $t=1$, and furthermore, $S_{1}=V_{i} \cap W_{1}$. Moreover, since event 2 does not happen, it follows that $\left|V_{i} \cap W_{1}\right| \geq \frac{1}{6} A_{i} \geq \frac{1}{6}\left|S_{0}\right| \geq s$, so the algorithm does not stop at Step 12 when $t=1$. Using the same arguments, $S_{2}=V_{i} \cap W_{2}$ and $S_{3}=V_{i} \cap W_{3}$.

Now, using the same arguments as above, the failure probability in the i-th iteration, assuming the first $i-1$ iterations succeeded, is $O\left(1 / n_{i}^{3}\right)$, where n_{i} is number of vertices in the graph remaining after the first $i-1$ iterations. We have that $n_{i} \geq k \geq \sqrt{n}$, so the failure probability at each iteration is $O\left(1 / n^{3 / 2}\right)$. It follows that the failure probability of the algorithm is $O\left(m / n^{3 / 2}\right)$, and since $m \leq n / k \leq \sqrt{n}$, we obtain that the overall failure probability is $O(1 / n)$.

From the correctness of the algorithm, we have that algorithm Solve performs exactly m iterations with probability $1-O(1 / n)$ (note that if events $1-3$ occur during the run of the algorithm, the set $S_{1} \cup S_{2} \cup S_{3}$ which is removed from the graph may not be a cluster, and therefore the algorithm may perform more than m iterations). The time complexity of a single iteration is $O\left(t(G)+n \log n / \Delta_{e}^{2}\right)$, where the second term is the time for computing the degrees at step 8 (sorting the degrees can be done in $O(n)$ time by bin sorting).

Algorithm Solve requires the knowledge of some lower bound Δ_{e} on Δ. Such bound can be obtained from the bounds on k in Theorems 1.1 and 1.2. For example, if the bound on k in Theorem 1.1 is satisfied, then $\Delta \geq 10^{8} \log n / \sqrt{n}$. To simplify the presentation, we will assume for the next algorithms that Δ and m are known. The case where these parameters are not known can be handled by replacing the terms Δ and m in the algorithms descriptions by Δ_{e} and m_{e}, where Δ_{e} is a lower bound on Δ and m_{e} is an upper bound on m. It is easy to verify that the following proofs remain correct under these replacements. The intuition for this is that when using Δ_{e} and m_{e}, the algorithm builds larger sets, and therefore the error due to "randomness" is smaller.

3.1 Handling large clusters and close edge probabilities

In order to present procedure Find, we will need the following additional requirements on the input graph:
(R1) $k \geq c \sqrt{n} \log ^{\alpha} n / \Delta^{\beta}$ for some constants $\alpha, \beta, c \geq 0$.
(R2) $p, r \in\left[\frac{1}{4}, \frac{3}{4}\right]$.
(R3) $a_{\text {max }}<\frac{2}{3}$ or $m=1$.
Note that if a graph G satisfies (R1) then every cluster collection G^{\prime} of G^{\prime} satisfies (R1) as the size of the smallest cluster in G^{\prime} is greater or equal to the size of the smallest cluster in G.

While requirement of the type (R1) is understandable, we would like to get rid of (R2) and (R3). We will show how to deal with these requirements in the rest of this section. That is, we will show that if we have a procedure Find that works on graphs that satisfy (R1)-(R3), then we can solve the clustering problem on every graph that satisfies (R1).

Let Solve ${ }_{1}$ be a procedure that runs the first iteration of algorithm Solve on its input (namely, Solve $_{1}$ finds one cluster in the input graph). To eliminate (R3) we use a procedure that recursively partitions the input graph into cluster collections until subgraphs that satisfy (R3) are obtained. This is done as follows:

Solve $_{2}(G)$:
Randomly partition the vertices of G into equal sized sets W_{1}, W_{2}, and W_{3}.
Let $s=16000 \log n / \Delta^{2}$ and $D=8 \sqrt{3} \sqrt{s \log n}$.
Randomly choose a set W_{3}^{\prime} of unmarked vertices from W_{3} of size s, and mark all the vertices of W_{3}^{\prime}.
Let $v_{1}, \ldots, v_{n / 3}$ be an ordering of W_{1} such that $d_{W_{3}^{\prime}}\left(v_{1}\right) \geq d_{W_{3}^{\prime}}\left(v_{2}\right) \geq \cdots \geq$ $d_{W_{3}^{\prime}}\left(v_{n / 3}\right)$.
If $\max _{j}\left\{d_{W_{3}^{\prime}}\left(v_{j}\right)-d_{W_{3}^{\prime}}\left(v_{j+1}\right)\right\} \leq D$
$R \leftarrow \operatorname{Solve}_{1}(G)$.
Output R.
If $R=V$ then stop.
else call Solve $_{2}\left(G_{V-R}\right)$.
else
Let j be the first index for which $d_{W_{3}^{\prime}}\left(v_{j}\right)-d_{W_{3}^{\prime}}\left(v_{j+1}\right)>D$.
Let $S_{1}=\left\{v_{1}, \ldots, v_{j}\right\}$ and $d_{0}=d_{W_{3}^{\prime}}\left(v_{j}\right)$.
For $t=2,3$ do
Randomly choose a set W_{t-1}^{\prime} of unmarked vertices from W_{t-1} of size s, and mark all the vertices of W_{t-1}^{\prime}.
Let $S_{t}=\left\{v \in W_{t} \mid d_{W_{t-1}^{\prime}}(v) \geq d_{0}-D / 2\right\}$.
$R \leftarrow S_{1} \cup S_{2} \cup S_{3}$.
Call $\operatorname{Solve}_{2}\left(G_{R}\right)$ and $\operatorname{Solve}_{2}\left(G_{V-R}\right)$.
Note that the marks on the vertices are maintained globally, namely, a vertex that is marked when Solve $_{2}$ is called on a graph G remains marked when Solve $_{2}$ is called on subgraphs of G. In order to avoid dependencies, we can make sure that the vertices that are chosen by Solve_{2} in steps 3 and 14 will not be chosen in other steps of the algorithm, and therefore every pairs of vertices that is considered by Solve $_{2}$ in steps 4 and 15 is considered only once during the entire algorithm.

Lemma 3.2. If procedure Find returns with probability $1-O\left(1 / n^{3}\right)$ a subcluster of size at least $1200 \log n / \Delta^{2}$ on graphs that satisfy (R1)-(R3), then with probability $1-O(1 / n)$, algorithm Solve $_{2}$ solves the clustering problem on graphs that satisfy (R1) and (R2). The running time of algorithm Solve $_{2}$ is $O\left(m t(G)+m n \log n / \Delta^{2}\right)$ with probability $1-O(1 / n)$.

Proof. The lemma will be proved using the fact that the number of edges between a vertex v and a random set of vertices T is a random variable, whose distribution depends on the size of the cluster V_{i} that contains v. In particular, if V_{i} is a cluster
of size at least $\frac{2}{3} n$, then w.h.p., the vertices of V_{i} will have more edges to T than vertices in $V-V_{i}$, and this allows the algorithm to split the graph G into two cluster collections, $G_{V_{i}}$ and $G_{V-V_{i}}$, in steps 11-17. The algorithm might execute steps 11-17 even if $a_{\max }<\frac{2}{3}$. Therefore, we need to show that in that case, G_{R} and G_{V-R} are cluster collections.

The following events may cause algorithm Solve $_{2}$ to fail during the first invocation of the algorithm:

1. $\left|d_{W_{t-1}^{\prime}}(v)-E\left[d_{W_{t-1}^{\prime}}(v)\right]\right|>\frac{1}{4} D$ for some $t \in\{1,2,3\}$ and some vertex $v \in W_{t}$, (as before, $t-1$ is computed modulo 3).
2. $\left|\left|V_{i} \cap S\right|-a_{i} s\right|>\frac{1}{2} D$ for some i.
3. Solve $_{1}(G)$ failed (assuming step 6 is executed).

We claim that events $1-3$ happen with probability $O\left(n^{-3}\right)$: For event 1 this is true due to Corollary 2.3. For event 2, this follows from Corollary 2.4. Finally, the proof of Lemma 3.1 gives that probability that event 3 happens is $O\left(n^{-3}\right)$, assuming that (R3) is satisfied.

Now, assume that events 1 and 2 do not happen. We first show that (R3) is satisfied if step 6 is executed. To show this, we will show that if (R3) is not satisfied, then the condition in step 5 is not satisfied. Suppose that (R3) is not satisfied, namely $a_{i} \geq 2 / 3$ for some cluster V_{i}. Denote $A_{j}^{\prime}=\left|V_{j} \cap W_{3}^{\prime}\right|$. For $v \in V_{j} \cap W_{1}$ we have that $E\left[d_{W_{3}^{\prime}}(v) \mid A_{j}^{\prime}\right]=A_{j}^{\prime} p+\left(s-A_{j}^{\prime}\right) r=s r+A_{j}^{\prime} \Delta$. Therefore, for $v \in V_{i} \cap W_{1}$ and $v^{\prime} \in V_{j} \cap W_{1}($ for $j \neq i)$ we have

$$
\begin{aligned}
d_{W_{3}^{\prime}}(v)-d_{W_{3}^{\prime}}\left(v^{\prime}\right) & >\left(s r+\left(a_{i} s-\frac{1}{2} D\right) \Delta-\frac{1}{2} D\right)-\left(s r+a_{j} s \Delta+\frac{1}{2} D \Delta+\frac{1}{2} D\right) \\
& =\left(a_{i}-a_{j}\right) s \Delta-(1+\Delta) D \geq \frac{1}{3} s \Delta-2 D \geq D
\end{aligned}
$$

Since this is true for all v and v^{\prime}, we obtain that $\min _{v \in V_{i} \cap W_{1}} d_{W_{3}^{\prime}}(v)-\max _{v \in W_{1}-V_{i}} d_{W_{3}^{\prime}}(v)>$ D, so the condition in step 5 is not satisfied. For the rest of the proof, assume that events $1-3$ do not happen.

If the condition in step 5 of the algorithm is satisfied then R is a cluster and G_{V-R} is a cluster collection. We next show that if the condition in step 5 is not satisfied then G_{R} and G_{V-R} are cluster collections. To show this, we will show that $G_{S_{t}}$ is a cluster collection of $G_{W_{t}}$ for $t=1,2,3$, and moreover, the collections $G_{S_{1}}, G_{S_{2}}$, and $G_{S_{3}}$ contain the same clusters, namely $V_{i} \cap W_{1} \subseteq S_{1}$ if and only if $V_{i} \cap W_{2} \subseteq S_{2}$, and if and only if $V_{i} \cap W_{3} \subseteq S_{3}$.

Suppose that the condition in step 5 is not satisfied, namely $\max _{j}\left\{d_{W_{3}^{\prime}}\left(v_{j}\right)-\right.$ $\left.d_{W_{3}^{\prime}}\left(v_{j+1}\right)\right\}>D$. Then, for every cluster V_{i}, the set $V_{i} \cap W_{1}$ is contained in either S_{1} or $W_{1}-S_{1}$ (as for two vertices v and v^{\prime} from the same cluster we have $\mid d_{W_{3}^{\prime}}(v)$ $\left.d_{W_{3}^{\prime}}\left(v^{\prime}\right) \left\lvert\, \leq \frac{1}{2} D\right.\right)$. In other words, $G_{S_{1}}$ is a cluster collection of $G_{W_{1}}$.

For two vertices $v \in W_{1}$ and $v^{\prime} \in W_{2}$ from some cluster V_{i}, we have that $E\left[d_{W_{3}^{\prime}}(v)\right]=E\left[d_{W_{1}^{\prime}}\left(v^{\prime}\right)\right]$. Therefore, $\left|d_{W_{3}^{\prime}}(v)-d_{W_{1}^{\prime}}\left(v^{\prime}\right)\right| \leq \frac{1}{2} D$. Furthermore, if $V_{i} \cap W_{1} \subseteq S_{1}$ then $d_{W_{3}^{\prime}}(v) \geq d_{0}$ and otherwise $d_{W_{3}^{\prime}}(v)<d_{0}-D$. In the former case we have $d_{W_{1}^{\prime}}\left(v^{\prime}\right) \geq d_{0}-\frac{1}{2} D$, and in the latter case $d_{W_{1}^{\prime}}\left(v^{\prime}\right)<d_{0}-\frac{1}{2} D$. We conclude
that $V_{i} \cap W_{2}$ is contained in either S_{2} or $W_{2}-S_{2}$, and $V_{i} \cap W_{2} \subseteq S_{2}$ if and only if $V_{i} \cap W_{1} \subseteq S_{1}$. The same can be shown for $V_{i} \cap W_{3}$. Therefore, G_{R} and G_{V-R} are cluster collections.

Let $G_{1}, \ldots, G_{m^{\prime}}$ denote the graphs on which procedure Solve $_{1}$ is called during the run of $\operatorname{Solve}_{2}(G)$. From the above, we have that the failure probability of the algorithm is $O\left(\sum_{i=1}^{m^{\prime}} n_{G_{i}}^{-3}\right)=O\left(m^{\prime} / n^{3 / 2}\right)=O(1 / n)$. We now compute the running time of algorithm Solve $_{2}$. The total number of calls to Solve $_{2}$ is at most $2 m$ (there are at most m calls to Solve_{2} in which the condition in step 5 is satisfied, and at most m calls in which the condition is not satisfied). Therefore, the total time not including the calls to Solve ${ }_{1}$ is $O(m \cdot s n)=O\left(m n \log n / \Delta^{2}\right)$. The total time of the calls to Solve ${ }_{1}$ is $O\left(\sum_{i=1}^{m^{\prime}}\left(t\left(G_{i}\right)+n_{G_{i}} \log n_{G_{i}} / \Delta^{2}\right)\right)=O\left(m t(G)+m n \log n / \Delta^{2}\right)$.

