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Abstract

We model noisy clustering data using random graphs: Clusters correspond
to disjoint sets of vertices. Two vertices from the same set (resp., different
sets) share an edge with probability p (resp., r < p). We give algorithms that
reconstruct the clusters from the graph with high probability. Compared to
previous studies, our algorithms have lower time complexity and apply under
wider parameter range.

1 Introduction

Clustering is a fundamental problem that has applications in many areas. We study
the clustering problem using a random graph model: A random cluster graph is a
random graph G = (V, E) which is built by the following process: The vertex set
V is a union of disjoint sets V1, . . . , Vm called clusters. Each two vertices from the
same set are connected by an edge with probability p, and each two vertices from
different sets are connected by an edge with probability r < p. The random choices
are all independent. The clustering problem is, given a random cluster graph G, to
find the clusters V1, . . . , Vm.

The random cluster graph models a common situation in experimental data,
where noise obscures the true clusters: The probability 1 − p is the false negative

probability, i.e., the chance of incorrectly having no edge between two vertices of
a cluster. Similarly, r is the false positive probability. If errors of each type are
independent and identically distributed, one gets the above model.

In this paper we give several algorithms that solve the clustering problem with
high probability. When addressing the clustering problem under the random graph
model, several parameters are interrelated: Obviously, the smaller the gap ∆ = p−r,
the harder the problem. Also, the size of the smallest cluster k = mini |Vi| is limiting
the performance, as very small clusters may be undetectable due to noise. The value
k also bounds the number of clusters m. The challenge is to obtain provably good
performance for a wide range of values for each parameter. All previous studies

∗A preliminary version containing some of the results has been published in the Proceedings of
the Eighth Scandinavian Workshop on Algorithm Theory (SWAT 02).

†School of Computer Science, Tel Aviv University. E-Mail: rshamir@tau.ac.il.
‡Department of Computer Science, Ben-Gurion University of the Negev. Email: dekelts@cs.

bgu.ac.il

1



addressed the problem when the number of clusters is constant and most studied
the case of two equal sized clusters. Our algorithms relax both of these assumptions
simultaneously and at the same time achieve better running time.

Let us be more precise. Denote the total number of vertices in the graph by n.
Our first result is an algorithm for the case when the sizes of the clusters are equal
or almost equal:

Theorem 1.1. There is an algorithm that solves the clustering problem with prob-

ability 1−O(1/n) when maxi |Vi|/k ≤ 1 + 1/(10000 logn) and k ≥ 108∆−1
√

n log n.

The running time of the algorithm is O(m4∆−4 log3 n · (m+logn)+m∆−2n log n) =
O((m/ logn + 1)n2).

We also give an algorithm for the general case where the clusters have arbitrary
sizes.

Theorem 1.2. For every constant ε > 0 there is an algorithm that solves the cluster-

ing problem with probability 1−O(1/n) when k ≥ 10628·3d1/εe+1

∆−1
√

n log n(
√

log n+
∆−ε). The running time of the algorithm is O(m5∆−4(1+ε) log n + m3∆−4 log3 n +
(m2 + m∆−2)n log n) = O(mn2/ log n).

We note that we did not optimize the constants in the bounds on k in the two
theorems since optimizing these constants would have complicated the proofs.

1.1 Previous Results

The random graph model was studied by several authors [1–6,8,9]. In these papers,
the input is a random cluster graph, and the goal is to find a vertex partition which
minimizes some function, e.g., the number of edges between different sets. It is not
hard to show that w.h.p., the partition V1, . . . , Vm is optimal, and therefore these
problems are asymptotically equivalent to the clustering problem. A comparison
between the results of these papers and our results is given in Table 1. The al-
gorithms presented here have a wider range of provable performance than each of
the previous algorithms, and are also faster when restricted to the same parameter
range. For example, for unequal sized clusters, the algorithm of Ben-Dor et al. [1]
requires k = Ω(n) and ∆ = Ω(1), while our algorithm can handle instances with
k = Θ(

√
n log n), and instances with ∆ = Θ(n−1/2+ε). Furthermore, under the re-

quirements of Ben-Dor et al., the running time of our algorithm is O(n log n). For
the case of two equal sized clusters, our algorithm handles almost the same range
of ∆ as the algorithm of Boppana [2], but our algorithm is faster, and is also more
general since it handles as many as m = Θ(

√
n/ log n) clusters.

We note that Table 1 cites results as given in the papers, even though in several
cases better results can be obtained by improving the analysis or by making small
modifications to the algorithms. For example, the algorithm of Condon and Karp
can be extended to the case when the number of clusters is non-constant. Also, the
running time of the algorithm of Ben-Dor et al. can be reduced to O(n logn) [14].

Independently, McSherry [11] gave a polynomial time algorithm for the clustering
problem that requires that k = Ω(∆−1

√
n log n + ∆−2/3n2/3). For the case of equal

sized clusters, our algorithm has a wider range of k when ∆ = ω(n−1/2 log3 n), while
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(a) General case.

Paper Requirements Complexity
k ∆

Ben-Dor et al. [1] Ω(n) Ω(1) O(n2 logO(1) n)
This paper Ω(∆−1

√
n log n(

√
log n + ∆−ε)) Ω(n−1/2+ε)∗ O(mn2/ log n)

(b) Equal sized clusters.

Paper Requirements Complexity
m ∆

Dyer & Frieze [5] 2 Ω(n−1/4 log1/4 n) O(n2)
Boppana [2] 2 Ω(

√
pn−1/2

√
log n) nO(1)

Jerrum & Sorkin [8] 2 Ω(n−1/6+ε) O(n3)
Jules [9] 2 Ω(1) O(n3)
Condon & Karp [4] O(1) Ω(n−1/2+ε) O(n2)
Carson & Impagliazzo [3] 2 ω(

√
pn−1/2 log n) O(n2)

Feige & Kilian [6] 2 Ω(
√

pn−1/2
√

log n) nO(1)

This paper O(
√

n/ log n)∗ Ω(mn−1/2 log n) O(( m
log n

+ 1)n2)

Table 1: Results on the clustering problem (sorted in chronological order). For the
comparison, the lower bound k = Ω(∆−1

√
n log n) of our algorithm for equal sized

clusters was translated to a lower bound on ∆ using the fact that k ≤ n/m. Note
that all previous papers assume m = 2 or m = O(1) (the requirement k = Ω(n)
in [1] implies that m = O(1)), and all except [1] assume equal sized clusters. For the
values that are marked by ∗, no implicit requirement is made, and the requirement
is implied by the bound on the other parameter.

McSherry’s algorithm has a wider range of k when ∆ = o(n−1/2 log3 n) (note that
McSherry’s algorithm has a lower bound of Ω(n−1/2

√
log n) on ∆). For the case of

unequal clusters, our algorithm has a wider range of k when ∆ ≥ n−1/2+ε for some
ε > 0, while McSherry’s algorithm has a wider range of k when ∆ is smaller.

1.2 Outline of our approach

In the rest of this section we outline the basic techniques that we use and their
differences from previous studies. Our approach is similar to that of the algorithm
of Condon and Karp [4] (we will refer to it as the CK algorithm). For a vertex v in
a graph G, and a set S of vertices of G, let dS(v) denote the number of neighbors of
v in S. We will first give a detailed description of the CK algorithm (in a slightly
simplified version, for clarity):

1. Begin with empty sets L and R. Choose n/4 pairs of vertices (without repeti-
tions). Repeatedly, for each pair v, w, compute the expressions dL(v)− dR(v)
and dL(w)− dR(w). Add the vertex whose expression is larger to L, and add
the other vertex to R.
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2. Sort all the vertices in decreasing order according to their dL(·) values, and
find the largest gap in the sorted sequence. If this gap is small, output V and
stop. Otherwise, put the vertices before the gap into a set L′, and the vertices
after the gap into a set R′.