To eliminate (R2), we transform the input graph to a graph that always satisfies (R2) using the following algorithm:

$$
\operatorname{Solve}_{3}(G):
$$

1: Build a graph G^{\prime} on the vertex set of G in the following way: For every pair of vertices u and v, add the edge (u, v) to G^{\prime} with probability $\frac{3}{4}$ if (u, v) is an edge in G, and with probability $\frac{1}{4}$ otherwise.
2: Call $\mathrm{Solve}_{2}\left(G^{\prime}\right)$.
Lemma 3.3. If procedure Find returns with probability $1-O\left(1 / n^{3}\right)$ a subcluster of size at least $1200 \log n / \Delta^{2}$ on graphs that satisfy (R1)-(R3) (where (R1) is satisfied with constants α, β, and c), then with probability $1-O(1 / n)$, algorithm Solve ${ }_{3}$ solves the clustering problem on in input graphs that satisfy (R1) (with constants α, β, and $\left.2^{\beta} \cdot c\right)$. The running time of Solve $_{3}$ is $O\left(m t\left(G^{\prime}\right)+m n \log n / \Delta^{2}\right)$ with probability $1-O(1 / n)$.

Proof. Clearly, G^{\prime} is a random cluster graph on the clusters V_{1}, \ldots, V_{m} with edge probabilities $p_{G^{\prime}}=\frac{3}{4} p_{G}+\frac{1}{4}\left(1-p_{G}\right)=\frac{1}{2} p_{G}+\frac{1}{4}$ and $r_{G^{\prime}}=\frac{1}{2} r_{G}+\frac{1}{4}$. Moreover, G^{\prime} satisfies (R1) (as $\Delta_{G^{\prime}}=\frac{1}{2} \Delta_{G}$) and (R2), so by Lemma 3.2, algorithm $\operatorname{Solve}_{3}(G)$ solves the clustering problem with probability $1-O(1 / n)$.

4 The partition procedure

In the previous section, we presented the basic structure of our algorithms. We still need to show how to build procedure Find, namely, how to find a subcluster of size at least $1200 \log n / \Delta^{2}$. In this section we give the main ideas, and we will use these ideas in sections 5 and 6 to explicitly build procedure Find.

One of the key elements we use is the notion of imbalance which was also used in [8] and [4]. We use here a slightly different definition for imbalance than the one used in these papers (and in the introduction): For two disjoint sets L, R of vertices, with $|L|=|R|$, we define the L, R-imbalance of V_{i}, denoted $\mathrm{I}\left(V_{i}, L, R\right)$, by

$$
\mathrm{I}\left(V_{i}, L, R\right)=\frac{\left|V_{i} \cap L\right|-\left|V_{i} \cap R\right|}{|L|} .
$$

The imbalance of L, R is the maximum value amongst $\mathrm{I}\left(V_{1}, L, R\right), \ldots, \mathrm{I}\left(V_{m}, L, R\right)$, and the secondary imbalance of L, R is the second largest value (the secondary imbalance is equal to the imbalance if the maximum value appears more than once). A pair of sets L, R for which the secondary imbalance of L, R is at most δ times the imbalance of L, R will be called an δ-unbalanced pair. We will show later that given a δ-unbalanced pair (for some constant $\delta<1$) whose imbalance is large enough, it is possible to generate a subcluster. Therefore, our goal is to generate such a pair.

Let T be a random subset of V and let $f: T \rightarrow \mathbb{N}$ be some function that depends on the edges of G. Since G is a random graph, we have that each $f(v)$ is a random variable. The function f is called a cluster function if $\{f(v) \mid v \in T\}$ are independent random variables, and for every $u, v \in T$ that belong to the same cluster, $f(u)$ and $f(v)$ have the same distribution. For example, if u is some vertex of G and T is a random subset of $V-\{u\}$ then $f(v)=d_{\{u\}}(v)$ is a cluster function.

If the values of f for vertices of one cluster are always greater than the values of f for the vertices of the other clusters, then we can easily generate a subcluster by picking vertices with largest f-value. However, we are able to give such a cluster function f only when Δ is large. For smaller value of Δ, we are able to give a cluster function f with the following property: The expectation of $f(v)$ for vertices of one cluster, say V_{1}, is larger than the expectation of $f(v)$ for vertices of the other clusters, and the variance of $f(v)$ is "small" for all v. We can use this property of f to build an unbalanced pair L, R by performing a series of duels between random pairs of vertices of the graph. In a duel between the vertices v and w, we compute the values $f(v)$ and $f(w)$ and the winner is the vertex whose f-value is larger. If f has the property described above then a vertex from V_{1} is likely to win in a duel against a vertex from $V-V_{1}$, so by taking L to be the set of winners and R to be the set of losers, we obtain that the L, R-imbalance of V_{1} is large.

Formally, we define procedure Partition as follows (here T is a set of vertices):
Partition (G, T, f) :
1: Begin with two empty sets L and R. Randomly partition the vertices of T into pairs. For each pair v, w, place the vertex with larger f-value into L and the other into R, breaking ties randomly.
2: Return L, R.

We note that procedure Partition is very similar to the algorithm of Condon and Karp [4], and the cluster function of Lemma 4.3 is also used in [4].

We now analyze procedure Partition. We begin with some definitions. Let $p_{i j}^{>}(f)=P\left[f(v)>f(w) \mid v \in V_{i} \cap T, w \in V_{j} \cap T\right]$ (we will write $p_{i j}^{>}$if f is clear from the context), and let $p_{\overline{i j}}^{\overline{ }}(f)$ and $p_{i j}^{<}(f)$ be the conditional probabilities that $f(v)=$ $f(w)$ and $f(v)<f(w)$, respectively. Let $c_{i}(f)=2 a_{i} \sum_{j \neq i} a_{j}\left(p_{i j}^{>}(f)-p_{i j}^{く}(f)\right)$. Suppose that L and R are the output of a call to $\operatorname{Partition}(G, T, f)$ and denote $b_{i}=\mathrm{I}\left(V_{i}, L, R\right)$.

Before we analyze procedure Partition, consider a process similar to procedure Partition which perform duels between pairs of vertices that are randomly chosen from all vertices of the graph, with repetitions (we also assume that $f(v)$ is defined for all vertices of the graph). Let L^{\prime} (resp., R^{\prime}) be the set of winners (resp., losers), and let $b_{i}^{\prime}=\mathrm{I}\left(V_{i}, L^{\prime}, R^{\prime}\right)$. It is easy to verify that $E\left[b_{i}^{\prime}\right]=c_{i}(f)$. Moreover, Corollary 2.3
gives that $\left|b_{i}^{\prime}-E\left[b_{i}^{\prime}\right]\right|=O\left(\sqrt{a_{i} l^{-1} \cdot \log n}\right)$ with high probability. This analysis uses the fact that the vertices chosen by the process are independent. However, in procedure Partition, there are dependencies between the vertices of the different pairs. We will show below that these dependencies do not change the picture by much. That is, b_{i} behaves similarly to b_{i}^{\prime}.

Theorem 4.1. Let T is a random subset of V of size $2 l$. If $k \geq 1200 \log n, l \geq$ $9 \log n / a_{\max }$ and $l \leq n / 4$, then with probability $1-O\left(1 / n^{3.5}\right),\left|b_{i}-c_{i}(f)\right| \leq 72 a_{\max }$. $\sqrt{m l^{-1} \log n}$ for all i.
Proof. Since T is a random set, the process of choosing T and then randomly partitioning T into pairs is equivalent to the process of selecting vertices $u_{1}, \ldots, u_{2 l}$ from V (one after another) and pairing $u_{2 t-1}$ and $u_{2 t}$ for each t. We denote by I_{i}^{1} (resp., I_{i}^{2}) the number of indices t for which $u_{2 t-1} \in V_{i}, u_{2 t} \notin V_{i}$, and $u_{2 t-1}$ (resp., $\left.u_{2 t}\right)$ is inserted into L. Similarly, we denote by $I_{i}^{3}\left(I_{i}^{4}\right)$ the number of indices t for which $u_{2 t-1} \notin V_{i}, u_{2 t} \in V_{i}$, and $u_{2 t}\left(u_{2 t-1}\right)$ is inserted into L. Clearly, $b_{i}=$ $\left(I_{i}^{1}+I_{i}^{3}-I_{i}^{2}-I_{i}^{4}\right) / l$. We will bound each of the values $I_{i}^{1}, \ldots, I_{i}^{4}$ to obtain a bound on b_{i}. We will now give an estimate on I_{i}^{1} for some fixed i. We will bound I_{i}^{1} from above and below with random variables that are sums of independent random variables.

Denote $a_{j}^{r}=P\left[u_{r} \in V_{j}\right]$ and $S=\left\{u_{1}, \ldots, u_{r-1}\right\}$. Clearly, $a_{j}^{r}=\left|V_{j}-S\right| /|V-S|$. Applying Corollary 2.4 (with $y=A_{j}$), we have with probability $1-O\left(m n \cdot n^{-6}\right)=$ $1-O\left(1 / n^{4}\right)$ that $\left|\left|V_{j} \cap S\right|-(r-1) a_{j}\right| \leq \sqrt{3 \cdot 6 \cdot A_{j} \log n}$ for all j and r (we use the fact that $A_{j} \geq k \geq 1200 \log n$ and thus $\sqrt{18 A_{j} \log n} \leq A_{j}$). For the rest of the proof assume that these inequalities hold for all j and r. Therefore,

$$
\begin{aligned}
\left|a_{j}-a_{j}^{r}\right| & =\left|\frac{\left|V_{j}\right|}{n}-\frac{\left|V_{j}-S\right|}{n-(r-1)}\right|=\left|\frac{\left|V_{j}\right|-\left|V_{j}-S\right|}{n-(r-1)}-\frac{(r-1)\left|V_{j}\right|}{n(n-(r-1))}\right| \\
& =\frac{1}{n-(r-1)}| | V_{j} \cap S\left|-(r-1) a_{j}\right| \leq \frac{2}{n} \sqrt{18 A_{j} \log n}=6 \sqrt{2} \cdot \sqrt{a_{j} n^{-1} \log n}
\end{aligned}
$$

for all j and r.
Let X_{t} be an indicator variable for the event that $u_{2 t-1} \in V_{i}, u_{2 t} \notin V_{i}$, and $u_{2 t-1}$ is inserted into L. Let $p_{j}=p_{i j}^{>}(f)+\frac{1}{2} p_{i j}^{=}(f)$. Then,

$$
\begin{aligned}
P\left[X_{t}=1\right] & =a_{i}^{2 t-1} \sum_{j \neq i} a_{j}^{2 t} p_{j} \\
& =a_{i} \sum_{j \neq i} a_{j} p_{j}+a_{i} \sum_{j \neq i}\left(a_{j}^{2 t}-a_{j}\right) p_{j}+\left(a_{i}^{2 t-1}-a_{i}\right) \sum_{j \neq i} a_{j}^{2 t} p_{j} \\
& \leq a_{i} \sum_{j \neq i} a_{j} p_{j}+a_{i} \sum_{j=1}^{m}\left|a_{j}^{2 t}-a_{j}\right|+\left|a_{i}^{2 t-1}-a_{i}\right| \\
& \leq a_{i} \sum_{j \neq i} a_{j} p_{j}+a_{i} \sum_{j=1}^{m} 6 \sqrt{2} \sqrt{a_{j} n^{-1} \log n}+6 \sqrt{2} \sqrt{a_{i} n^{-1} \log n} .
\end{aligned}
$$

Since $\sum_{j=1}^{m} a_{j}=1$, we have that the maximum value of $\sum_{j=1}^{m} \sqrt{a_{j}}$ is obtained when $a_{1}=a_{2}=\cdots=a_{m}=1 / m$, so $\sum_{j=1}^{m} \sqrt{a_{j}} \leq \sqrt{m}$. Therefore,

$$
P\left[X_{t}=1\right] \leq a_{i} \sum_{j \neq i} a_{j} p_{j}+6 \sqrt{2} \sqrt{a_{i} n^{-1} \log n}\left(1+\sqrt{a_{i} m}\right) .
$$

Define the quantity in the last equation by θ. As $P\left[X_{t}=1\right] \leq \theta$ for all t, we have that the random variable $I_{i}^{1}=\sum_{t=1}^{l} X_{t}$ is dominated by a random variable Y, where Y has binomial distribution with l experiments and success probability $\min (1, \theta)$. Since $k \geq 1200 \log n$, we have that $\sqrt{a_{i} n^{-1} \log n}=a_{i} \sqrt{\left(a_{i} n\right)^{-1} \log n} \leq$ $a_{i} \sqrt{k^{-1} \log n} \leq \sqrt{1 / 1200} \cdot a_{i}$ and $\sqrt{a_{i} n^{-1} \log n} \cdot \sqrt{a_{i} m} \leq a_{i} \sqrt{(n / k) n^{-1} \log n} \leq$ $\sqrt{1 / 1200} \cdot a_{i}$. Therefore, $\theta \leq(1+6 \sqrt{2} \cdot 2 \sqrt{1 / 1200}) a_{i}<\frac{3}{2} a_{\max }$, so $E[Y] \leq l \theta \leq$ $\frac{3}{2} a_{\max } l$. Thus, by Corollary 2.3, we have that the probability that $Y>E[Y]+$ $\sqrt{3 \cdot \frac{9}{2} \cdot \frac{3}{2} a_{\max } l \cdot \log n}$ is $O\left(1 / n^{4.5}\right)$. It follows that with probability $1-O\left(\mathrm{~m} / n^{4.5}\right)=$ $1-O\left(1 / n^{3.5}\right)$, for all i,

$$
\begin{aligned}
I_{i}^{1} & \leq l a_{i} \sum_{j \neq i} a_{j} p_{j}+l \cdot 6 \sqrt{2} \sqrt{a_{i} n^{-1} \log n}\left(1+\sqrt{a_{i} m}\right)+\frac{9}{2} \sqrt{a_{\max } l \cdot \log n} \\
& \leq l a_{i} \sum_{j \neq i} a_{j} p_{j}+3 \sqrt{2} \sqrt{a_{i} l \cdot \log n}\left(1+\sqrt{a_{i} m}\right)+\frac{9}{2} \sqrt{a_{\max } l \cdot \log n} \\
& \leq l a_{i} \sum_{j \neq i} a_{j} p_{j}+9 \sqrt{a_{\max } l \cdot \log n}\left(1+\sqrt{a_{\max } m}\right) \\
& \leq l a_{i} \sum_{j \neq i} a_{j} p_{j}+18 a_{\max } \sqrt{m l \cdot \log n} .
\end{aligned}
$$

Similar arguments give a lower bound on I_{i}^{1}, and lower and upper bounds on I_{i}^{2}, I_{i}^{3}, and I_{i}^{4}, namely with probability $1-O\left(1 / n^{3.5}\right)$,

$$
\begin{array}{ll}
\left|I_{i}^{s}-l a_{i} \sum_{j \neq i} a_{j}\left(p_{i j}^{>}+\frac{1}{2} p_{i \overline{\bar{j}}}\right)\right| \leq 18 a_{\max } \sqrt{m l \log n} & \text { for } s=1,3 \\
\left|I_{i}^{s}-l a_{i} \sum_{j \neq i} a_{j}\left(p_{i j}^{<}+\frac{1}{2} p_{i j}^{\overline{=}}\right)\right| \leq 18 a_{\max } \sqrt{m l \log n} & \text { for } s=2,4
\end{array}
$$

Combining the above inequalities gives the desired bound on b_{i}.
In the next sections, we use procedure Partition in a slightly different scenario than in Theorem 4.1: We have a random set S of vertices, and then the set T is randomly chosen from $V-S$. It is easy to verify that the result of Theorem 4.1 is also valid in that scenario.

We now give two cluster functions, which will be used later in our algorithms. The first function, given in Lemma 4.2, will be used in the initialization stage (see Section 1.2) to build the initial sets L_{0}, R_{0}. The second function, in Lemma 4.3, will be used to in the imbalance amplification stage to build the pair L_{t}, R_{t} from L_{t-1}, R_{t-1}.

Our cluster functions, defined on a set T, will depend on the edges between $v \in T$ and some set of vertices $T^{\prime} \subseteq V-T$.

Lemma 4.2. Let u be a vertex from V_{1}, and let T be a random subset of $V-\{u\}$. Define $f(v)=d_{\{u\}}(v)$ for all $v \in T$. Then $c_{1}(f)=2 a_{1}\left(1-a_{1}\right) \Delta$ and $c_{i}(f)=-2 a_{1} a_{i} \Delta$ for all $i>1$.

Proof. Clearly,

$$
\begin{aligned}
p_{1 j}^{>} & =P\left[f(v)=1, f(w)=0 \mid v \in V_{1} \cap T, w \in V_{j} \cap T\right] \\
& =P\left[(u, v) \in E,(u, w) \notin E \mid v \in V_{1} \cap T, w \in V_{j} \cap T\right]=p(1-r)
\end{aligned}
$$

and $p_{1 j}^{<}=(1-p) r$, so

$$
c_{1}(f)=2 a_{1} \sum_{j \neq i} a_{j}(p(1-r)-(1-p) r)=2 a_{1}\left(1-a_{1}\right) \Delta .
$$

For $i, j>1, p_{i j}^{>}=p_{i j}^{<}=r(1-r), p_{i 1}^{>}=r(1-p)$, and $p_{i 1}^{<}=(1-r) p$. Therefore, $c_{i}(f)=-2 a_{1} a_{i} \Delta$.

In the imbalance amplification stage (see Section 1.2), at each iteration we have a δ-unbalanced pair L^{\prime}, R^{\prime}, and the goal is to build a new δ-unbalanced pair L, R such that the imbalance of L, R is at least twice the imbalance of L^{\prime}, R^{\prime}. To build this pair, we use procedure Partition on a set of vertices T and cluster function f, where T is a random subset of $V-\left(L^{\prime} \cup R^{\prime}\right)$, and $f(v)=d_{L^{\prime}}(v)-d_{R^{\prime}}(v)$ for all $v \in T$. We now give some intuition on how the L, R-imbalances behave.

Denote $b_{i}=\mathrm{I}\left(V_{i}, L^{\prime}, R^{\prime}\right)$. For a pair of vertices $v \in V_{i}$ and $w \in V_{j}$, the probability that v wins in a duel with w depends on the value of $b_{i}-b_{j}$. More precisely, the winning probability of v behaves like the normal cumulative distribution function as a function of $b_{i}-b_{j}$. In particular, if $\left|b_{i}-b_{j}\right|$ is large enough, then the winning probability of v is close to 1 if $b_{i}-b_{j}>0$, and close to 0 if $b_{i}-b_{j}<0$. If $\left|b_{i}-b_{j}\right|$ is small enough, then the winning probability of v is roughly $\frac{1}{2}+\frac{1}{\sqrt{2 \pi}}\left(b_{i}-b_{j}\right)$.

Now, suppose w.l.o.g. that $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$. Since $b_{1}-b_{i}$ is "large" for every $i>2$ (recall that $b_{i} \leq b_{2} \leq \delta b_{1}$ for $\delta<1$), we have that the vertices of V_{1} almost always win when they are in a duel against vertices of the other clusters. Thus, the L, R-imbalance of V_{1} will be large, and V_{1} will be the cluster with the largest L, R-imbalance. However, if $b_{2}-b_{3}$ is also large, then the vertices of V_{2} will almost always win when they are in a duel against vertices of the clusters V_{3}, \ldots, V_{m}. Thus, the L, R-imbalance of V_{2} will also be large, and close to the L, R-imbalance of V_{1}. In other words, the pair L, R will not be δ-unbalanced. In order to avoid this problem, we will make sure that $b_{2}-b_{3}$ is "small" by requiring an upper bound on $b_{1}-b_{m}$. This upper bound causes all the winning probabilities to be approximately $\frac{1}{2}+\frac{1}{\sqrt{2 \pi}}\left(b_{i}-b_{j}\right)$. The following lemma (combined with Theorem 4.1) will show that $\mathrm{I}\left(V_{i}, L, R\right) \approx c a_{i} \cdot b_{i}$ for some constant c that depends on p, r, m, and $|T|$. Thus, in the case of equal sized clusters, when moving from the pair L^{\prime}, R^{\prime} to the pair L, R, the imbalances of the clusters are (approximately) multiplied by the same factor. Since L^{\prime}, R^{\prime} is δ-unbalanced, we have that L, R is $(\delta+\epsilon)$-unbalanced for some small ϵ. Moreover, if $c a_{1} \geq 2$ then the imbalance of L, R is at least twice the imbalance of L^{\prime}, R^{\prime}.

We now formalize the ideas described above. Denote $\Gamma=\max _{i}\left|a_{i}-\frac{1}{m}\right|$.

Lemma 4.3. Let T^{\prime} be a random set of vertices of size $2 l$. Let L^{\prime} and R^{\prime} be two disjoint sets such that $T^{\prime}=L^{\prime} \cup R^{\prime}$ and $\left|L^{\prime}\right|=\left|R^{\prime}\right|$. Let T be a random subset of $V-T^{\prime}$ (of arbitrary size). Define $b_{i}=\mathrm{I}\left(V_{i}, L^{\prime}, R^{\prime}\right)$, and define $f(v)=d_{L^{\prime}}(v)-d_{R^{\prime}}(v)$ for all $v \in T$. Suppose that $p, r \in\left[\frac{1}{4}, \frac{3}{4}\right], l \geq 7 \log n / a_{\max }$, and $\max _{i} b_{i}-\min _{i} b_{i} \leq \alpha / \Delta \sqrt{l}$ where $\alpha \leq 1$. Let

$$
\beta=2 \Gamma+5 \sqrt{a_{\max } l^{-1} \log n}
$$

and

$$
\gamma=\sqrt{\frac{2}{\pi} /\left(\frac{1}{m} p(1-p)+\left(1-\frac{1}{m}\right) r(1-r)\right)} .
$$

Then, with probability $1-O\left(1 / n^{3.5}\right)$,

$$
\left|c_{i}(f)-\gamma \Delta \sqrt{l} a_{i}\left(b_{i}-\sum_{j=1}^{m} a_{j} b_{j}\right)\right| \leq \gamma \Delta \sqrt{l} a_{i}\left(\beta \Delta+\frac{2}{9} \alpha^{2}\right)\left(\max _{j} b_{j}-\min _{j} b_{j}\right)+3 \frac{a_{i}}{\sqrt{l}}
$$

for all i.
Proof. W.l.o.g., we assume that $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$. By Corollary 2.4 (with $\left.y=2 l a_{\max }\right)$, with probability $1-O\left(1 / n^{3.5}\right),\left|A_{j}^{\prime}-2 l a_{j}\right| \leq \sqrt{3 \cdot 4.5 \cdot 2 a_{\max } l \log n}$ for all j (we use the fact that $l \geq 7 \log n / a_{\max }$). We will now assume that $\left|A_{j}^{\prime}-2 l a_{j}\right| \leq$ $\sqrt{27 a_{\max } l \log n}$ for all j, and we will estimate $c_{i}(f)$ for some fixed i.

Recall that $c_{i}(f)=2 a_{i} \sum_{j \neq i} a_{j}\left(p_{i j}^{>}-p_{i j}^{<}\right)$, so we need to estimate $p_{i j}^{>}-p_{i j}^{<}$for all j. Fix some $j \neq i, v \in V_{i} \cap T$, and $w \in V_{j} \cap T$.

We denote $L^{\prime}=\left\{u_{1}, \ldots, u_{l}\right\}$ and $R^{\prime}=\left\{u_{l+1}, \ldots u_{2 l}\right\}$. We have that $f(v)-f(w)=$ $\sum_{s=1}^{4 l} X_{s}$ where $X_{1}, \ldots, X_{4 l}$ are independent random variables with $X_{s}=d_{\left\{u_{s}\right\}}(v)$ for $1 \leq s \leq l, X_{s}=-d_{\left\{u_{s}\right\}}(v)$ for $l+1 \leq s \leq 2 l, X_{s}=-d_{\left\{u_{s-2 l}\right\}}(w)$ for $2 l+1 \leq s \leq 3 l$, and $X_{i}=d_{\left\{u_{s-2 l}\right\}}(w)$ for $3 l+1 \leq s \leq 4 l$. Clearly, $p_{i j}^{>}=P\left[\sum_{s=1}^{4 l} X_{s}>0\right]$. Recall that $\Phi(x)$ denotes the normal $(0,1)$ cumulative distribution function. Applying Theorem 2.1, we get that

$$
\begin{equation*}
\left|p_{i j}^{>}-\Phi\left(E\left[\sum_{s=1}^{4 l} X_{s}\right] / \sqrt{B_{i j}}\right)\right| \leq \frac{4}{5} L_{i j}, \tag{1}
\end{equation*}
$$

where $B_{i j}=\sum_{s=1}^{4 l} \operatorname{Var}\left(X_{s}\right)$ and $L_{i j}=B_{i j}^{-3 / 2} \sum_{s=1}^{4 l} E\left[\left|X_{s}-E\left[X_{s}\right]\right|^{3}\right]$. Similarly,

$$
\begin{equation*}
\left|p_{i j}^{<}-\left(1-\Phi\left(E\left[\sum_{s=1}^{4 l} X_{s}\right] / \sqrt{B_{i j}}\right)\right)\right| \leq \frac{4}{5} L_{i j} . \tag{2}
\end{equation*}
$$

Combining (1) and (2) gives that

$$
\begin{equation*}
p_{i j}^{>}-p_{i j}^{<} \geq 2 \Phi\left(E\left[\sum_{s=1}^{4 l} X_{s}\right] / \sqrt{B_{i j}}\right)-1-\frac{8}{5} L_{i j} . \tag{3}
\end{equation*}
$$

To finish the proof of the lemma, we will simplify (3): We will replace the terms $E\left[\sum_{s=1}^{4 l} X_{s}\right], B_{i j}$, and $L_{i j}$ by other terms, and get rid of the Φ function.

We first compute the exact value of $E\left[\sum_{s=1}^{4 l} X_{s}\right]$. For $s=1, \ldots, m$, denote $A_{s}^{\prime}=\left|V_{s} \cap T^{\prime}\right|$. Let $\mathrm{B}(q)$ denote the Bernoulli distribution with parameter q (i.e., a random variable with $\mathrm{B}(q)$ distribution has a value of 1 with probability q, and value of 0 otherwise). Out of the variables X_{1}, \ldots, X_{l}, there are $\frac{A_{i}^{\prime}+l b_{i}}{2}$ variables with $\mathrm{B}(p)$ distribution, and the rest of the variables have $\mathrm{B}(r)$ distribution. Out of $X_{l+1}, \ldots, X_{2 l}, \frac{A_{i}^{\prime}-l b_{i}}{2}$ variables have $-\mathrm{B}(p)$ distribution, and the rest of the variables have $-\mathrm{B}(r)$ distribution. Similar claims hold for $X_{2 l+1}, \ldots, X_{4 l}$, and therefore,

$$
\begin{align*}
E\left[\sum_{s=1}^{4 l} X_{s}\right]= & p \frac{A_{i}^{\prime}+l b_{i}}{2}+r\left(l-\frac{A_{i}^{\prime}+l b_{i}}{2}\right)-p \frac{A_{i}^{\prime}-l b_{i}}{2}-r\left(l-\frac{A_{i}^{\prime}-l b_{i}}{2}\right) \\
& -p \frac{A_{j}^{\prime}+l b_{j}}{2}-r\left(l-\frac{A_{j}^{\prime}+l b_{j}}{2}\right)+p \frac{A_{j}^{\prime}-l b_{j}}{2}+r\left(l-\frac{A_{j}^{\prime}-l b_{j}}{2}\right) \\
= & p l b_{i}-r l b_{i}-p l b_{j}+r l b_{j}=\Delta l\left(b_{i}-b_{j}\right) \tag{4}
\end{align*}
$$

where the second equality follows by canceling terms, and the last equality follows from the fact that $\Delta=p-r$.