3. Recursively solve the problem on the subgraph induced by L′ and on the
subgraph induced by R′.

We will say that each pair v, w in step 1 are in a duel, and the winner of the duel
is the vertex whose expression is larger.

The analysis of the algorithm is based on the notion of imbalance: The L, R-

imbalance of a cluster Vi is the number of vertices of Vi in L minus the number of
vertices of Vi in R. The imbalance of L, R is the maximum value amongst the L, R-
imbalance of the clusters, and the secondary imbalance of L, R is the second largest
value. Let l1, . . . , lm denote the L, R-imbalances of the cluster V1, . . . , Vm at some
point of the algorithm, sorted in a non increasing order (namely, l1 ≥ l2 ≥ · · · ≥ lm).
Condon and Karp showed that during the first step of the algorithm, the imbalance
of L, R behaves like a random walk with growing bias for increase. The general idea
of the proof is that the imbalance changes only when there is a duel in which one
vertex is from V1 and the other vertex is not. Furthermore, for such a duel, it is
more likely that the vertex from V1 will win (namely, the vertex will be added to
L), and therefore the imbalance will increase. More precisely, given some vertices
v, w /∈ L ∪ R, the random variable X = (dL(v) − dR(v)) − (dL(w) − dR(w)) is a
sum of 4|L| independent random variables. The expectation of X depends on the
L, R-imbalances of the clusters that contain v and w: If v ∈ Vi and w ∈ Vj then
the expectation of X is ∆|L| · (li − lj). Using estimates on sums of independent
random variables (Esseen’s inequality), it is shown that the probability that v will
win (which is equal to the probability that X > 0 plus half of the probability that
X = 0) is 1/2 + Ω(min(1, (li − lj)∆/

√

|L|)) for i > j. It follows that with high
probability (w.h.p.), at the end of Step 1, the imbalance of L, R is Θ(n).

We now consider the second step of the algorithm, which we will call the splitting

step, and suppose that there are at least two clusters. Using Chernoff bounds, w.h.p.,
for every vertex v, the deviation of dL(v) from its expectation is at most α = n1/2+ε/2.
The expectation of dL(v) depends on the imbalance of the cluster that contains v:
If v ∈ Vi then the expectation of dL(v) is roughly Ai = ∆( n

4m
+ li/2) + r n

4
. There is

an index i such that li− li+1 ≥ (l1− lm)/(m−1) = Ω(n/m) (the last equality follows
from the fact that l1 = Θ(n) and lm ≤ 0). Therefore, Ai − Ai+1 = Ω(∆n/m) =
Ω(n1/2+ε), and the largest gap in the sorted sequence of dL(·) values is at least
Ai − Ai+1 − 2α = Ω(n1/2+ε). It follows that w.h.p., every cluster Vi, is contained
either in L′ or in R′.

We now give a short description of our algorithms. The main difference between
our algorithm and the CK algorithm is the distribution of the li-s. The success
of the splitting step in the CK algorithm depends on having a large gap in the
sequence of the li-s. As shown previously, this gap is Ω(n/m), and this bound
is true also in case m is not a constant (this case was not analyzed by Condon
and Karp). Furthermore, this lower bound is likely to be tight: Condon and Karp
conjectured (and showed in simulations) that w.h.p., at the end of Step 1, the li-s
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are distributed uniformly between l = (1 − 1/m) n
4m

and −l, namely l1, . . . , lm ≈
l, (1 − 2

m
)l, (1 − 4

m
)l, . . . ,−(1 − 2

m
)l,−l. This implies that the largest gap in the

li-s sequence is Θ(n/m). In contrast, our algorithms were designed in order to keep
the value of l2 much smaller than l1 (for example, l2 ≤ 1

10
l1), and use this fact to

achieve a Θ(n) gap. This allows us to give better algorithms for the case where m
is non-constant.

In order to build the sets L and R with the desired imbalances, our algorithm
performs the following steps:

Initialization Build sets L0 and R0 with “large” imbalance and “small” secondary
imbalance.

Imbalance amplification For t = 1, 2, . . ., build a pair of sets Lt, Rt from Lt−1, Rt−1

such that the imbalance of Lt, Rt is at least twice the imbalance of Lt−1, Rt−1,
and the secondary imbalance of Lt, Rt is much smaller than the imbalance of
Lt, Rt.

For building the pair Lt, Rt from Lt−1, Rt−1, we use a process similar to the CK
algorithm. We perform duels between disjoint pairs of vertices from V−(Lt−1∪Rt−1):
For each pair v, w we compute the expressions dLt−1

(v) − dRt−1
(v) and dLt−1

(w) −
dRt−1

(w). The vertex whose expression is larger is added to Lt, and the other vertex
is added to Rt. Our algorithm and its analysis are similar to the CK algorithm, but
there are several important differences:

• As described above, the analysis of the CK algorithm involves only l1, while our
analysis is for all the li-s (in our algorithm, the li-s are the Lt, Rt-imbalances
for the current pair Lt, Rt).

• In the CK algorithm, the outcome of a duel depends on the outcome of all
previous duels. Due to the strong dependency between the duels, the analysis
of the CK algorithm uses bounds on biased random walk. In our algorithm, the
duels that are performed when building Lt and Rt depend only on the outcome
of the duels that were performed when building Lt−1 and Rt−1. Due to this
limited dependency, we do not need to use random walks in our analysis, and
we are able to give tighter bounds on behavior of the li-s.

• In our algorithm, the behavior of the li-s goes a phase transition when t in-
creases: For small t, the li-s behave “nicely”, that is l2 ≤ 1

10
l1. However, for

large t, the behavior changes, and in particular l2 might be very close to l1. We
therefore need to stop the imbalance amplification stage at the correct step.
In contrast, the CK algorithm does not require stopping at a precise step.

• Since in our algorithm we have a large gap between l1 and l2, we can use a
modified splitting step: Instead of finding the maximum gap in the sorted
dL(·) values, we find the first gap which is large enough. The result is that
w.h.p. the set L′ will contain only one cluster (V1).
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We note that the algorithms presented here might not be directly applicable in real-
life applications since our analysis holds only for large n, and since real life data
might not behave like the random cluster graph model. However, the ideas we use
may lead to improved heuristic algorithms.

The rest of this paper is organized as follows: Section 2 contains notation and
estimates on the sum of independent random variables. Section 3 and Section 4
contain the basic ideas for the algorithms. The algorithm for the case of almost
equal sized clusters is given in Section 5, and the algorithm for the general case is
given in Section 6. We provide at the end of the paper a list of the main symbols
used in the paper and their meaning.

2 Preliminaries

For a graph G = (V, E) and a vertex v ∈ V , we denote by N(v) the set of neighbors
of v. We use d(v) to denote the degree of a vertex v, namely d(v) = |N(v)|. For
a vertex v and a set S of vertices, denote dS(v) = |N(v) ∩ S|. In particular, for
u 6= v, d{u}(v) is equal to 1 if (u, v) ∈ E and 0 otherwise. For a set of vertices S, let
GS denote the subgraph of G induced by S. When we need to distinguish between
several graphs, we will use nG to denote the number of vertices in the graph G, and
we will do the same for other parameters of G.

For proving the correctness of our algorithms we need the following known results
which give estimates on the sum of independent random variables.

Theorem 2.1 (Esseen’s Inequality). Let X1, . . . , Xn be independent random vari-

ables such that E [|Xi|3] <∞ for i = 1, . . . , n. Let X =
∑n

i=1 Xi, Bn =
∑n

i=1 E [X2
i ],

and Ln = B
−3/2
n

∑n
i=1 E

[

|Xi − E [Xi]|3
]

. Then
∣

∣P [X > 0]− Φ(E [X] /
√

Bn)
∣

∣ ≤
ALn, where A is an absolute constant and Φ(x) denotes the normal (0, 1) cumula-

tive distribution function.