Next, we give estimates on $B_{i j}$ and $L_{i j}$. For a random variable X with distribution $\mathrm{B}(q)$ or $-\mathrm{B}(q)$, $\operatorname{Var}(X)=q(1-q)$. Thus, $B_{i j}=\sum_{s=1}^{4 l} \operatorname{Var}\left(X_{s}\right)=$ $\left(A_{i}^{\prime}+A_{j}^{\prime}\right) p(1-p)+\left(4 l-A_{i}^{\prime}-A_{j}^{\prime}\right) r(1-r)$. Since $p, r \in\left[\frac{1}{4}, \frac{3}{4}\right]$, it follows that $3 / 16 \leq p(1-p), r(1-r) \leq 1 / 4$, so

$$
\begin{equation*}
\frac{3}{4} l \leq B_{i j} \leq l . \tag{5}
\end{equation*}
$$

Similarly, define $h(x)=(1-x)^{3} x+x^{3}(1-x)$, and we have that for a random variable X with distribution $\mathrm{B}(q)$ or $-\mathrm{B}(q), E\left[\left|X_{s}-E\left[X_{s}\right]\right|^{3}\right]=h(q)$. Therefore,

$$
L_{i j}=\frac{1}{B_{i j}^{3 / 2}} \sum_{s=1}^{4 l} E\left[\left|X_{s}-E\left[X_{s}\right]\right|^{3}\right]=\frac{1}{B_{i j}^{3 / 2}}\left(\left(A_{i}^{\prime}+A_{j}^{\prime}\right) h(p)+\left(4 l-A_{i}^{\prime}-A_{j}^{\prime}\right) h(r)\right) .
$$

We have that $h(p) \leq \frac{1}{8}$ and $h(q) \leq \frac{1}{8}$, so

$$
\begin{equation*}
L_{i j} \leq \frac{1}{\left(\frac{3}{4} l\right)^{3 / 2}} \cdot 4 l \cdot \frac{1}{8}=\frac{4}{3 \sqrt{3}} \cdot \frac{1}{\sqrt{l}} . \tag{6}
\end{equation*}
$$

Combining Equations (3), (4), (5) and (6), we obtain that

$$
\begin{equation*}
p_{i j}^{>}-p_{i j}^{<} \geq 2 \Phi\left(\Delta l\left(b_{i}-b_{j}\right) / \sqrt{B_{i j}}\right)-1-\frac{3}{2} / \sqrt{l} . \tag{7}
\end{equation*}
$$

We now wish to get rid of the Φ in Equation (7). We do this by using the fact that $\Phi(x) \approx \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} x$ near 0 . More precisely, for $x \in[0, a]$, where $a \leq 1$, we have $\Phi(x) \geq \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} x-\frac{1}{6 \sqrt{2 \pi}} x^{3} \geq \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} x\left(1-\frac{a^{2}}{6}\right)$. As $0 \leq \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{B_{i j}}} \leq \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{3 l / 4}} \leq \frac{2}{\sqrt{3}} \alpha$, then for $j>i$,

$$
\begin{equation*}
p_{i j}^{>}-p_{i j}^{<} \geq \sqrt{\frac{2}{\pi}} \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{B_{i j}}}\left(1-\frac{2}{9} \alpha^{2}\right)-\frac{3}{2 \sqrt{l}} . \tag{8}
\end{equation*}
$$

Moreover, for $x \in[0,-1], \Phi(x) \geq \frac{1}{2}+\frac{1}{\sqrt{2 \pi}} x$, so for $i<j$,

$$
\begin{equation*}
p_{i j}^{>}-p_{i j}^{<} \geq \sqrt{\frac{2}{\pi}} \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{B_{i j}}}-\frac{3}{2 \sqrt{l}} . \tag{9}
\end{equation*}
$$

Finally, in order to combine the lower bounds on $p_{i j}^{>}-p_{i j}^{<}$into a lower bound on $c_{i}(f)$, we want to replace the term $B_{i j}$ in (8) and (9) by a common term B that does not depend on i or j. In order to perform this replacement, we define $B=4 l \frac{1}{m} p(1-p)+4 l\left(1-\frac{1}{m}\right) r(1-r)$, and need to show that B is close to $B_{i j}$ for all j (more precisely, we need to bound $\left|1 / \sqrt{B_{i j}}-1 / \sqrt{B}\right|$).

For every $s,\left|A_{s}^{\prime}-2 l a_{s}\right| \leq \sqrt{27 a_{\max } l \log n}$ so $\left|A_{s}^{\prime}-\frac{2 l}{m}\right| \leq\left|A_{s}^{\prime}-2 l a_{s}\right|+2 l\left|a_{s}-\frac{1}{m}\right| \leq$ $\sqrt{27 a_{\max } l \log n}+2 \Gamma l<\frac{9}{8} \beta l$. Therefore,
$\left|B_{i j}-B\right|=\left|\left(A_{i}^{\prime}+A_{j}^{\prime}-\frac{4 l}{m}\right)(p(1-p)-r(1-r))\right| \leq 2 \cdot \frac{9}{8} \beta l \cdot \Delta|1-p-r| \leq \frac{9}{8} \beta \Delta l$,
where the last inequality follows from the fact that $p, r \in\left[\frac{1}{4}, \frac{3}{4}\right]$. Since $B, B_{i j} \geq \frac{3}{4} l$, we conclude that $\left|B_{i j}-B\right| \leq \frac{9}{8} \beta \Delta \cdot \frac{4}{3} B_{i j}=\frac{3}{2} \beta \Delta B_{i j}$ and $\left|B_{i j}-B\right| \leq \frac{3}{2} \beta \Delta B$. Thus, $\frac{B}{B_{i j}} \leq 1+\frac{3}{2} \beta \Delta$ and $\frac{B_{i j}}{B} \leq 1+\frac{3}{2} \beta \Delta$. Using the fact that $\sqrt{1+x} \leq 1+\frac{1}{2} x$ for all x, we obtain that if $B \geq B_{i j}$ then

$$
\left|\frac{1}{\sqrt{B_{i j}}}-\frac{1}{\sqrt{B}}\right|=\frac{1}{\sqrt{B}}\left(\sqrt{\frac{B}{B_{i j}}}-1\right) \leq \frac{1}{\sqrt{B}}\left(\sqrt{1+\frac{3}{2} \beta \Delta}-1\right) \leq \frac{3 \beta \Delta}{4 \sqrt{B}}<\frac{\beta \Delta}{\sqrt{B}},
$$

and if $B<B_{i j}$ then

$$
\left|\frac{1}{\sqrt{B_{i j}}}-\frac{1}{\sqrt{B}}\right| \leq \frac{1}{\sqrt{B_{i j}}}\left(\sqrt{1+\frac{3}{2} \beta \Delta}-1\right) \leq \frac{\beta \Delta}{\sqrt{B_{i j}}} \leq \frac{\beta \Delta}{\sqrt{B}} .
$$

Combining the two inequalities above with Equations (8) and (9), we obtain that for $j>i$,

$$
\begin{aligned}
p_{i j}^{>}-p_{i j}^{<} & \geq \sqrt{\frac{2}{\pi}} \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{B}}(1-\beta \Delta)\left(1-\frac{2}{9} \alpha^{2}\right)-\frac{3}{2 \sqrt{l}} \\
& \geq \sqrt{\frac{2}{\pi}} \frac{\Delta l\left(b_{i}-b_{j}\right)}{\sqrt{B}}\left(1-\beta \Delta-\frac{2}{9} \alpha^{2}\right)-\frac{3}{2 \sqrt{l}} \\
& =\frac{\gamma}{2} \Delta \sqrt{l}\left(b_{i}-b_{j}\right)\left(1-\beta \Delta-\frac{2}{9} \alpha^{2}\right)-\frac{3}{2 \sqrt{l}},
\end{aligned}
$$

and for $i<j$,

$$
p_{i j}^{>}-p_{i j}^{<} \geq \frac{\gamma}{2} \Delta \sqrt{l}\left(b_{i}-b_{j}\right)(1+\beta \Delta)-\frac{3}{2 \sqrt{l}} .
$$

We now use the lower bounds on $p_{i j}^{>}-p_{i j}^{<}$to obtain a lower bound on $c_{i}(f)$:

$$
\begin{aligned}
& c_{i}(f) \geq 2 a_{i}(\sum_{j=1}^{i-1} a_{j} \frac{\gamma}{2} \Delta \sqrt{l}\left(b_{i}-b_{j}\right)(1+\beta \Delta) \\
&\left.\quad+\sum_{j=i+1}^{m} a_{j} \frac{\gamma}{2} \Delta \sqrt{l}\left(b_{i}-b_{j}\right)\left(1-\beta \Delta-\frac{2}{9} \alpha^{2}\right)-\sum_{j \neq i} a_{j} \frac{3}{2 \sqrt{l}}\right) \\
& \geq \gamma \Delta \sqrt{l} a_{i}\left(b_{i}-\sum_{j=1}^{m} a_{j} b_{j}-\left(\beta \Delta+\frac{2}{9} \alpha^{2}\right) \sum_{j=1}^{m} a_{j}\left|b_{i}-b_{j}\right|\right)-3 \frac{a_{i}}{\sqrt{l}} \\
& \geq \gamma \Delta \sqrt{l} a_{i}\left(b_{i}-\sum_{j=1}^{m} a_{j} b_{j}-\left(\beta \Delta+\frac{2}{9} \alpha^{2}\right)\left(b_{1}-b_{m}\right)\right)-3 \frac{a_{i}}{\sqrt{l}} .
\end{aligned}
$$

Using similar arguments we obtain a matching upper bound on $c_{i}(f)$.

5 Almost equal sized clusters

In this section we present an algorithm for finding a subcluster in the case where the sizes of all clusters are almost equal: The algorithm requires that $\Gamma=O(1 / m \log n)$. We use algorithm Solve $_{3}$ with a procedure Find that is described below.

Recall that the goal of procedure Find is to find a subcluster of G. We first show that given a $\frac{1}{10}$-unbalanced pair L, R whose imbalance is large enough, we can generate a subcluster of G using the following procedure (the input to the procedure is a cluster graph G, and disjoint sets of vertices L, R, and S):

Subcluster (G, L, R, S) :
1: Let $v_{1}, \ldots, v_{|S|}$ be an ordering of S such that $f\left(v_{1}\right) \geq f\left(v_{2}\right) \geq \cdots \geq f\left(v_{|S|}\right)$, where $f(v)=d_{L}(v)-d_{R}(v)$.
2: Let j be the first index for which $f\left(v_{j}\right)-f\left(v_{j+1}\right)>15 \sqrt{|L| \cdot \log n}$.
3: Return $\left\{v_{1}, \ldots, v_{j}\right\}$.
Lemma 5.1. Let L and R be disjoint sets of vertices with $|L|=|R|$, and let S be a random subset of $V-(L \cup R)$ of size at least $7 m \log n$. Let $b_{i}=\mathrm{I}\left(V_{i}, L, R\right)$ and w.l.o.g. $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$. If $b_{1}-b_{2}>30 \sqrt{\log n} / \Delta \sqrt{|L|}$ then procedure Subcluster returns the subcluster $V_{1} \cap S$ with probability $1-O\left(1 / n^{3}\right)$.

Proof. Define $l=|L|$ and $D=45 \sqrt{l \cdot \log n}$. The failure events of procedure Subcluster are:

1. $S \cap V_{i}=\emptyset$ for some i.
2. $|f(v)-E[f(v)]|>\frac{1}{6} D$ for some vertex $v \in S$.

The probability that event 1 occurs is $o\left(n^{-3}\right)$. The probability that event 2 happens is $o\left(n^{-3}\right)$ (this follows from writing $f(v)$ as a sum of $0 / 1$ random variables minus a sum of $0 / 1$ random variables, and applying Corollary 2.3 on each of these summations). For the rest of the proof assume that none of these events happens.

For $v \in V_{i}, E[f(v)]=\Delta l b_{i}$ (see the proof of Lemma 4.3). Since $\Delta l b_{1}-\Delta l b_{2}>\Delta l$. $(30 \sqrt{\log n} / \Delta \sqrt{l})=\frac{2}{3} D$, it follows that $\min _{v \in V_{1} \cap S} f(v)-\max _{v \in S-V_{1}} f(v) \geq\left(\Delta l b_{1}-\right.$ $\left.\frac{1}{6} D\right)-\left(\Delta l b_{2}+\frac{1}{6} D\right)>\frac{1}{3} D$. Furthermore, for $v, v^{\prime} \in V_{1} \cap S,\left|f(v)-f\left(v^{\prime}\right)\right| \leq \frac{1}{3} D$. Therefore, $\left\{v_{1}, \ldots, v_{j}\right\}=V_{1} \cap S$.

Procedure Find will build a $\frac{1}{10}$-unbalanced pair with imbalance at least $\frac{10}{9} \cdot 30 \sqrt{\log n} / \Delta \sqrt{|L|}$ and then use procedure Subcluster to find a subcluster. As outlined in Section 1.2, building this pair consists of two stages. In the initialization stage, procedure Find builds two initial sets L_{0} and R_{0} using procedure Partition and the cluster function of Lemma 4.2. In the imbalance amplification stage, a series of pairs L_{t}, R_{t} is generated, where L_{t}, R_{t} is generated from L_{t-1}, R_{t-1} using procedure Partition and the cluster function of Lemma 4.3. Each pair L_{t}, R_{t} is $\frac{1}{10}$-unbalanced, and moreover, the imbalance L_{t}, R_{t} is at least twice the imbalance of L_{t-1}, R_{t-1}. If we are able to build such a series, then at some point we will have a $\frac{1}{10}$-unbalanced pair L_{t}, R_{t} with imbalance at least $\frac{10}{9} \cdot 30 \sqrt{|L| \cdot \log n}$, and then we will use procedure Subcluster to find a subcluster (Lemma 5.1).

The algorithm outlined above has a crucial problem: In order to use Lemma 4.3, we need the imbalance of the pair L_{t}, R_{t} to be at most $c / \Delta \sqrt{\left|L_{t}\right|}$ for some constant $c \leq 1$. The imbalance amplification stage might generate a pair L_{t}, R_{t} whose imbalance is more than $1 / \Delta \sqrt{\left|L_{t}\right|}$ but less than $\frac{10}{9} \cdot 30 \sqrt{\log n} / \Delta \sqrt{\left|L_{t}\right|}$. In this situation, we can neither generate a new pair L_{t+1}, R_{t+1} or obtain a subcluster from the current pair. The solution to this problem is to build at each iteration an additional $\frac{1}{10}$-unbalanced pair \hat{L}_{t}, \hat{R}_{t}. The pair \hat{L}_{t}, \hat{R}_{t} is built using procedure Partition and the same cluster function that is used to build L_{t}, R_{t}, and therefore the imbalance of \hat{L}_{t}, \hat{R}_{t} is approximately the same as the imbalance of L_{t}, R_{t}. By making the sets \hat{L}_{t} and \hat{R}_{t} bigger than L_{t} and R_{t} by a factor of $\Omega(\log n)$, we obtain that at every step, either

- The imbalance of L_{t}, R_{t} is at most $c / \Delta \sqrt{\left|L_{t}\right|}$, and we can be build a new pair L_{t+1}, R_{t+1}, or
- The imbalance of L_{t}, R_{t} is greater than $c / \Delta \sqrt{\left|L_{t}\right|}$. In this case, the imbalance of \hat{L}_{t}, \hat{R}_{t} is $\Omega\left(1 / \Delta \sqrt{\left|L_{t}\right|}\right)=\Omega\left(\sqrt{\log n} / \Delta \sqrt{\left|\hat{L}_{t}\right|}\right)$ and procedure Subcluster, applied on \hat{L}_{t}, \hat{R}_{t}, can build a subcluster.