For a proof of Esseen’s inequality see [12, p. 111]. Esseen’s inequality holds for
A = 4

5
[13].

Esseen’s inequality gives an estimate on the distribution of a sum of independent
random variables. A stronger estimate on the tail of this distribution and other
distributions is given by the following theorem of McDiarmid [10] (this theorem
generalizes previous results by Hoeffding [7] and others).

Theorem 2.2. Let X1, . . . , Xn be random variables, with 0 ≤ Xi ≤ 1 for all i, and

let Yi =
∑i

j=1 Xj. If for all i ≥ 2, E [Xi|Yi−1 = x] is a non-increasing function

of x, then P [Yn − E [Yn] ≥ a] ≤ L(n, E [Yn] , a) for every a ≤ n − E [Yn], where

L(n, µ, a) =
(

µ
µ+a

)µ+a (
n−µ

n−µ−a

)n−µ−a

.

We shall use Theorem 2.2 on two types of distributions: sum of independent random
variables distribution and the hypergeometric distribution (see [10]). Using standard
bounds on L(n, µ, a) we obtain the following corollaries:

Corollary 2.3. Let X1, . . . , Xn be independent Bernoulli random variables, and

let X =
∑n

i=1 Xi. If E [X] ≤ y then P [|X − E [X] | > a] ≤ 2e−a2/3y for every

0 ≤ a ≤ y.
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Corollary 2.4. Let A be a set with n elements, and B be a subset of A with k ele-

ments. Let S be a random subset of A of size s. If k
n
s ≤ y then P

[
∣

∣|B ∩ S| − k
n
s
∣

∣ > a
]

≤
2e−a2/3y for every 0 ≤ a ≤ y.

In the next sections, we use Corollary 2.4 in a slightly different scenario: The set S
is chosen randomly from A−S ′, where S ′ is a random set subset of A that is chosen
before S is chosen. Choosing S ′ ⊆ A and then S ⊆ A− S ′ is equivalent to choosing
S ⊆ A and then S ′ ⊆ A− S. Therefore, we can still use Corollary 2.4 on S.

3 The basic algorithm

In this section we give a top-level description of our algorithms.
Let G = (V, E) be a random cluster graph. Denote Ai = |Vi| and ai = |Vi|/n. We

also denote Amax = maxi Ai and amax = Amax/n. A set S ⊆ V is called a subcluster

if S ⊆ Vi for some cluster Vi. An induced subgraph GS is called a cluster collection

if for all i, either Vi ⊆ S or Vi ⊆ V −S. Suppose we have a procedure Find(G, S, ∆e)
that receives a random cluster graph G = (V, E), a set S ⊆ V and a lower bound ∆e

on ∆. Find(G, S, ∆e) returns a subcluster of G of size Ω(log n/∆2
e) that is contained

in S. To compute this subcluster, procedure Find only considers vertices and edges
in GS. Now, we use the following algorithm for solving the clustering problem:
Repeatedly, find a subcluster S in the input graph, find the cluster that contains S
(using a procedure similar to the splitting step of the CK algorithm), and remove
the cluster from the graph. We now give a formal description of the algorithm. The
input to algorithm Solve is an input graph G, and a lower bound ∆e on the value
of ∆. In the following, when we write t− 1, the subtraction is performed modulo 3,
that is t− 1 = 3 when t = 1.

Solve(G, ∆e):
1: while True
2: Randomly partition the vertices of G into equal sized sets W1, W2, and W3.
3: S0 ← Find(G, W3, ∆e).
4: Let n be the number of vertices of G, s = 200 logn/∆2

e and D = 4
√

3
√

s log n.
5: For t = 1, 2, 3 do
6: If t = 1 then let S ′

t−1 be a random subset of S of size s.
7: else let S ′

t−1 be a random subset of St−1 of size s.
8: Let vt

1, . . . , v
t
n/3 be an ordering of Wt such that dS′

t−1
(vt

1) ≥ dS′
t−1

(vt
2) ≥

· · · ≥ dS′
t−1

(vt
n/3).

9: If maxj{dS′
t−1

(vt
j)− dS′

t−1
(vt

j+1)} ≤ D then output V and stop.
10: Let j be the index such that dS′

t−1
(vt

j)− dS′
t−1

(vt
j+1) is maximum.

11: Let St = {vt
1, . . . , v

t
j}.

12: If |St| < s then stop.
13: Output S1 ∪ S2 ∪ S3 and delete the vertices in S1 ∪ S2 ∪ S3 from G.

See also Figure 1. For simplicity, we omit floors and ceilings from the description
of the algorithm and its proof.

Note that the partition of the graph into three parts is done in order to avoid
dependencies. This partition guarantees that on step 8 of the algorithm when t = 1,
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W3

S0

S ′
1

S ′
2

S ′
3

S1

S2

S3

Figure 1: The sets created by algorithm Solve. The edges represented are counted
by the algorithm. For example, the set S1 is built by looking at the edges between
W1 and S ′

3.

for every u ∈ S ′
3 and v ∈ W1, the existence of an edge between u and v is independent

of the choice of the set S ′
3. To see this, suppose that the edges of the graph are

not chosen before the algorithm begins, but instead, the existence of an edge is
determined randomly when the algorithm first checks the existence of that edge.
Since procedure Find only considers edges with both endpoints in W3, the existence
of the edges between W3 and W1 has not been determined when the algorithm enters
step 8, so for each u ∈ W3 and v ∈ W1, the event that there is an edge between u
and v is independent of the choice of S ′

3. In fact, this would remain true, even if the
set S ′

3 is chosen by an adversary that can only look at edges in GW3
. We note that

it is suffices to partition the input graph G into two parts. However, we chose to
use three parts to simplify the presentation.

The above principle will be used in other parts of our algorithms: We say that
a pair of vertices (u, v) is considered in some step of the algorithm if in that step,
the existence of an edge (u, v) is checked by the algorithm (for example, (u, v) is
considered when the value of dS(u) is computed for some set S that contains v). A
main design principle in our algorithms is to try to consider each pair (u, v) only
once during the run of the algorithm.

Unfortunately, we cannot meet the goal above: During algorithm Solve, a pair
(u, v) is considered only once in each iteration of the algorithm, but can be considered
several times in different iterations. Thus, we need to change our goal of considering
each pair only once. We assume that procedure Find consists of two stages. The first
stage determines the cluster Vi from which the procedure will return a subcluster,
and the second stage finds a subcluster of Vi. We say that a pair of vertices (u, v)
is important if it is considered during the first stage of some call to procedure Find.
We will design our algorithms so they will have the following property:

Property 1. Each important pair is considered only once during the entire run of
the algorithm.

This property suffices for avoiding dependencies between the iterations of algorithm
Solve as the remaining graph G in the i-th iteration of the algorithm depends only
on the important pairs of the first i − 1 calls to procedure Find (assuming that
the first i − 1 iterations successfully found i − 1 clusters of the graph). In other
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words, the unimportant pairs that were considered during the first i − 1 iterations
(in the second stage of procedure Find or in steps 5–12 of algorithm Solve) have no
influence on the i-th iteration, so we can assume for the analysis that there were no
unimportant edges in the first i− 1 iterations.

Let t(G) be an upper bound on the running time of procedure Find on an input
graph G. The bounds we will use below have the property that t(G′) ≤ t(G) for
every every cluster collection G′ of G (this follows from the fact that t(G) will be
a polynomial in mG, log nG, and ∆−1

G , and we have that mG′ ≤ mG, nG′ ≤ nG, and
∆G′ = ∆G). We use this property in the proof of the following lemma.

Lemma 3.1. Suppose that Find(G, S, ∆e) returns a subcluster of size at least
1200 logn/∆2

e with probability 1 − O(1/n3). If k ≥ √n and ∆e ≤ ∆ then algo-
rithm Solve solves the clustering problem with probability 1−O(1/n). The running
time of algorithm Solve is O(mt(G) + mn log n/∆2

e) with probability 1−O(1/n).

Proof. The main idea for the proof is that the number of edges between a vertex
v and a set S ⊆ Vi is a random variable whose distribution depends on whether
v ∈ Vi. With high probability, the values dS(v) for all v ∈ Vi are significantly larger
than the values dS(v) for all v /∈ Vi, so the algorithm correctly separates the vertices
of Vi from the rest of the vertices.

Consider the first iteration of the algorithm. Assuming that Find(G, W3, ∆e) did
not fail, let Vi be the cluster for which S0 ⊆ Vi. We shall show that if G consists of
one cluster, then with probability 1 − O(1/n3) the algorithm stops at Step 9, and
otherwise, S1 ∪ S2 ∪ S3 = Vi with probability 1− O(1/n3).

We claim that the first iteration fails only if at least one of the following events
happens:

1.
∣

∣

∣
dS′

t−1
(v)− E

[

dS′
t−1

(v)
]
∣

∣

∣
> 1

2
D for some t ∈ {1, 2, 3} and some vertex v ∈ Wt

(assuming that the set S ′
t−1 was built by algorithm Solve).

2. |Vj ∩Wt| < 1
6
Aj for some j and t.

3. Find(G, W3, ∆e) failed.

We will first bound the probability of these events, and then we will show that if
none of these events happens, then the first iteration does not fail.

To bound the probability of the first event, note that E
[

dS′
t−1

(v)
]

≤ s, 2
√

3
√

s log n ≤
s, and the edges between Wt−1 and Wt are independent of the choice of S. Therefore,
using Corollary 2.3 we get that for a fixed t and a fixed v ∈ Wt, the probability that
∣

∣

∣
dS′

t−1
(v)− E

[

dS′
t−1

(v)
]
∣

∣

∣
> 2
√

3
√

s log n = 1
2
D is O(e−(2

√
3
√

s log n)2/3s) = O(n−4).

Thus, event 1 happens with probability O(n−3).
For fixed j and t, Corollary 2.4 gives that the probability that ||Vj∩Wt|− 1

3
Aj| >

1
3
Aj is O(e−( 1

3
Aj)/3) = O(e−

1

9

√
n). Therefore, event 2 happens with probability O(3m·

e−
1

9

√
n) = o(n−3). Finally, event 3 happens with probability O(n−3).

Now assume that events 1–3 do not happen, and consider the first iteration of
steps 5–12 (namely, t = 1). For v ∈ Vi we have that E

[

dS′
3
(v)
]

= sp, and for

v /∈ Vi we have E
[

dS′
3
(v)
]

= sr. Using the assumption that event 1 does not

9



happen, we have that if G consists of one cluster, then |dS′
3
(v) − dS′

3
(v′)| ≤ D for

all v, v′ ∈ W1, and therefore, algorithm Solve stops at Step 9. Otherwise, for two
vertices v, v′ ∈ W1, if either v, v′ ∈ Vi or v, v′ /∈ Vi then |dS′

3
(v)−dS′

3
(v′)| ≤ D, and if

v ∈ Vi and v′ /∈ Vi then dS′
3
(v)−dS′

3
(v′) ≥ sp−sr−D ≥ s∆e−D > D. It follows that

algorithm Solve does not stop at Step 9 when t = 1, and furthermore, S1 = Vi∩W1.
Moreover, since event 2 does not happen, it follows that |Vi∩W1| ≥ 1

6
Ai ≥ 1

6
|S0| ≥ s,

so the algorithm does not stop at Step 12 when t = 1. Using the same arguments,
S2 = Vi ∩W2 and S3 = Vi ∩W3.

Now, using the same arguments as above, the failure probability in the i-th
iteration, assuming the first i − 1 iterations succeeded, is O(1/n3

i ), where ni is
number of vertices in the graph remaining after the first i − 1 iterations. We have
that ni ≥ k ≥ √n, so the failure probability at each iteration is O(1/n3/2). It follows
that the failure probability of the algorithm is O(m/n3/2), and since m ≤ n/k ≤ √n,
we obtain that the overall failure probability is O(1/n).

From the correctness of the algorithm, we have that algorithm Solve performs
exactly m iterations with probability 1 − O(1/n) (note that if events 1–3 occur
during the run of the algorithm, the set S1 ∪ S2 ∪ S3 which is removed from the
graph may not be a cluster, and therefore the algorithm may perform more than m
iterations). The time complexity of a single iteration is O(t(G)+n log n/∆2

e), where
the second term is the time for computing the degrees at step 8 (sorting the degrees
can be done in O(n) time by bin sorting).

Algorithm Solve requires the knowledge of some lower bound ∆e on ∆. Such bound
can be obtained from the bounds on k in Theorems 1.1 and 1.2. For example, if
the bound on k in Theorem 1.1 is satisfied, then ∆ ≥ 108 log n/

√
n. To simplify

the presentation, we will assume for the next algorithms that ∆ and m are known.
The case where these parameters are not known can be handled by replacing the
terms ∆ and m in the algorithms descriptions by ∆e and me, where ∆e is a lower
bound on ∆ and me is an upper bound on m. It is easy to verify that the following
proofs remain correct under these replacements. The intuition for this is that when
using ∆e and me, the algorithm builds larger sets, and therefore the error due to
“randomness” is smaller.

3.1 Handling large clusters and close edge probabilities

In order to present procedure Find, we will need the following additional require-
ments on the input graph:

(R1) k ≥ c
√

n logα n/∆β for some constants α, β, c ≥ 0.

(R2) p, r ∈ [1
4
, 3

4
].

(R3) amax < 2
3

or m = 1.

Note that if a graph G satisfies (R1) then every cluster collection G′ of G′ satisfies
(R1) as the size of the smallest cluster in G′ is greater or equal to the size of the
smallest cluster in G.
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While requirement of the type (R1) is understandable, we would like to get rid
of (R2) and (R3). We will show how to deal with these requirements in the rest of
this section. That is, we will show that if we have a procedure Find that works on
graphs that satisfy (R1)–(R3), then we can solve the clustering problem on every
graph that satisfies (R1).

Let Solve1 be a procedure that runs the first iteration of algorithm Solve on its
input (namely, Solve1 finds one cluster in the input graph). To eliminate (R3) we
use a procedure that recursively partitions the input graph into cluster collections
until subgraphs that satisfy (R3) are obtained. This is done as follows:

Solve2(G):
1: Randomly partition the vertices of G into equal sized sets W1, W2, and W3.
2: Let s = 16000 logn/∆2 and D = 8

√
3
√

s log n.
3: Randomly choose a set W ′

3 of unmarked vertices from W3 of size s, and mark all
the vertices of W ′

3.
4: Let v1, . . . , vn/3 be an ordering of W1 such that dW ′

3
(v1) ≥ dW ′

3
(v2) ≥ · · · ≥

dW ′
3
(vn/3).

5: If maxj{dW ′
3
(vj)− dW ′

3
(vj+1)} ≤ D

6: R← Solve1(G).
7: Output R.
8: If R = V then stop.
9: else call Solve2(GV −R).
10: else
11: Let j be the first index for which dW ′

3
(vj)− dW ′

3
(vj+1) > D.

12: Let S1 = {v1, . . . , vj} and d0 = dW ′
3
(vj).

13: For t = 2, 3 do
14: Randomly choose a set W ′

t−1 of unmarked vertices from Wt−1 of size s, and
mark all the vertices of W ′

t−1.
15: Let St = {v ∈ Wt|dW ′

t−1
(v) ≥ d0 −D/2}.

16: R← S1 ∪ S2 ∪ S3.
17: Call Solve2(GR) and Solve2(GV −R).