Formally, procedure Find is as follows:
$\operatorname{Find}\left(G, V^{\prime}\right)$:
1: Let $\hat{l}=10^{15}\left(m^{2} \Delta^{-2} \log ^{2} n+m \log ^{5} n\right), l=\hat{l} /\left(5 \cdot 10^{6} \log n\right), l^{\prime}=\hat{l} /\left(5 \cdot 10^{6} \log ^{2} n\right)$, $s=2500 m \Delta^{-2} \log n$, and $D=45 \sqrt{\hat{l} \log n}$. Let $l_{t}=l$ for $0 \leq t \leq 2$ and $l_{t}=l^{\prime}$ for $t \geq 3$.
2: Randomly select disjoint sets \hat{W} and W_{0} of vertices from V^{\prime} of sizes $2 \hat{l}$ and $2 l_{0}$, respectively.
Randomly select some unchosen vertex u from V^{\prime}.
$\hat{L}_{0}, \hat{R}_{0} \leftarrow \operatorname{Partition}\left(G, \hat{W}, d_{\{u\}}\right)$ and $L_{0}, R_{0} \leftarrow \operatorname{Partition}\left(G, W_{0}, d_{\{u\}}\right)$.
For $t=0,1, \ldots, \log n$ do

Figure 2: The sets created by procedure Find.

6: Randomly select disjoint sets W_{t+1} and S_{t} of unchosen vertices from V^{\prime} of sizes $2 l_{t+1}$ and s, respectively.
7: Let v_{1}, \ldots, v_{s} be an ordering of S_{t} such that $f_{t}\left(v_{1}\right) \geq f_{t}\left(v_{2}\right) \geq \cdots \geq f_{t}\left(v_{s}\right)$, where $f_{t}(v)=d_{\hat{L}_{t}}(v)-d_{\hat{R}_{t}}(v)$.
If $\max _{j}\left\{f_{t}\left(v_{j}\right)-f_{t}\left(v_{j+1}\right)\right\}>D$
Return $\operatorname{Subcluster}\left(G, \hat{L}_{t}, \hat{R}_{t}, S_{t}\right)$.
$\hat{L}_{t+1}, \hat{R}_{t+1} \leftarrow \operatorname{Partition}\left(G, \hat{W}, d_{L_{t}}-d_{R_{t}}\right)$.
$L_{t+1}, R_{t+1} \leftarrow \operatorname{Partition}\left(G, W_{t+1}, d_{L_{t}}-d_{R_{t}}\right)$.
Output 'Failure'.
See also Figure 2. The total number of vertices selected by procedure Find is at most $2 \hat{l}+1+s \log n+2 \sum_{t=0}^{\log n+1} l_{t} \leq 3 \hat{l}$, and this number can be more than $n / 3$ for some choice of parameters, making the procedure inapplicable. However, we assume that $k \geq 10^{8} \Delta^{-1} \sqrt{n} \log n$, and in that case, $m \leq \frac{n}{k} \leq \Delta \sqrt{n} /\left(10^{8} \log n\right)$. Therefore, $3 \hat{l} \leq n / 3$.

Note that in the first three iterations of Steps 6-11, the sets L_{t}, R_{t} are bigger than in the rest of the steps. The reason is that in these steps, the imbalance is small, so in order to get a small relative difference between the imbalances and the expected imbalances, we need to use bigger sets (see Theorem 4.1).

Denote $b_{i}^{t}=\mathrm{I}\left(V_{i}, L_{t}, R_{t}\right), \hat{b}_{i}^{t}=\mathrm{I}\left(V_{i}, \hat{L}_{t}, \hat{R}_{t}\right), r_{i}^{t}=b_{i}^{t} / b_{1}^{t}$, and $\hat{r}_{i}^{t}=\hat{b}_{i}^{t} / \hat{b}_{1}^{t}$. We also denote $c_{i}^{0}=c_{i}\left(d_{\{u\}}\right)$ and $c_{i}^{t}=c_{i}\left(d_{L_{t}}-d_{R_{t}}\right)$ for $t \geq 1$. In the following, we assume w.l.o.g. that the vertex u chosen in Step 3 is from V_{1}. Let t^{*} be the value of t when the procedure Find stops. For simplicity, we assume that $t^{*} \geq 4$ and $m \geq 3$. The cases $t^{*} \leq 3$ or $m=2$ are simpler and we omit the analysis for these cases.

In the next lemmas we analyze procedure Find. To prove its correctness, we need to show that (1) Procedure Find executes step 9, and (2) When procedure Find executes step 9, the condition of Lemma 5.1 is satisfied. In order to show (1), we will show that $b_{1}^{t} \geq e \cdot b_{1}^{t-1}$, for all t. Since $\frac{1}{n} \leq b_{1}^{t} \leq 1$, it follows that procedure Find must stop after at most $\log n$ iterations. In order to show (2), we will show that all the pairs L_{t}, R_{t} are $\frac{1}{10}$-unbalanced, that is $r_{i}^{t} \leq \frac{1}{10}$ for all t and $i>1$. More specifically, we will show that $r_{i}^{0} \leq \frac{1}{100}$ for all $i>1$, and moreover, $\left|r_{i}^{t}-r_{i}^{0}\right| \leq \frac{9}{100}$ for all t and $i>1$. Note that Property 1 is trivially satisfied as there are no important edges (the cluster V_{1} is determined only by the random choice of u).

Define $d_{t}=\frac{1}{100} \cdot \frac{\Delta}{m}$ for $t \leq 2$, and $d_{t}=\frac{1}{100} \cdot \frac{\Delta}{m} \sqrt{\log n}$ for $t \geq 3$. The following events can cause procedure Find to fail:

1. $\left|b_{i}^{t}-c_{i}^{t}\right|>d_{t}$ for some i and t.
2. $\left|\hat{b}_{i}^{t}-c_{i}^{t}\right|>d_{t}$ for some i and t.
3. $\left|V_{i} \cap S_{t}\right|<\frac{1}{2} a_{i} s$ for some i and t.
4. $\left|f_{t}(v)-E\left[f_{t}(v)\right]\right| \leq \frac{1}{6} D$ for some t and $v \in S_{t}$.

The following Lemma bounds the probability of these events.
Lemma 5.2. Suppose that $\Gamma \leq 1 /(10000 m \log n), k \geq 10^{8} \Delta^{-1} \sqrt{n} \log n$, and $p, r \in$ $\left[\frac{1}{4}, \frac{3}{4}\right]$. Then, the probability that at least one of the events $1-4$ happens is $O\left(n^{-3}\right)$.
Proof. For fixed t, we have from Theorem 4.1 that the probability that $\left|b_{i}^{t}-c_{i}^{t}\right|>$ $72 a_{\max } \sqrt{\frac{m}{l} \log n}$ for some i is $O\left(n^{-3.5}\right)$. Since $72 a_{\max } \sqrt{\frac{m}{l} \log n}=(1+o(1)) 72 \sqrt{\frac{1}{m l} \log n} \leq$ $\frac{1}{100} \cdot \frac{\Delta}{m}$, it follows that event 1 happens with probability $O\left(\log n \cdot n^{-3.5}\right)=o\left(n^{-3}\right)$. The same arguments gives that event 2 happens with probability $o\left(n^{-3}\right)$.

By Corollary 2.4, the probability that event 3 happens is $o\left(n^{-3}\right)$, and by Corollary 2.3, the probability that event 4 happens is $o\left(n^{-3}\right)$.

For the rest of this section, we assume that events 1-4 do not happen. We first analyze step 4 of procedure Find.

Lemma 5.3. Under the conditions of Lemma 5.2 , with probability $1-O\left(1 / n^{3}\right)$,

1. $b_{1}^{0}, \hat{b}_{1}^{0} \geq\left(1-\frac{1}{100}\right) \frac{4}{3} \frac{\Delta}{m}$.
2. For all $i>1,-\frac{1}{2}-\frac{1}{50} \leq r_{i}^{0}, \hat{r}_{i}^{0} \leq \frac{1}{100}$.

Proof. In the proof of lemma (and also in the proofs of the next lemmas), we only prove the bounds on b_{i}^{0} and r_{i}^{0}, as the bounds on \hat{b}_{i}^{0} and \hat{r}_{i}^{0} are similar.
(1) From Lemma 4.2, we have that

$$
c_{1}^{0}=2 a_{1}\left(1-a_{1}\right) \Delta \geq 2(1-o(1)) \frac{1}{m}\left(1-(1+o(1)) \frac{1}{m}\right) \Delta \geq(1-o(1)) \frac{4}{3} \frac{\Delta}{m} .
$$

Therefore, $b_{1}^{0} \geq c_{1}^{0}-d_{1}^{0} \geq\left(1-\frac{1}{100}\right) \frac{4}{3} \frac{\Delta}{m}$.
(2) By Lemma 4.2, $c_{i}^{0}=-2 a_{1} a_{i} \Delta$ for every $i>1$. Therefore, $b_{i}^{0} \leq c_{i}^{0}+d_{0} \leq d_{0} \leq$ $\frac{1}{100} \cdot \frac{\Delta}{m}$. Thus, $r_{i}^{0} \leq \frac{1}{100}$. Furthermore, $c_{i}^{0} \geq-2\left((1+o(1)) \frac{1}{m}\right)^{2} \Delta \geq-(1+o(1)) \frac{2}{3} \frac{\Delta}{m}$, so $b_{i}^{0} \geq c_{i}^{0}-d_{0} \geq-\left(1+\frac{1}{50}\right) \frac{2}{3} \frac{\Delta}{m}$. Thus, $r_{i}^{0} \geq-\left(1+\frac{1}{50}\right) \frac{2}{3} \frac{\Delta}{m} /\left(\left(1-\frac{1}{100}\right) \frac{4}{3} \frac{\Delta}{m}\right) \geq-\frac{1}{2}-\frac{1}{50}$.

Next, we analyze the first three iterations of steps 6-11.
Lemma 5.4. Under the conditions of Lemma 5.2, with probability $1-O\left(1 / n^{3}\right)$,

1. For all $0 \leq t \leq 3, b_{1}^{t} \geq \log ^{t / 2} n \cdot b_{1}^{0}$ and $\hat{b}_{1}^{t} \geq \log ^{t / 2} n \cdot \hat{b}_{1}^{0}$.
2. For all $0 \leq t \leq 3$ and all $i>1,\left|r_{i}^{t}-r_{i}^{0}\right| \leq \frac{t}{100}$ and $\left|\hat{r}_{i}^{t}-\hat{r}_{i}^{0}\right| \leq \frac{t}{100}$.

Note that by combining Lemma 5.3(2) and Lemma 5.4(2) we obtain that $-\frac{1}{2}-\frac{1}{10} \leq$ $r_{i}^{t} \leq \frac{1}{10}$.

Proof. The lemma is proved using induction on t. The base $t=0$ it true due to Lemma 5.3. Assuming we proved (1) and (2) for t, we will prove these bounds for $t+1$. For the rest of the proof, we assume w.l.o.g. that $b_{1}^{t} \geq b_{2}^{t} \geq \cdots \geq b_{m}^{t}$.
(1) From the induction hypothesis, it suffices to prove that $b_{1}^{t+1} \geq \sqrt{\log n} \cdot b_{1}^{t}$. For a vertex $v \in V_{i} \cap S_{t}, E\left[f_{t}(v)\right]=\Delta \hat{l} \hat{b}_{i}^{t}$. We have that $\Delta \hat{l}\left(\hat{b}_{1}^{t}-\hat{b}_{2}^{t}\right) \leq 2 D$, because otherwise, the difference between the minimum value of $f_{t}(v)$ for $v \in V_{1} \cap S_{t}$ and the maximum value of $f_{t}\left(v^{\prime}\right)$ for $v^{\prime} \in S_{t}-V_{1}$ would be at least $2 D-2 \cdot \frac{1}{6} D>D$, contradicting the fact that the algorithm did not stop at iteration t. From the fact that $\left|b_{i}^{t}-b_{j}^{t}\right| \leq 2 d_{t},\left|\hat{b}_{i}^{t}-\hat{b}_{j}^{t}\right| \leq 2 d_{t}$, and $r_{i}^{t} \geq-\frac{1}{2}-\frac{1}{10}$ (the latter is true due to the induction hypothesis) we have that for all i and $j,\left|b_{i}^{t}-b_{j}^{t}\right| \leq\left|\hat{b}_{i}^{t}-\hat{b}_{j}^{t}\right|+\frac{4}{100} \cdot \frac{\Delta}{m} \leq$ $\frac{16}{10} \hat{b}_{1}^{t}+\frac{2}{50} \cdot \frac{\Delta}{m}$. By the induction hypothesis $\hat{b}_{1}^{t} \geq \frac{\Delta}{m}$ and $\hat{b}_{1}^{t} \leq \frac{10}{9}\left(\hat{b}_{1}^{t}-\hat{b}_{2}^{t}\right)$. Therefore, for all i and $j,\left|b_{i}^{t}-b_{j}^{t}\right| \leq\left(\frac{16}{10}+\frac{2}{50}\right) \hat{b}_{1}^{t}<2\left(\hat{b}_{1}^{t}-\hat{b}_{2}^{t}\right) \leq 4 D / \Delta \hat{l}=180 \sqrt{\log n} / \Delta \sqrt{\hat{l}}$. As $\hat{l}=5 \cdot 10^{6} \cdot l \log n$, we conclude that for all i and $j,\left|b_{i}^{t}-b_{j}^{t}\right| \leq \frac{180}{\sqrt{5 \cdot 10^{6}}} \cdot \frac{1}{\Delta \sqrt{l}}<\frac{1}{12} \cdot \frac{1}{\Delta \sqrt{l}}$.

Denote $F_{0}=\gamma \Delta \sqrt{l}$ (where γ is defined in Lemma 4.3), and $F=F_{0} / m$. By Lemma 4.3,

$$
\begin{aligned}
b_{1}^{t+1} \geq & F_{0} a_{1}\left(b_{1}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}-\left(2 \Gamma \Delta+5 \sqrt{\frac{2}{m l} \log n} \cdot \Delta+\frac{2}{9} \cdot \frac{1}{12^{2}}\right)\left(b_{1}^{t}-b_{m}^{t}\right)\right) \\
& -3 \frac{a_{1}}{\sqrt{l}}-d_{1}^{t+1}
\end{aligned}
$$

We now give bounds for the terms in the inequality above.