Note that the marks on the vertices are maintained globally, namely, a vertex
that is marked when Solve2 is called on a graph G remains marked when Solve2 is
called on subgraphs of G. In order to avoid dependencies, we can make sure that
the vertices that are chosen by Solve2 in steps 3 and 14 will not be chosen in other
steps of the algorithm, and therefore every pairs of vertices that is considered by
Solve2 in steps 4 and 15 is considered only once during the entire algorithm.

Lemma 3.2. If procedure Find returns with probability 1−O(1/n3) a subcluster of
size at least 1200 logn/∆2 on graphs that satisfy (R1)–(R3), then with probability
1 − O(1/n), algorithm Solve2 solves the clustering problem on graphs that satisfy
(R1) and (R2). The running time of algorithm Solve2 is O(mt(G) + mn log n/∆2)
with probability 1− O(1/n).

Proof. The lemma will be proved using the fact that the number of edges between
a vertex v and a random set of vertices T is a random variable, whose distribution
depends on the size of the cluster Vi that contains v. In particular, if Vi is a cluster
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of size at least 2
3
n, then w.h.p., the vertices of Vi will have more edges to T than

vertices in V −Vi, and this allows the algorithm to split the graph G into two cluster
collections, GVi

and GV −Vi
, in steps 11–17. The algorithm might execute steps 11–17

even if amax < 2
3
. Therefore, we need to show that in that case, GR and GV −R are

cluster collections.
The following events may cause algorithm Solve2 to fail during the first invocation

of the algorithm:

1.
∣

∣

∣
dW ′

t−1
(v)− E

[

dW ′
t−1

(v)
]
∣

∣

∣
> 1

4
D for some t ∈ {1, 2, 3} and some vertex v ∈ Wt,

(as before, t− 1 is computed modulo 3).

2. ||Vi ∩ S| − ais| > 1
2
D for some i.

3. Solve1(G) failed (assuming step 6 is executed).

We claim that events 1–3 happen with probability O(n−3): For event 1 this is true
due to Corollary 2.3. For event 2, this follows from Corollary 2.4. Finally, the proof
of Lemma 3.1 gives that probability that event 3 happens is O(n−3), assuming that
(R3) is satisfied.

Now, assume that events 1 and 2 do not happen. We first show that (R3) is
satisfied if step 6 is executed. To show this, we will show that if (R3) is not satisfied,
then the condition in step 5 is not satisfied. Suppose that (R3) is not satisfied,
namely ai ≥ 2/3 for some cluster Vi. Denote A′

j = |Vj ∩W ′
3|. For v ∈ Vj ∩W1 we

have that E
[

dW ′
3
(v)|A′

j

]

= A′
jp + (s−A′

j)r = sr + A′
j∆. Therefore, for v ∈ Vi ∩W1

and v′ ∈ Vj ∩W1 (for j 6= i) we have

dW ′
3
(v)− dW ′

3
(v′) > (sr + (ais−

1

2
D)∆− 1

2
D)− (sr + ajs∆ +

1

2
D∆ +

1

2
D)

= (ai − aj)s∆− (1 + ∆)D ≥ 1

3
s∆− 2D ≥ D.

Since this is true for all v and v′, we obtain that minv∈Vi∩W1
dW ′

3
(v)−maxv∈W1−Vi

dW ′
3
(v) >

D, so the condition in step 5 is not satisfied. For the rest of the proof, assume that
events 1–3 do not happen.

If the condition in step 5 of the algorithm is satisfied then R is a cluster and
GV −R is a cluster collection. We next show that if the condition in step 5 is not
satisfied then GR and GV −R are cluster collections. To show this, we will show
that GSt is a cluster collection of GWt for t = 1, 2, 3, and moreover, the collections
GS1

, GS2
, and GS3

contain the same clusters, namely Vi ∩W1 ⊆ S1 if and only if
Vi ∩W2 ⊆ S2, and if and only if Vi ∩W3 ⊆ S3.

Suppose that the condition in step 5 is not satisfied, namely maxj{dW ′
3
(vj) −

dW ′
3
(vj+1)} > D. Then, for every cluster Vi, the set Vi ∩W1 is contained in either

S1 or W1− S1 (as for two vertices v and v′ from the same cluster we have |dW ′
3
(v)−

dW ′
3
(v′)| ≤ 1

2
D). In other words, GS1

is a cluster collection of GW1
.

For two vertices v ∈ W1 and v′ ∈ W2 from some cluster Vi, we have that
E
[

dW ′
3
(v)
]

= E
[

dW ′
1
(v′)
]

. Therefore, |dW ′
3
(v) − dW ′

1
(v′)| ≤ 1

2
D. Furthermore, if

Vi ∩W1 ⊆ S1 then dW ′
3
(v) ≥ d0 and otherwise dW ′

3
(v) < d0 −D. In the former case

we have dW ′
1
(v′) ≥ d0 − 1

2
D, and in the latter case dW ′

1
(v′) < d0 − 1

2
D. We conclude
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that Vi ∩W2 is contained in either S2 or W2 − S2, and Vi ∩W2 ⊆ S2 if and only if
Vi ∩W1 ⊆ S1. The same can be shown for Vi ∩W3. Therefore, GR and GV −R are
cluster collections.

Let G1, . . . , Gm′ denote the graphs on which procedure Solve1 is called during
the run of Solve2(G). From the above, we have that the failure probability of the

algorithm is O(
∑m′

i=1 n−3
Gi

) = O(m′/n3/2) = O(1/n). We now compute the running
time of algorithm Solve2. The total number of calls to Solve2 is at most 2m (there
are at most m calls to Solve2 in which the condition in step 5 is satisfied, and at
most m calls in which the condition is not satisfied). Therefore, the total time not
including the calls to Solve1 is O(m · sn) = O(mn log n/∆2). The total time of the

calls to Solve1 is O(
∑m′

i=1(t(Gi) + nGi
log nGi

/∆2)) = O(mt(G) + mn log n/∆2).

To eliminate (R2), we transform the input graph to a graph that always satisfies
(R2) using the following algorithm:

Solve3(G):
1: Build a graph G′ on the vertex set of G in the following way: For every pair of

vertices u and v, add the edge (u, v) to G′ with probability 3
4

if (u, v) is an edge
in G, and with probability 1

4
otherwise.

2: Call Solve2(G
′).

Lemma 3.3. If procedure Find returns with probability 1−O(1/n3) a subcluster of
size at least 1200 logn/∆2 on graphs that satisfy (R1)–(R3) (where (R1) is satisfied
with constants α, β, and c), then with probability 1 − O(1/n), algorithm Solve3

solves the clustering problem on in input graphs that satisfy (R1) (with constants
α, β, and 2β · c). The running time of Solve3 is O(mt(G′) + mn log n/∆2) with
probability 1− O(1/n).

Proof. Clearly, G′ is a random cluster graph on the clusters V1, . . . , Vm with edge
probabilities pG′ = 3

4
pG + 1

4
(1 − pG) = 1

2
pG + 1

4
and rG′ = 1

2
rG + 1

4
. Moreover, G′

satisfies (R1) (as ∆G′ = 1
2
∆G) and (R2), so by Lemma 3.2, algorithm Solve3(G)

solves the clustering problem with probability 1− O(1/n).

4 The partition procedure

In the previous section, we presented the basic structure of our algorithms. We still
need to show how to build procedure Find, namely, how to find a subcluster of size
at least 1200 log n/∆2. In this section we give the main ideas, and we will use these
ideas in sections 5 and 6 to explicitly build procedure Find.

One of the key elements we use is the notion of imbalance which was also used
in [8] and [4]. We use here a slightly different definition for imbalance than the one
used in these papers (and in the introduction): For two disjoint sets L, R of vertices,
with |L| = |R|, we define the L, R-imbalance of Vi, denoted I(Vi, L, R), by

I(Vi, L, R) =
|Vi ∩ L| − |Vi ∩ R|

|L| .
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The imbalance of L, R is the maximum value amongst I(V1, L, R), . . . , I(Vm, L, R),
and the secondary imbalance of L, R is the second largest value (the secondary
imbalance is equal to the imbalance if the maximum value appears more than once).
A pair of sets L, R for which the secondary imbalance of L, R is at most δ times the
imbalance of L, R will be called an δ-unbalanced pair. We will show later that given
a δ-unbalanced pair (for some constant δ < 1) whose imbalance is large enough, it
is possible to generate a subcluster. Therefore, our goal is to generate such a pair.

Let T be a random subset of V and let f : T → N be some function that depends
on the edges of G. Since G is a random graph, we have that each f(v) is a random
variable. The function f is called a cluster function if {f(v)|v ∈ T} are independent
random variables, and for every u, v ∈ T that belong to the same cluster, f(u) and
f(v) have the same distribution. For example, if u is some vertex of G and T is a
random subset of V − {u} then f(v) = d{u}(v) is a cluster function.

If the values of f for vertices of one cluster are always greater than the values
of f for the vertices of the other clusters, then we can easily generate a subcluster
by picking vertices with largest f -value. However, we are able to give such a cluster
function f only when ∆ is large. For smaller value of ∆, we are able to give a
cluster function f with the following property: The expectation of f(v) for vertices
of one cluster, say V1, is larger than the expectation of f(v) for vertices of the other
clusters, and the variance of f(v) is “small” for all v. We can use this property of
f to build an unbalanced pair L, R by performing a series of duels between random
pairs of vertices of the graph. In a duel between the vertices v and w, we compute
the values f(v) and f(w) and the winner is the vertex whose f -value is larger. If
f has the property described above then a vertex from V1 is likely to win in a duel
against a vertex from V − V1, so by taking L to be the set of winners and R to be
the set of losers, we obtain that the L, R-imbalance of V1 is large.

Formally, we define procedure Partition as follows (here T is a set of vertices):

Partition(G, T, f):
1: Begin with two empty sets L and R. Randomly partition the vertices of T into

pairs. For each pair v, w, place the vertex with larger f -value into L and the
other into R, breaking ties randomly.

2: Return L, R.

We note that procedure Partition is very similar to the algorithm of Condon and
Karp [4], and the cluster function of Lemma 4.3 is also used in [4].

We now analyze procedure Partition. We begin with some definitions. Let
p>

ij(f) = P [f(v) > f(w)|v ∈ Vi ∩ T, w ∈ Vj ∩ T ] (we will write p>
ij if f is clear from

the context), and let p=
ij(f) and p<

ij(f) be the conditional probabilities that f(v) =
f(w) and f(v) < f(w), respectively. Let ci(f) = 2ai

∑

j 6=i aj(p
>
ij(f) − p<

ij(f)).
Suppose that L and R are the output of a call to Partition(G, T, f) and denote
bi = I(Vi, L, R).

Before we analyze procedure Partition, consider a process similar to procedure
Partition which perform duels between pairs of vertices that are randomly chosen
from all vertices of the graph, with repetitions (we also assume that f(v) is defined for
all vertices of the graph). Let L′ (resp., R′) be the set of winners (resp., losers), and
let b′i = I(Vi, L

′, R′). It is easy to verify that E [b′i] = ci(f). Moreover, Corollary 2.3
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gives that |b′i − E [b′i]| = O(
√

ail−1 · log n) with high probability. This analysis uses
the fact that the vertices chosen by the process are independent. However, in pro-
cedure Partition, there are dependencies between the vertices of the different pairs.
We will show below that these dependencies do not change the picture by much.
That is, bi behaves similarly to b′i.

Theorem 4.1. Let T is a random subset of V of size 2l. If k ≥ 1200 logn, l ≥
9 log n/amax and l ≤ n/4, then with probability 1−O(1/n3.5), |bi − ci(f)| ≤ 72amax ·
√

ml−1 log n for all i.

Proof. Since T is a random set, the process of choosing T and then randomly
partitioning T into pairs is equivalent to the process of selecting vertices u1, . . . , u2l

from V (one after another) and pairing u2t−1 and u2t for each t. We denote by I1
i

(resp., I2
i ) the number of indices t for which u2t−1 ∈ Vi, u2t /∈ Vi, and u2t−1 (resp.,

u2t) is inserted into L. Similarly, we denote by I3
i (I4

i ) the number of indices t
for which u2t−1 /∈ Vi, u2t ∈ Vi, and u2t (u2t−1) is inserted into L. Clearly, bi =
(I1

i + I3
i − I2

i − I4
i )/l. We will bound each of the values I1

i , . . . , I4
i to obtain a bound

on bi. We will now give an estimate on I1
i for some fixed i. We will bound I1

i

from above and below with random variables that are sums of independent random
variables.

Denote ar
j = P [ur ∈ Vj] and S = {u1, . . . , ur−1}. Clearly, ar

j = |Vj − S|/|V − S|.
Applying Corollary 2.4 (with y = Aj), we have with probability 1− O(mn · n−6) =
1−O(1/n4) that ||Vj ∩ S| − (r − 1)aj| ≤

√

3 · 6 ·Aj log n for all j and r (we use the

fact that Aj ≥ k ≥ 1200 log n and thus
√

18Aj log n ≤ Aj). For the rest of the proof
assume that these inequalities hold for all j and r. Therefore,

∣

∣aj − ar
j

∣

∣ =

∣

∣

∣

∣

|Vj|
n
− |Vj − S|

n− (r − 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

|Vj| − |Vj − S|
n− (r − 1)

− (r − 1)|Vj|
n(n− (r − 1))

∣

∣

∣

∣

=
1

n− (r − 1)
||Vj ∩ S| − (r − 1)aj| ≤

2

n

√

18Aj log n = 6
√

2 ·
√

ajn−1 log n

for all j and r.
Let Xt be an indicator variable for the event that u2t−1 ∈ Vi, u2t /∈ Vi, and u2t−1

is inserted into L. Let pj = p>
ij(f) + 1

2
p=

ij(f). Then,

P [Xt = 1] = a2t−1
i

∑

j 6=i

a2t
j pj

= ai

∑

j 6=i

ajpj + ai

∑

j 6=i

(a2t
j − aj)pj + (a2t−1

i − ai)
∑

j 6=i

a2t
j pj

≤ ai

∑

j 6=i

ajpj + ai

m
∑

j=1

|a2t
j − aj|+ |a2t−1

i − ai|

≤ ai

∑

j 6=i

ajpj + ai

m
∑

j=1

6
√

2
√

ajn−1 log n + 6
√

2
√

ain−1 log n.

Since
∑m

j=1 aj = 1, we have that the maximum value of
∑m

j=1

√
aj is obtained when

a1 = a2 = · · · = am = 1/m, so
∑m

j=1

√
aj ≤

√
m. Therefore,
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P [Xt = 1] ≤ ai

∑

j 6=i

ajpj + 6
√

2
√

ain−1 log n(1 +
√

aim).

Define the quantity in the last equation by θ. As P [Xt = 1] ≤ θ for all t, we
have that the random variable I1

i =
∑l

t=1 Xt is dominated by a random variable
Y , where Y has binomial distribution with l experiments and success probability
min(1, θ). Since k ≥ 1200 logn, we have that

√

ain−1 log n = ai

√

(ain)−1 log n ≤
ai

√

k−1 log n ≤
√

1/1200 · ai and
√

ain−1 log n · √aim ≤ ai

√

(n/k)n−1 log n ≤
√

1/1200 · ai. Therefore, θ ≤ (1 + 6
√

2 · 2
√

1/1200)ai < 3
2
amax, so E [Y ] ≤ lθ ≤

3
2
amaxl. Thus, by Corollary 2.3, we have that the probability that Y > E [Y ] +
√

3 · 9
2
· 3

2
amaxl · log n is O(1/n4.5). It follows that with probability 1−O(m/n4.5) =

1−O(1/n3.5), for all i,

I1
i ≤ lai

∑

j 6=i

ajpj + l · 6
√

2
√

ain−1 log n(1 +
√

aim) +
9

2

√

amaxl · log n

≤ lai

∑

j 6=i

ajpj + 3
√

2
√

ail · log n(1 +
√

aim) +
9

2

√

amaxl · log n

≤ lai

∑

j 6=i

ajpj + 9
√

amaxl · log n(1 +
√

amaxm)

≤ lai

∑

j 6=i

ajpj + 18amax

√

ml · log n.