- $(1-o(1)) F \leq F_{0} a_{1} \leq(1+o(1)) F$ (follows from the fact that $\left.\Gamma=o(1)\right)$.
- Since $r_{i}^{t} \geq-\frac{1}{2}-\frac{1}{10}$, it follows that $\left|b_{j}^{t}\right| \leq b_{1}^{t}$ for all j. Using the fact that $\sum_{j=1}^{m} b_{j}^{t}=0$, we obtain that

$$
\sum_{j=1}^{m} a_{j} b_{j}^{t}=\sum_{j=1}^{m}\left(a_{j}-\frac{1}{m}\right) b_{j}^{t} \leq \sum_{j=1}^{m}\left|a_{j}-\frac{1}{m}\right| b_{1}^{t} \leq m \Gamma b_{1}^{t}=o\left(b_{1}^{t}\right) .
$$

- $2 \Gamma \Delta=o(1)$ (follows from the fact that $\Gamma=o(1)$).
- $5 \sqrt{\frac{2}{m l} \log n} \cdot \Delta=o(1)$ (follows from the fact that $l \geq 2 \cdot 10^{8} \log ^{4} n$).
- $b_{1}-b_{m} \leq 2 b_{1}$ (follows from the fact that $r_{i}^{t} \geq-\frac{1}{2}-\frac{1}{10}$).
- From the fact that $F=\gamma \Delta \sqrt{l} / m \geq \frac{3}{2} \Delta \sqrt{l} / m>10000 \sqrt{\log n}$ and $b_{1}^{t} \geq \log ^{t / 2} n$. Δ / m we conclude that

$$
3 \frac{a_{1}}{\sqrt{l}}<\frac{3}{\sqrt{l}}=O\left(\frac{1}{\sqrt{\log n}} \frac{\Delta}{m}\right)=o\left(F b_{1}^{t}\right)
$$

and

$$
d_{1}^{t+1}=o\left(F b_{1}^{t}\right)
$$

Combining the bounds above we get
$b_{1}^{t+1} \geq(1-o(1)) F b_{1}^{t}-(1+o(1)) \frac{1}{324} F b_{1}^{t}-o\left(F b_{1}^{t}\right)>\left(1-\frac{1}{200}\right) F b_{1}^{t}>\sqrt{\log n} \cdot b_{1}^{t}$.
(2) Using the induction hypothesis, we need to show that $\left|r_{i}^{t+1}-r_{i}^{t}\right| \leq \frac{1}{100}$. In the first part we have shown that $b_{1}^{t+1} \geq\left(1-\frac{1}{200}\right) F b_{1}^{t}$. Using similar arguments we obtain that $b_{1}^{t+1} \leq\left(1+\frac{1}{200}\right) F b_{1}^{t}$, or in other words, $\left|b_{1}^{t+1}-F b_{1}^{t}\right| \leq \frac{1}{200} F b_{1}^{t}$. Similarly, $\left|b_{i}^{t+1}-F b_{i}^{t}\right| \leq \frac{1}{200} F b_{1}^{t}$. Therefore,

$$
\begin{aligned}
\left|\frac{b_{i}^{t+1}}{b_{1}^{t+1}}-r_{i}^{t}\right| & \leq \frac{\left|b_{i}^{t+1}-F b_{i}^{t}\right|+\left|F b_{i}^{t}-r_{i}^{t} b_{1}^{t+1}\right|}{b_{1}^{t+1}}=\frac{\left|b_{i}^{t+1}-F b_{i}^{t}\right|+r_{i}^{t}\left|F b_{1}^{t}-b_{1}^{t+1}\right|}{b_{1}^{t+1}} \\
& \leq \frac{\left(1+\frac{1}{10}\right) \frac{1}{200} F b_{1}^{t}}{\left(1-\frac{1}{200}\right) F b_{1}^{t}}<\frac{1}{100} .
\end{aligned}
$$

Finally, we analyze the remaining iterations of steps 6-11.
Lemma 5.5. Under the conditions of Lemma 5.2, with probability $1-O\left(1 / n^{3}\right)$,

1. For $4 \leq t \leq t^{*}, b_{1}^{t} \geq 2^{t-3} \log ^{3 / 2} n \cdot b_{1}^{0}$ and $\hat{b}_{1}^{t} \geq 2^{t-3} \log ^{3 / 2} n \cdot \hat{b}_{1}^{0}$.
2. For all $4 \leq t \leq t^{*}$ and all $i>1,\left|r_{i}^{t}-r_{i}^{0}\right| \leq \frac{t-3}{100 \log n}+\frac{3}{100}$ and $\left|\hat{r}_{i}^{t}-\hat{r}_{i}^{0}\right| \leq$ $\frac{t-3}{100 \log n}+\frac{3}{100}$.

Note that by combining Lemma 5.3(2), and Lemma 5.5(2) we obtain that $-\frac{1}{2}-\frac{1}{10} \leq$ $r_{i}^{t} \leq \frac{1}{10}$.
Proof. Again we prove the lemma using induction. Assume we proved (1) and (2) for t. W.l.o.g. $b_{1}^{t} \geq b_{2}^{t} \geq \cdots \geq b_{m}^{t}$.
(1) It suffices to prove that $b_{1}^{t+1} \geq 2 b_{1}^{t}$. Similarly to the proof of Lemma 5.4, we have that for all i and $j,\left|b_{i}^{t}-b_{j}^{t}\right| \leq 180 \sqrt{\log n} / \Delta \sqrt{\hat{l}}$, and since $\hat{l}=5 \cdot 10^{6} \cdot l^{\prime} \log ^{2} n$, we conclude that $\left|b_{i}^{t}-b_{j}^{t}\right| \leq \frac{180}{\sqrt{5 \cdot 10^{6} \log n}} \cdot \frac{1}{\Delta \sqrt{l^{\prime}}} \leq \frac{1}{12 \sqrt{\log n}} \cdot \frac{1}{\Delta \sqrt{l^{l}}}$.

Denote $F_{0}^{\prime}=\gamma \Delta \sqrt{l^{\prime}}$, and $F^{\prime}=F_{0}^{\prime} / m$. By Lemma 4.3,

$$
\begin{aligned}
b_{1}^{t+1} \geq & F_{0}^{\prime} a_{1}\left(b_{1}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}-\left(2 \Gamma \Delta+5 \sqrt{\frac{2}{m l^{\prime}} \log n} \cdot \Delta+\frac{2}{9} \cdot \frac{1}{12^{2} \log n}\right)\left(b_{1}^{t}-b_{m}^{t}\right)\right) \\
& -3 \frac{a_{1}}{\sqrt{l^{\prime}}}-d_{1}^{t+1} .
\end{aligned}
$$

Now,

- $\left(1-\frac{1}{10^{4} \log n}\right) F^{\prime} \leq F_{0}^{\prime} a_{1} \leq\left(1+\frac{1}{10^{4} \log n}\right) F^{\prime}$.
- $\sum_{j=1}^{m} a_{j} b_{j}^{t} \leq m \Gamma b_{1}^{t} \leq \frac{1}{10^{4} \log n} b_{1}^{t}$.
- $2 \Gamma \Delta \leq \frac{2}{10^{4} \log n}$.
- $5 \sqrt{\frac{2}{m l^{\prime}} \log n} \cdot \Delta \leq \frac{5}{10^{4} \log n}$.
- $b_{1}^{t}-b_{m}^{t} \leq 2 b_{1}^{t}$.
- $3 \frac{a_{1}}{\sqrt{l^{\prime}}}=O\left(\frac{1}{\sqrt{l^{\prime}}}\right)=O\left(\frac{\Delta}{m}\right)=o\left(\frac{1}{\log n} F^{\prime} b_{1}^{t}\right)$, where the last equality follows from the fact that $F^{\prime}=\gamma \Delta \sqrt{l^{\prime}} / m \geq \frac{3}{2} \Delta \sqrt{l^{\prime}} / m>10000$ and $b_{1}^{t} \geq \log ^{3 / 2} n \cdot \Delta / m$.
- $d_{1}^{t+1}=\frac{1}{100} \cdot \frac{\Delta}{m} \sqrt{\log n} \leq \frac{1}{10^{6} \cdot \log n} \cdot F^{\prime} b_{1}^{t}$.

Thus,

$$
\begin{aligned}
b_{1}^{t+1} & \geq\left(1-\frac{1}{10^{4} \log n}\right) F^{\prime} b_{1}^{t}-(1+o(1))\left(\frac{1+4+10}{10^{4}}+\frac{1}{324}+\frac{1}{10^{6}}\right) \frac{1}{\log n} F^{\prime} b_{1}^{t}-o\left(F^{\prime} b_{1}^{t}\right) \\
& \geq\left(1-\frac{1}{200 \log n}\right) F^{\prime} b_{1}^{t}
\end{aligned}
$$

In particular, $b_{1}^{t+1} \geq 2 b_{1}^{t}$.
(2) Similarly to the proof of Lemma 5.4, $\left|b_{1}^{t+1}-F b_{1}^{t}\right| \leq \frac{1}{200 \log n} F b_{1}^{t}$. Similarly, $\left|b_{i}^{t+1}-F b_{i}^{t}\right| \leq \frac{1}{200 \log n} F b_{1}^{t}$. Therefore, $\left|r_{i}^{t+1}-r_{i}^{t}\right| \leq \frac{1}{100 \log n}$.

Lemma 5.6. Under the conditions of Lemma 5.3, with probability $1-O\left(1 / n^{3}\right)$, procedure Find returns a subcluster of V_{1} of size at least $1200 \log n / \Delta^{2}$. The running time of procedure Find is $O\left(m^{3} \Delta^{-4} \log ^{3} n \cdot(m+\log n)+m^{2} \log ^{9} n\right)$.

Proof. By Lemma 5.5, for all $4 \leq t \leq t^{*}, b_{1}^{t}>2^{t} \cdot b_{1}^{0}$. We have that $b_{1}^{0}>\frac{1}{n}$, so $b_{1}^{t}>2^{t} / n$. Since $b_{1}^{t} \leq 1$ by definition, we conclude that $t^{*}<\log n$, namely procedure Find stops at Step 9. We now look at the last iteration of procedure Find. W.l.o.g. assume that $\hat{b}_{1}^{t^{*}} \geq \hat{b}_{2}^{t^{*}} \geq \cdots \geq \hat{b}_{m}^{t^{*}}$.

For $v \in V_{i}, E\left[f_{t^{*}}(v)\right]=\Delta \hat{l} b_{i}^{t^{*}} . A s \max _{j}\left\{f_{t^{*}}\left(v_{j}\right)-f_{t^{*}}\left(v_{j+1}\right)\right\}>D$, we have that there is an index i such that $\Delta \hat{l} \hat{b}_{i}^{t^{*}}-\Delta \hat{l} \hat{b}_{i+1}^{t^{*}}>\frac{2}{3} D$. By Lemma 5.5, $\Delta \hat{l}\left(\hat{b}_{1}^{t^{*}}-\hat{b}_{2}^{t^{*}}\right) \geq$ $\Delta \hat{l}\left(\hat{b}_{i}^{t^{*}}-\hat{b}_{i+1}^{t^{*}}\right)>\frac{2}{3} D$. Therefore, procedure Subcluster returns the subcluster $V_{1} \cap S_{t^{*}}$ (Lemma 5.1). Finally, we have that $\left|V_{1} \cap S_{t^{*}}\right| \geq \frac{1}{2} a_{1} s \geq 1200 \log n / \Delta^{2}$.

We now compute the time complexity of Find: In a single iteration, the time to compute $f_{t}(v)$ for all $v \in S_{t}$ is $O(s \hat{l})$, and the time taken by the call to Partition is $O\left(l_{t} \hat{l}\right)$. Therefore, the time complexity of Find is

$$
O\left(s \hat{l} \log n+l \hat{l}+l^{\prime} \hat{l} \log n\right)=O\left(\frac{m^{3}}{\Delta^{4}} \log ^{3} n \cdot(m+\log n)+m^{2} \log ^{9} n\right)
$$

Lemma 5.7. $\Gamma \leq\left(\max _{i}\left|V_{i}\right| / k-1\right) / m$.
Proof. Denote $r=\max _{i}\left|V_{i}\right| / k=a_{\text {max }} / a_{\text {min }}$. By definition, $\Gamma=\max \left\{a_{\max }-\frac{1}{m}, \frac{1}{m}-\right.$ $\left.a_{\min }\right\}$. Clearly,

$$
a_{\max }=r a_{\min } \leq \frac{r}{m}
$$

and

$$
a_{\min }=\frac{1}{r} a_{\max } \geq \frac{1}{r} \cdot \frac{1}{m} \geq(1-(r-1)) \frac{1}{m} .
$$

Therefore, $a_{\max }-\frac{1}{m} \leq(r-1) / m$ and $\frac{1}{m}-a_{\min } \leq(r-1) / m$.
We are now ready to prove Theorem 1.1.

Proof (Theorem 1.1). Let G be a cluster graph that satisfies the requirements of Theorem 1.1 and requirements (R1)-(R3) from Section 3. From Lemma 5.7 we get that for every cluster collection G^{\prime} of G,

$$
\begin{aligned}
\Gamma_{G^{\prime}} & \leq \max _{i}\left|V_{i, G^{\prime}}\right| / k_{G^{\prime}} \leq \max _{i}\left|V_{i}\right| / k \\
& \leq 1+1 /(10000 m \log n) \leq 1+1 /\left(10000 m_{G^{\prime}} \log n_{G^{\prime}}\right)
\end{aligned}
$$

It follows that every cluster collection of G satisfies the requirements of Lemma 5.6. Theorem 1.1 now follows from Lemma 5.6 and Lemma 3.3.

6 Unequal sized clusters

In this section we give an algorithm for finding a subcluster in the general case. We use algorithm Solve $_{3}$ and procedure Find_{2} which is similar to procedure Find that was given in Section 5 .

We first describe the main differences between procedures Find 2 and Find. First, unlike procedure Find, in which the vertex u was chosen randomly, in procedure Find $_{2}$ the vertex u must be chosen in a way that ensures that the size of the cluster that contains u is almost equal to the size of the largest cluster. This is done in the following way: Procedure Find_{2} randomly chooses two sets of vertices U_{1} and U_{2}, and then selects u to be the vertex from U_{1} with highest $d_{U_{2}}$-value. A second difference comes from the fact that our analysis in the general case is less tight than the analysis in the case of almost equal sized clusters. As a result, procedure Find ${ }_{2}$ can perform only a constant number of iterations. This leads to a different choice of parameters (namely, the sizes of the sets built by the algorithm).