Similar arguments give a lower bound on I1
i , and lower and upper bounds on

I2
i ,I3

i , and I4
i , namely with probability 1− O(1/n3.5),

|Is
i − lai

∑

j 6=i

aj(p
>
ij +

1

2
p=

ij)| ≤ 18amax

√

ml log n for s = 1, 3

|Is
i − lai

∑

j 6=i

aj(p
<
ij +

1

2
p=

ij)| ≤ 18amax

√

ml log n for s = 2, 4.

Combining the above inequalities gives the desired bound on bi.

In the next sections, we use procedure Partition in a slightly different scenario than
in Theorem 4.1: We have a random set S of vertices, and then the set T is randomly
chosen from V − S. It is easy to verify that the result of Theorem 4.1 is also valid
in that scenario.

We now give two cluster functions, which will be used later in our algorithms.
The first function, given in Lemma 4.2, will be used in the initialization stage (see
Section 1.2) to build the initial sets L0, R0. The second function, in Lemma 4.3,
will be used to in the imbalance amplification stage to build the pair Lt, Rt from
Lt−1, Rt−1.

Our cluster functions, defined on a set T , will depend on the edges between v ∈ T
and some set of vertices T ′ ⊆ V − T .

16



Lemma 4.2. Let u be a vertex from V1, and let T be a random subset of V − {u}.
Define f(v) = d{u}(v) for all v ∈ T . Then c1(f) = 2a1(1−a1)∆ and ci(f) = −2a1ai∆
for all i > 1.

Proof. Clearly,

p>
1j = P [f(v) = 1, f(w) = 0|v ∈ V1 ∩ T, w ∈ Vj ∩ T ]

= P [(u, v) ∈ E, (u, w) /∈ E|v ∈ V1 ∩ T, w ∈ Vj ∩ T ] = p(1− r)

and p<
1j = (1− p)r, so

c1(f) = 2a1

∑

j 6=i

aj(p(1− r)− (1− p)r) = 2a1(1− a1)∆.

For i, j > 1, p>
ij = p<

ij = r(1 − r), p>
i1 = r(1 − p), and p<

i1 = (1 − r)p. Therefore,
ci(f) = −2a1ai∆.

In the imbalance amplification stage (see Section 1.2), at each iteration we have a
δ-unbalanced pair L′, R′, and the goal is to build a new δ-unbalanced pair L, R such
that the imbalance of L, R is at least twice the imbalance of L′, R′. To build this
pair, we use procedure Partition on a set of vertices T and cluster function f , where
T is a random subset of V − (L′ ∪R′), and f(v) = dL′(v)− dR′(v) for all v ∈ T . We
now give some intuition on how the L, R-imbalances behave.

Denote bi = I(Vi, L
′, R′). For a pair of vertices v ∈ Vi and w ∈ Vj, the probability

that v wins in a duel with w depends on the value of bi − bj. More precisely, the
winning probability of v behaves like the normal cumulative distribution function
as a function of bi − bj. In particular, if |bi − bj| is large enough, then the winning
probability of v is close to 1 if bi − bj > 0, and close to 0 if bi − bj < 0. If |bi − bj| is
small enough, then the winning probability of v is roughly 1

2
+ 1√

2π
(bi − bj).

Now, suppose w.l.o.g. that b1 ≥ b2 ≥ · · · ≥ bm. Since b1 − bi is “large” for
every i > 2 (recall that bi ≤ b2 ≤ δb1 for δ < 1), we have that the vertices of V1

almost always win when they are in a duel against vertices of the other clusters.
Thus, the L, R-imbalance of V1 will be large, and V1 will be the cluster with the
largest L, R-imbalance. However, if b2 − b3 is also large, then the vertices of V2 will
almost always win when they are in a duel against vertices of the clusters V3, . . . , Vm.
Thus, the L, R-imbalance of V2 will also be large, and close to the L, R-imbalance
of V1. In other words, the pair L, R will not be δ-unbalanced. In order to avoid this
problem, we will make sure that b2 − b3 is “small” by requiring an upper bound on
b1− bm. This upper bound causes all the winning probabilities to be approximately
1
2
+ 1√

2π
(bi− bj). The following lemma (combined with Theorem 4.1) will show that

I(Vi, L, R) ≈ cai · bi for some constant c that depends on p, r, m, and |T |. Thus, in
the case of equal sized clusters, when moving from the pair L′, R′ to the pair L, R,
the imbalances of the clusters are (approximately) multiplied by the same factor.
Since L′, R′ is δ-unbalanced, we have that L, R is (δ + ε)-unbalanced for some small
ε. Moreover, if ca1 ≥ 2 then the imbalance of L, R is at least twice the imbalance of
L′, R′.

We now formalize the ideas described above. Denote Γ = maxi |ai − 1
m
|.
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Lemma 4.3. Let T ′ be a random set of vertices of size 2l. Let L′ and R′ be two
disjoint sets such that T ′ = L′∪R′ and |L′| = |R′|. Let T be a random subset of V−T ′

(of arbitrary size). Define bi = I(Vi, L
′, R′), and define f(v) = dL′(v)− dR′(v) for all

v ∈ T . Suppose that p, r ∈ [ 1
4
, 3

4
], l ≥ 7 log n/amax, and maxi bi −mini bi ≤ α/∆

√
l

where α ≤ 1. Let
β = 2Γ + 5

√

amaxl−1 log n

and

γ =

√

2

π
/(

1

m
p(1− p) + (1− 1

m
)r(1− r)).

Then, with probability 1− O(1/n3.5),

∣

∣

∣

∣

∣

ci(f)− γ∆
√

lai

(

bi −
m
∑

j=1

ajbj

)
∣

∣

∣

∣

∣

≤ γ∆
√

lai(β∆ +
2

9
α2)(max

j
bj −min

j
bj) + 3

ai√
l

for all i.

Proof. W.l.o.g., we assume that b1 ≥ b2 ≥ · · · ≥ bm. By Corollary 2.4 (with
y = 2lamax), with probability 1− O(1/n3.5), |A′

j − 2laj| ≤
√

3 · 4.5 · 2amaxl log n for
all j (we use the fact that l ≥ 7 log n/amax). We will now assume that |A′

j − 2laj| ≤√
27amaxl log n for all j, and we will estimate ci(f) for some fixed i.
Recall that ci(f) = 2ai

∑

j 6=i aj(p
>
ij − p<

ij), so we need to estimate p>
ij − p<

ij for all
j. Fix some j 6= i, v ∈ Vi ∩ T , and w ∈ Vj ∩ T .