Procedure Find 2 is as follows:

```
\(\operatorname{Find}_{2}\left(G, V^{\prime}, \epsilon\right)\) :
Let \(\lambda=2^{3^{[1 / \epsilon]+1}}, \hat{l}=10^{10} \lambda^{15}\left(m \Delta^{-2} \log ^{2} n+m^{2} \Delta^{-2(1+\epsilon)} \log n\right), l=\hat{l} /\left(10^{6} \lambda^{11} \log n\right)\),
\(s=2500 m \Delta^{-2} \log n, D=50 \lambda^{2} \sqrt{\hat{l} \log n}, u_{1}=3 m \log n\) and \(u_{2}=\frac{1}{100} n\).
Randomly select disjoint sets \(U_{1}, U_{2}, \hat{W}\), and \(W_{0}\) of vertices from \(V^{\prime}\) of sizes \(s\),
\(u_{1}, u_{2}, 2 \hat{l}\), and \(2 l\), respectively.
Let \(u\) be a vertex in \(U_{1}\) such that \(d_{U_{2}}(u)\) is maximum.
\(\hat{L}_{0}, \hat{R}_{0} \leftarrow \operatorname{Partition}\left(G, \hat{W}, d_{\{u\}}\right)\) and \(L_{0}, R_{0} \leftarrow \operatorname{Partition}\left(G, W_{0}, d_{\{u\}}\right)\).
For \(t=0,1, \ldots,\lceil 1 / \epsilon\rceil\) do
Randomly select disjoint sets \(W_{t+1}\) and \(S_{t}\) of unchosen vertices from \(V^{\prime}\) of
sizes \(2 l\) and \(s\), respectively.
Let \(v_{1}, \ldots, v_{s}\) be an ordering of \(S_{t}\) such that \(f_{t}\left(v_{1}\right) \geq f_{t}\left(v_{2}\right) \geq \cdots \geq f_{t}\left(v_{s}\right)\),
    where \(f_{t}(v)=d_{\hat{L}_{t}}(v)-d_{\hat{R}_{t}}(v)\).
    If \(\max _{j}\left\{f_{t}\left(v_{j}\right)-f_{t}\left(v_{j+1}\right)\right\}>D\)
            Let \(j\) be the first index for which \(f_{t}\left(v_{j}\right)-f_{t}\left(v_{j+1}\right)>\frac{2}{5 \lambda^{2}} D\),
            Return \(\left\{v_{1}, \ldots, v_{j}\right\}\).
        \(\hat{L}_{t+1}, \hat{R}_{t+1} \leftarrow \operatorname{Partition}\left(G, \hat{W}, d_{L_{t}}-d_{R_{t}}\right)\).
        \(L_{t+1}, R_{t+1} \leftarrow \operatorname{Partition}\left(G, W_{t+1}, d_{L_{t}}-d_{R_{t}}\right)\).
```

See Figure 3. The total number of vertices selected by procedure Find ${ }_{2}$ is $u_{1}+$

Figure 3: The sets created by procedure Find $_{2}$.
$u_{2}+2 \hat{l}+(\lceil 1 / \epsilon\rceil+1) \cdot(2 l+s)$. We assume that the bound $k \geq 10^{6} \lambda^{8} \Delta^{-1} \sqrt{n \log n}$. $\left(\sqrt{\log n}+\Delta^{-\epsilon}\right)$ is satisfied, and in that case, the total number of vertices selected by procedure Find is less than $n / 3$.

In order to satisfy Property 1, we make a small change in procedure Find_{2} : During the calls to procedure Find_{2} by algorithm Solve $_{3}$, the set U_{2} is chosen only once, at the first call to Find_{2}, and its vertices are marked (the marks on the vertices are maintained globally in the algorithm). In the next calls to Find $_{2}$, we use the set U_{2} that was chosen in the first call, without the vertices that were removed from the graph G. Moreover, the set U_{1} is chosen randomly from all the unmarked vertices of V^{\prime}, and then its vertices are marked. Finally, the other random sets in the algorithm are chosen from the unmarked vertices of V^{\prime}, but their vertices are not marked. Clearly, the sets U_{1} that are chosen at the different calls to Find 2 are disjoint, and therefore Property 1 is satisfied (the important pairs are all pairs (u, v) where $u \in U_{2}$ and $v \in U_{1}$ for some set U_{1}). For simplicity, we will analyze below the original procedure Find_{2}.

We now analyze procedure Find $_{2}$. We assume w.l.o.g. that the vertex u chosen in Step 3 belongs to the cluster V_{1}. Recall that $A_{i}=\left|V_{i}\right|$ and $A_{\max }=\max _{i} A_{i}$.

Lemma 6.1. If $k \geq 1200 \log n$ then with probability $1-O\left(1 / n^{3}\right), A_{1} \geq A_{\max }-$ $150 \Delta^{-1} \sqrt{n \log n}$.

Proof. Let V_{i} be a cluster of maximum size. Denote $A_{j}^{\prime}=\left|U_{2} \cap V_{j}\right|$ for all j. Consider the following failure events:

1. $U_{1} \cap V_{i}=\emptyset$.
2. $\left|d_{U_{2}}(v)-E\left[d_{U_{2}}(v)\right]\right|>\sqrt{3 \cdot 4 u_{2} \log n}=\frac{\sqrt{3}}{5} \sqrt{n \log n}$ for some $v \in U_{1}$.
3. $\left|A_{j}^{\prime}-\frac{A_{j}}{n} u_{2}\right|>\sqrt{3 \cdot 4 \cdot u_{2} \log n}=\frac{\sqrt{3}}{5} \sqrt{n \log n}$ for some j.

The probability of event 1 is at most $\left(1-a_{i}\right)^{u_{1}} \leq e^{-a_{i} u_{1}} \leq e^{-u_{1} / m}=n^{-3}$. By Corollary 2.3 and Corollary 2.4, the probability that events 2 or 3 happen is $O\left(n^{-3}\right)$. For the rest of the proof, assume that events $1-3$ do not happen.

Let w be a vertex from $U_{1} \cap V_{i}$. For $v \in V_{j}$ we have $E\left[d_{U_{2}}(v)\right]=A_{j}^{\prime} \Delta+u_{2} r$. Thus,

$$
A_{1}^{\prime} \Delta+u_{2} r+\frac{\sqrt{3}}{5} \sqrt{n \log n} \geq d_{U_{2}}(u) \geq d_{U_{2}}(w) \geq A_{i}^{\prime} \Delta+u_{2} r-\frac{\sqrt{3}}{5} \sqrt{n \log n}
$$

so $A_{1}^{\prime} \geq A_{i}^{\prime}-\frac{2 \sqrt{3}}{5} \Delta^{-1} \sqrt{n \log n}$. Therefore,

$$
\begin{aligned}
A_{1} & \geq \frac{n}{u_{2}} A_{1}^{\prime}-\frac{n}{u_{2}} \frac{\sqrt{3}}{5} \sqrt{n \log n} \\
& \geq \frac{n}{u_{2}} A_{i}^{\prime}-100 \cdot \frac{2 \sqrt{3}}{5} \Delta^{-1} \sqrt{n \log n}-100 \cdot \frac{\sqrt{3}}{5} \sqrt{n \log n} \\
& \geq A_{i}-150 \Delta^{-1} \sqrt{n \log n}
\end{aligned}
$$

In the following lemma we use the same definitions of $b_{i}^{t}, \hat{b}_{i}^{t}, r_{i}^{t}, \hat{r}_{i}^{t}, c_{i}^{t}$, and t^{*} as in Section 5. We again assume that $m \geq 3$. Define $d=\frac{1}{\lambda^{2}} \cdot a_{1} \Delta$. The events which can cause a failure of procedure Find_{2} are:

1. $A_{1}<A_{\max }-150 \Delta^{-1} \sqrt{n \log n}$.
2. $S_{t} \cap V_{i}=\emptyset$ for some i and t.
3. $\left|f_{t}(v)-E\left[f_{t}(v)\right]\right|>\frac{1}{5 \lambda^{2}} D$ for some t and $v \in S_{t}$.
4. $\left|b_{i}^{t}-c_{i}^{t}\right|>d$ for some i and t.

Lemma 6.2. Let $\epsilon>0$ be some constant. If $\max _{i} a_{i}<2 / 3, k \geq 10^{6} \lambda^{8} \Delta^{-1} \sqrt{n \log n}$. $\left(\sqrt{\log n}+\Delta^{-\epsilon}\right), p, r \in\left[\frac{1}{4}, \frac{3}{4}\right]$, and $\Delta \leq \frac{1}{10 \lambda^{3}}$, then the probability that at least one of events $1-4$ happens is $O\left(n^{-3}\right)$.

Proof. The probability that event 1 happens is $O\left(n^{-3}\right)$ (Lemma 6.1). By Theorem 4.1 we have that the probability that $\left|b_{i}^{t}-c_{i}^{t}\right|>72 a_{\max } \sqrt{\frac{m}{l} \log n}$ for some i and t is $o\left(n^{-3}\right)$. Assuming that event 1 does not happen, $A_{1} \geq A_{\max }-150 \Delta^{-1} \sqrt{n \log n} \geq$ $\left(1-150 /\left(10^{6} \lambda^{8} \sqrt{\log n}\right)\right) A_{\max }=(1-o(1)) A_{\max }$. Therefore,

$$
72 a_{\max } \sqrt{\frac{m}{l} \log n} \leq \frac{72}{100 \lambda^{2}} \cdot a_{\max } \Delta \leq \frac{1}{\lambda^{2}} \cdot a_{1} \Delta
$$

so the probability that event 2 happens (assuming that event 1 does not happen) is $o\left(n^{-3}\right)$. The probability that event 3 or 4 happen is $O\left(n^{-3}\right)$.

For the rest of the section assume that events 1-4 do not happen.
Lemma 6.3. Under the conditions of Lemma 6.2, with probability $1-O\left(1 / n^{3}\right)$,

1. $b_{1}^{0}, \hat{b}_{1}^{0} \geq \frac{1}{2} a_{1} \Delta$.
2. For all $i>1,-\frac{3}{2} \leq r_{i}^{0}, \hat{r}_{i}^{0} \leq \frac{1}{2}$.
3. For all $1 \leq t \leq t^{*}, b_{1}^{t} \geq 2 \Delta^{-\epsilon t} \cdot b_{1}^{0}$ and $\hat{b}_{1}^{t} \geq 2 \Delta^{-\epsilon t} \cdot \hat{b}_{1}^{0}$.
4. For all $1 \leq t \leq t^{*}$ and all $i>1,-2^{3^{t}} \leq r_{i}^{t}, \hat{r}_{i}^{t} \leq 1-1 / 2^{3^{t}}$.

Proof. Again, we prove the bounds of the lemma only for b_{i}^{t} and r_{i}^{t}, as the bounds for \hat{b}_{i}^{t} and \hat{r}_{i}^{t} are similar.
(1) By Lemma 4.2, we have that

$$
c_{1}^{0}=2 a_{1}\left(1-a_{1}\right) \Delta>\frac{2}{3} a_{1} \Delta .
$$

Therefore, $b_{1}^{0} \geq c_{1}^{0}-d_{1} \geq\left(\frac{2}{3}-\frac{1}{\lambda^{2}}\right) a_{1} \Delta>\frac{1}{2} a_{1} \Delta$.
(2) By Lemma 4.2, $c_{i}^{0}=-2 a_{1} a_{i} \Delta$ for every $i>0$. Therefore, $b_{i}^{0} \leq c_{i}^{0}+d \leq d<$ $\frac{1}{2} a_{1} \Delta$. Furthermore, $c_{i}^{0} \geq-c_{1}^{0}$ (as $a_{i} \leq 1-a_{1}$), so $b_{i}^{0} \geq c_{i}^{0}-d>-\left(1+\frac{1}{2}\right) c_{1}^{0}$. Thus, $-\frac{3}{2} \leq r_{i}^{0} \leq \frac{1}{2}$.
(3) Fix some t. We will show that $b_{1}^{t+1} \geq 2 \Delta^{-\epsilon} b_{1}^{t}$. W.l.o.g. assume that $b_{1}^{t} \geq$ $b_{2}^{t} \geq \cdots \geq b_{m}^{t}$.

As in the proof of Lemma 5.4, we have that

$$
\begin{aligned}
\left|b_{i}^{t}-b_{j}^{t}\right| & \leq\left|\hat{b}_{i}^{t}-\hat{b}_{j}^{t}\right|+4 \cdot \frac{1}{\lambda^{2}} \cdot a_{1} \Delta \leq \lambda\left(\lambda+1+\frac{8}{\lambda^{2}}\right)\left(\hat{b}_{1}^{t}-\hat{b}_{2}^{t}\right) \\
& \leq 2 \lambda^{2} \cdot \frac{2 D}{\Delta \hat{l}}=200 \lambda^{4} \cdot \frac{\sqrt{\log n}}{\Delta \sqrt{\hat{l}}}=\frac{1}{5 \lambda^{1.5}} \cdot \frac{1}{\Delta \sqrt{l}}
\end{aligned}
$$

for all i and j.
Denote $F_{0}=\gamma \Delta \sqrt{l}$ (where γ is defined in Lemma 4.3), $F=F_{0} a_{\max }$ and $Y=$ $\left(\sum_{j=1}^{m} a_{j} b_{j}^{t}\right) / b_{1}^{t}$. By Lemma 4.3,

$$
\begin{aligned}
b_{1}^{t+1} \geq & F_{0} a_{1}\left(b_{1}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}-\left(2 \Gamma \Delta-5 \sqrt{\frac{a_{\max }}{l} \log n} \cdot \Delta-\frac{2}{9}\left(\frac{1}{5 \lambda^{1.5}}\right)^{2}\right)\left(b_{1}^{t}-b_{m}^{t}\right)\right) \\
& -3 \frac{a_{1}}{\sqrt{l}}-d_{1} .
\end{aligned}
$$

We have

- $(1-o(1)) F \leq F_{0} a_{1} \leq F$.
- $2 \Gamma \Delta \leq \frac{1}{5 \lambda^{3}}$.
- $5 \sqrt{\frac{a_{\max }}{l} \log n} \cdot \Delta \leq \frac{5}{10^{2} \lambda^{2}} \cdot \frac{1}{10 \lambda^{3}}$.
- $b_{1}^{t}-b_{m}^{t} \leq(1+\lambda) b_{1}^{t}$.
- $3 \frac{a_{1}}{\sqrt{l}}=O\left(a_{1} \frac{\Delta}{\sqrt{m \log n}}\right)=o\left(F b_{1}^{t}\right)$ (since $F \geq \frac{3}{2} \Delta \sqrt{l} / m \geq 150 \lambda^{2} \Delta^{-\epsilon}$ and $b_{1}^{t} \geq$ $\left.\frac{1}{2} a_{1} \Delta\right)$.
- $d_{1}=\frac{1}{\lambda^{2}} \cdot a_{1} \Delta \leq \frac{1}{75 \lambda^{4}} F b_{1}^{t}$.

Thus,

$$
\begin{aligned}
b_{1}^{t+1} & \geq F_{0} a_{1} \cdot(1-Y) b_{1}^{t}-\left(\frac{\lambda+1}{5 \lambda^{3}}+\frac{\lambda+1}{200 \lambda^{5}}+\frac{2(\lambda+1)}{225 \lambda^{3}}+\frac{1}{75 \lambda^{4}}+o(1)\right) F b_{1}^{t} \\
& \geq F_{0} a_{1}(1-Y) b_{1}^{t}-\frac{1}{4 \lambda^{2}} F b_{1}^{t} .
\end{aligned}
$$

Now,

$$
\sum_{j=1}^{m} a_{j} b_{j}^{t} \leq a_{1} b_{1}^{t}+\sum_{j=2}^{m} a_{j} b_{2}^{t}=a_{1} b_{1}^{t}+\left(1-a_{1}\right) b_{2}^{t} \leq \frac{2}{3} b_{1}^{t}+\frac{1}{3} b_{2}^{t}=\left(\frac{2}{3}+\frac{1}{3} r_{2}^{t}\right) b_{1}^{t} .
$$

Therefore, $1-Y \geq \frac{1}{3}\left(1-r_{2}^{t}\right) b_{1}^{t} \geq \frac{1}{3 \lambda}$ and

$$
\begin{aligned}
b_{1}^{t+1} & \geq(1-o(1))(1-Y) F b_{1}^{t}-\frac{1}{4 \lambda^{2}} F b_{1}^{t} \geq\left(1-o(1)-\frac{3 \lambda}{4 \lambda^{2}}\right)(1-Y) F b_{1}^{t} \\
& \geq\left(1-\frac{1}{\lambda}\right)(1-Y) F b_{1}^{t} \geq \frac{1}{2} \cdot \frac{1}{3 \lambda} \cdot F b_{1}^{t} \geq \frac{1}{6 \lambda} \cdot 150 \lambda^{2} \Delta^{-\epsilon} b_{1}^{t}>2 \Delta^{-\epsilon} b_{1}^{t} .
\end{aligned}
$$

(4) By Lemma 4.2,

$$
\begin{aligned}
b_{i}^{t+1} \leq & F_{0} a_{i}\left(b_{i}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}+\left(2 \Gamma \Delta-5 \sqrt{\frac{a_{\max }}{l} \log n} \cdot \Delta-\frac{2}{9}\left(\frac{1}{5 \lambda^{1.5}}\right)^{2}\right)\left(b_{1}^{t}-b_{m}^{t}\right)\right) \\
& +3 \frac{a_{i}}{\sqrt{l}}+d \\
\leq & F_{0} a_{i}\left(b_{i}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}\right)+\frac{1}{4 \lambda^{2}} F b_{1}^{t} \\
\leq & F \max \left(0, b_{i}^{t}-\sum_{j=1}^{m} a_{j} b_{j}^{t}\right)+\frac{1}{4 \lambda^{2}} F b_{1}^{t} \\
\leq & \left(\max \left(0, r_{i}^{t}-Y\right)+\frac{1}{4 \lambda^{2}}\right) F b_{1}^{t} .
\end{aligned}
$$

We have already shown above that

$$
b_{1}^{t+1} \geq\left(1-\frac{1}{\lambda}\right)(1-Y) F b_{1}^{t}
$$

Hence

$$
r_{i}^{t+1} \leq \frac{\max \left(0, r_{i}^{t}-Y\right)+\frac{1}{4} \lambda^{-2}}{\left(1-\lambda^{-1}\right)(1-Y)} \leq\left(1+\frac{2}{\lambda}\right) \frac{\max \left(0, r_{i}^{t}-Y\right)+\frac{1}{4} \lambda^{-2}}{1-Y}
$$

As

$$
\sum_{j=1}^{m} a_{j} b_{j}^{t} \geq \sum_{j=1}^{m} a_{j} b_{m}^{t}=b_{m}^{t}=r_{m}^{t} b_{1}^{t},
$$

we have that $Y \geq r_{m}^{t} \geq-2^{3^{t}}$, and it follows that

$$
\begin{aligned}
r_{i}^{t+1} & \leq\left(1+\frac{2}{\lambda}\right) \frac{r_{i}^{t}-r_{m}^{t}+\frac{1}{4} \lambda^{-2}}{1-r_{m}^{t}} \leq\left(1+\frac{2}{\lambda}\right) \frac{1-\frac{1}{2^{3^{t}}}+2^{3^{t}}+\frac{1}{4} \lambda^{-2}}{1+2^{3^{t}}} \\
& \leq 1+\frac{2}{\lambda}+\frac{2}{1+2^{3^{t}}} \cdot \frac{1}{4 \lambda^{2}}-\frac{1}{2^{3^{t}}\left(1+2^{3^{t}}\right)} \leq 1-\frac{1}{2^{3^{t+1}}} .
\end{aligned}
$$

Using similar arguments we obtain that

$$
\begin{aligned}
r_{i}^{t+1} & \geq\left(1+\frac{2}{\lambda}\right) \frac{\min \left(0, r_{i}^{t}-Y\right)-\frac{1}{4} \lambda^{-2}}{1-Y} \geq\left(1+\frac{2}{\lambda}\right) \frac{r_{i}^{t}-1-\frac{1}{4} \lambda^{-2}}{1-\left(\frac{2}{3}+\frac{1}{3} r_{2}^{t}\right)} \\
& =\left(1+\frac{2}{\lambda}\right) \cdot 3 \cdot \frac{r_{i}^{t}-1-\frac{1}{4} \lambda^{-2}}{1-r_{2}^{t}} \geq 3\left(1+\frac{2}{\lambda}\right) \frac{-\left(2^{3^{t}}+1\right)-\frac{1}{4} \lambda^{-2}}{1 / 2^{3^{t}}} \\
& \geq-4 \cdot 2^{2 \cdot 3^{t}} \geq-2^{3^{t+1}} .
\end{aligned}
$$

Lemma 6.4. Under the conditions of Lemma 6.2, with probability $1-O\left(1 / n^{3}\right)$, procedure Find_{2} returns a subcluster of V_{1} of size at least $1200 \log n / \Delta^{2}$. The running time of procedure Find ${ }_{2}$ is $O\left(m^{4} \Delta^{-4(1+\epsilon)} \log n+m^{2} \Delta^{-4} \log ^{3} n+m \Delta^{-1} n \log n\right)$.

Proof. If $\Delta \leq \frac{1}{10 \lambda^{3}}$, then from Lemma 6.3 we conclude (similarly to the proof of Lemma 5.6) that with probability $1-O\left(1 / n^{3}\right)$, procedure Find 2 returns a subcluster of size at least $1200 \log n / \Delta^{2}$.

We now consider the case when $\Delta>\frac{1}{10 \lambda^{3}}$. We will show that procedure Find ${ }_{2}$ stop after the first iteration and return a subcluster of V_{1} of the required size.
W.l.o.g. assume that $\hat{b}_{1}^{0} \geq \hat{b}_{2}^{0} \geq \cdots \geq \hat{b}_{m}^{0}$. The proofs of items 1 and 2 in Lemma 6.3 are also valid for the case $\Delta>\frac{1}{1 \hat{\lambda}^{3}}$. Therefore, we have that $\hat{b}_{1}^{0}-\hat{b}_{2}^{0} \geq$ $\frac{1}{2} \hat{b}_{1}^{0} \geq \frac{1}{4} a_{1} \Delta \geq \frac{1}{5} \frac{\Delta}{m}$. For $v \in V_{i}, E\left[f_{0}(v)\right]=\Delta \hat{l} \hat{b}_{i}^{0}$. Thus,
$\min _{v \in S_{0} \cap V_{1}} f_{0}(v)-\max _{v \in S_{0}-V_{1}} f_{0}(v) \geq \Delta \hat{l}\left(\hat{b}_{1}^{0}-\hat{b}_{2}^{0}\right)-2 \cdot \frac{1}{5 \lambda^{2}} D \geq \frac{1}{10 \lambda^{3}} \cdot \hat{l} \cdot \frac{1}{5} \frac{\Delta}{m}-\frac{2}{5 \lambda^{2}} D>D$.
Hence, procedure Find 2_{2} stops at Step 10 and $\left\{v_{1}, \ldots, v_{j}\right\}=V_{1} \cap S_{0}$.
As the number of iterations is at most $\lceil 1 / \epsilon\rceil=O(1)$, the time complexity of Find $_{2}$ is $O\left(s \hat{l}+l \hat{l}+u_{1} u_{2}\right)=O\left(l \hat{l}+u_{1} u_{2}\right)=O\left(m^{4} \Delta^{-4(1+\epsilon)} \log n+m^{2} \Delta^{-4} \log ^{3} n+\right.$ $m n \log n$).

Combining Lemma 5.6 and Lemma 6.4 proves Theorem 1.2.

Acknowledgements

We thank Noga Alon, Chaim Linhart, and Yossi Richter for helpful discussions.
R. Shamir was supported in part by the Israel Science Foundation (grant 309/02).

References

[1] A. Ben-Dor, R. Shamir, and Z. Yakhini, Clustering gene expression patterns, J. of Computational Biology 6 (1999), 281-297.
[2] R. B. Boppana, Eigenvalues and graph bisection: An average-case analysis, Proc. 28th Symposium on Foundation of Computer Science (FOCS 87), 1987, pp. 280-285.
[3] T. Carson and R. Impagliazzo, Hill-climbing finds random planted bisections, Proc. 12th Symposium on Discrete Algorithms (SODA 01), ACM press, 2001, pp. 903-909.
[4] A. E. Condon and R. M. Karp, Algorithms for graph partitioning on the planted partition model, Random Structures and Algorithms 18 (2001), no. 2, 116-140.
[5] M. E. Dyer and A. M. Frieze, The solution of some random NP-hard problems in polynomial expected time, J. of Algorithms 10 (1989), no. 4, 451-489.
[6] U. Feige and J. Kilian, Heuristics for semirandom graph problems, J. of Computer and System Sciences 63 (2001), no. 4, 639-671.
[7] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13-30.
[8] M. Jerrum and G. B. Sorkin, The Metropolis algorithm for graph bisection, Discrete Applied Math 8 (1998), 155-175.
[9] A. Jules, Topics in black box optimization, Ph.D. thesis, U. California, 1996.
[10] C. McDiarmid, Centering sequences with bounded differences, Combinatorics, Probability and Computing 6 (1997), no. 1, 79-86.
[11] F. McSherry, Spectral partitioning of random graphs, Proc. 42nd Symposium on Foundation of Computer Science (FOCS '01), 2001, pp. 529-537.
[12] V. V. Petrov, Sums of independent random variables, Springer-Verlag, 1975.
[13] P. van Beek, Z. Wahrscheinlichkeitstheorie verw. Geb. 23 (1972), no. 3, 187196.
[14] Z. Yakhini, Personal communications, 2000.

List of Symbols

SymbolMeaningIntroduced on page$\Delta \quad p-r$ 1
$\Gamma \quad \max _{i}\left|a_{i}-\frac{1}{m}\right|$ 17
$A_{i} \quad\left|V_{i}\right|$ 7
$a_{i} \quad\left|V_{i}\right| / n$ 7
$A_{\text {max }} \max _{i} A_{i}$ 7
$a_{\text {max }} \quad A_{\text {max }} / n$ 7
$b_{i}^{t} \quad \mathrm{I}\left(V_{i}, L_{t}, R_{t}\right)$ 23
$c_{i}(f) \quad 2 a_{i} \sum_{j \neq i} a_{j}\left(p_{i j}^{>}(f)-p_{i j}^{<}(f)\right)$ 14
$c_{i}^{0} \quad c_{i}\left(d_{\{u\}}\right)$ 23
$c_{i}^{t} \quad c_{i}\left(d_{L_{t}}-d_{R_{t}}\right)$ 23
$d_{S}(v)$ Number of neighbors of v in S 3
$d_{t} \quad \begin{cases}\frac{1}{100} \cdot \frac{\Delta}{m} & \text { if } t \leq 2 \\ \frac{1}{100} \cdot \frac{\Delta}{m} \sqrt{\log n} & \text { if } t \geq 3\end{cases}$ 23$f_{t}(v) d_{\hat{L}_{t}}(v)-d_{\hat{R}_{t}}(v)$23
$\mathrm{I}\left(V_{i}, L, R\right) \frac{\left|V_{i} \cap L\right|-\left|V_{i} \cap R\right|}{|L|}$ 13
$k \quad \min _{i}\left|V_{i}\right|$ 1
$m \quad$ Number of clusters 1
$n \quad$ Number of vertices 2
$p \quad$ Probability for an edge between vertices of same cluster 1
$p_{i j}^{>}(f) P\left[f(v)>f(w) \mid v \in V_{i} \cap T, w \in V_{j} \cap T\right]$ 14
$r \quad$ Probability for an edge between vertices of different clusters 1
$r_{i}^{t} \quad b_{i}^{t} / b_{1}^{t}$ 23
$V_{i} \quad i$-th underlying cluster 1

[^0]: *A preliminary version containing some of the results has been published in the Proceedings of the Eighth Scandinavian Workshop on Algorithm Theory (SWAT 02).
 ${ }^{\dagger}$ School of Computer Science, Tel Aviv University. E-Mail: rshamir@tau.ac.il.
 ${ }^{\ddagger}$ Department of Computer Science, Ben-Gurion University of the Negev. Email: dekelts@cs. bgu.ac.il