We denote L′ = {u1, . . . , ul} and R′ = {ul+1, . . . u2l}. We have that f(v)−f(w) =
∑4l

s=1 Xs where X1, . . . , X4l are independent random variables with Xs = d{us}(v) for
1 ≤ s ≤ l, Xs = −d{us}(v) for l + 1 ≤ s ≤ 2l, Xs = −d{us−2l}(w) for 2l + 1 ≤ s ≤ 3l,

and Xi = d{us−2l}(w) for 3l + 1 ≤ s ≤ 4l. Clearly, p>
ij = P

[

∑4l
s=1 Xs > 0

]

. Recall

that Φ(x) denotes the normal (0, 1) cumulative distribution function. Applying
Theorem 2.1, we get that

∣

∣

∣

∣

∣

p>
ij − Φ

(

E

[

4l
∑

s=1

Xs

]

/
√

Bij

)
∣

∣

∣

∣

∣

≤ 4

5
Lij, (1)

where Bij =
∑4l

s=1 Var(Xs) and Lij = B
−3/2
ij

∑4l
s=1 E

[

|Xs − E [Xs]|3
]

. Similarly,

∣

∣

∣

∣

∣

p<
ij −

(

1− Φ

(

E

[

4l
∑

s=1

Xs

]

/
√

Bij

))
∣

∣

∣

∣

∣

≤ 4

5
Lij. (2)

Combining (1) and (2) gives that

p>
ij − p<

ij ≥ 2Φ

(

E

[

4l
∑

s=1

Xs

]

/
√

Bij

)

− 1− 8

5
Lij. (3)

To finish the proof of the lemma, we will simplify (3): We will replace the terms

E
[

∑4l
s=1 Xs

]

, Bij, and Lij by other terms, and get rid of the Φ function.
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We first compute the exact value of E
[

∑4l
s=1 Xs

]

. For s = 1, . . . , m, denote

A′
s = |Vs ∩ T ′|. Let B(q) denote the Bernoulli distribution with parameter q (i.e.,

a random variable with B(q) distribution has a value of 1 with probability q, and

value of 0 otherwise). Out of the variables X1, . . . , Xl, there are
A′

i+lbi

2
variables

with B(p) distribution, and the rest of the variables have B(r) distribution. Out of

Xl+1, . . . , X2l,
A′

i−lbi

2
variables have −B(p) distribution, and the rest of the variables

have −B(r) distribution. Similar claims hold for X2l+1, . . . , X4l, and therefore,

E

[

4l
∑

s=1

Xs

]

= p
A′

i + lbi

2
+ r(l − A′

i + lbi

2
)− p

A′
i − lbi

2
− r(l − A′

i − lbi

2
)

− p
A′

j + lbj

2
− r(l − A′

j + lbj

2
) + p

A′
j − lbj

2
+ r(l − A′

j − lbj

2
)

= plbi − rlbi − plbj + rlbj = ∆l(bi − bj), (4)

where the second equality follows by canceling terms, and the last equality follows
from the fact that ∆ = p− r.

Next, we give estimates on Bij and Lij. For a random variable X with dis-

tribution B(q) or −B(q), Var(X) = q(1 − q). Thus, Bij =
∑4l

s=1 Var(Xs) =
(A′

i + A′
j)p(1 − p) + (4l − A′

i − A′
j)r(1 − r). Since p, r ∈ [ 1

4
, 3

4
], it follows that

3/16 ≤ p(1− p), r(1− r) ≤ 1/4, so

3

4
l ≤ Bij ≤ l. (5)

Similarly, define h(x) = (1−x)3x+x3(1−x), and we have that for a random variable
X with distribution B(q) or −B(q), E

[

|Xs − E [Xs]|3
]

= h(q). Therefore,

Lij =
1

B
3/2
ij

4l
∑

s=1

E
[

|Xs − E [Xs]|3
]

=
1

B
3/2
ij

(

(A′
i + A′

j)h(p) + (4l − A′
i − A′

j)h(r)
)

.

We have that h(p) ≤ 1
8

and h(q) ≤ 1
8
, so

Lij ≤
1

(3
4
l)3/2

· 4l · 1
8

=
4

3
√

3
· 1√

l
. (6)

Combining Equations (3), (4), (5) and (6), we obtain that

p>
ij − p<

ij ≥ 2Φ
(

∆l(bi − bj)/
√

Bij

)

− 1− 3

2
/
√

l. (7)

We now wish to get rid of the Φ in Equation (7). We do this by using the fact
that Φ(x) ≈ 1

2
+ 1√

2π
x near 0. More precisely, for x ∈ [0, a], where a ≤ 1, we have

Φ(x) ≥ 1
2

+ 1√
2π

x− 1
6
√

2π
x3 ≥ 1

2
+ 1√

2π
x(1− a2

6
). As 0 ≤ ∆l(bi−bj)√

Bij
≤ ∆l(bi−bj)√

3l/4
≤ 2√

3
α,

then for j > i,

p>
ij − p<

ij ≥
√

2

π

∆l(bi − bj)
√

Bij

(1− 2

9
α2)− 3

2
√

l
. (8)
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Moreover, for x ∈ [0,−1], Φ(x) ≥ 1
2

+ 1√
2π

x, so for i < j,

p>
ij − p<

ij ≥
√

2

π

∆l(bi − bj)
√

Bij

− 3

2
√

l
. (9)

Finally, in order to combine the lower bounds on p>
ij − p<

ij into a lower bound
on ci(f), we want to replace the term Bij in (8) and (9) by a common term B
that does not depend on i or j. In order to perform this replacement, we define
B = 4l 1

m
p(1− p) + 4l(1− 1

m
)r(1− r), and need to show that B is close to Bij for all

j (more precisely, we need to bound |1/
√

Bij − 1/
√

B|).
For every s, |A′

s−2las| ≤
√

27amaxl log n so |A′
s− 2l

m
| ≤ |A′

s−2las|+2l|as− 1
m
| ≤√

27amaxl log n + 2Γl < 9
8
βl. Therefore,

|Bij−B| =
∣

∣

∣

∣

(

A′
i + A′

j −
4l

m

)

(p(1− p)− r(1− r))

∣

∣

∣

∣

≤ 2 · 9
8
βl ·∆|1− p− r| ≤ 9

8
β∆l,

where the last inequality follows from the fact that p, r ∈ [ 1
4
, 3

4
]. Since B, Bij ≥ 3

4
l,

we conclude that |Bij − B| ≤ 9
8
β∆ · 4

3
Bij = 3

2
β∆Bij and |Bij − B| ≤ 3

2
β∆B. Thus,

B
Bij
≤ 1 + 3

2
β∆ and

Bij

B
≤ 1 + 3

2
β∆. Using the fact that

√
1 + x ≤ 1 + 1

2
x for all x,

we obtain that if B ≥ Bij then

∣

∣

∣

∣

∣

1
√

Bij

− 1√
B

∣

∣

∣

∣

∣

=
1√
B

(
√

B

Bij
− 1

)

≤ 1√
B

(

√

1 +
3

2
β∆− 1

)

≤ 3β∆

4
√

B
<

β∆√
B

,

and if B < Bij then

∣

∣

∣

∣

∣

1
√

Bij

− 1√
B

∣

∣

∣

∣

∣

≤ 1
√

Bij

(

√

1 +
3

2
β∆− 1

)

≤ β∆
√

Bij

≤ β∆√
B

.

Combining the two inequalities above with Equations (8) and (9), we obtain that
for j > i,

p>
ij − p<

ij ≥
√

2

π

∆l(bi − bj)√
B

(1− β∆)(1− 2

9
α2)− 3

2
√

l

≥
√

2

π

∆l(bi − bj)√
B

(1− β∆− 2

9
α2)− 3

2
√

l

=
γ

2
∆
√

l(bi − bj)(1− β∆− 2

9
α2)− 3

2
√

l
,

and for i < j,

p>
ij − p<

ij ≥
γ

2
∆
√

l(bi − bj)(1 + β∆)− 3

2
√

l
.

We now use the lower bounds on p>
ij − p<

ij to obtain a lower bound on ci(f):

20



ci(f) ≥ 2ai

(

i−1
∑

j=1

aj
γ

2
∆
√

l(bi − bj)(1 + β∆)

+
m
∑

j=i+1

aj
γ

2
∆
√

l(bi − bj)(1− β∆− 2

9
α2)−

∑

j 6=i

aj
3

2
√

l

)

≥ γ∆
√

lai

(

bi −
m
∑

j=1

ajbj − (β∆ +
2

9
α2)

m
∑

j=1

aj|bi − bj|
)

− 3
ai√
l

≥ γ∆
√

lai

(

bi −
m
∑

j=1

ajbj − (β∆ +
2

9
α2)(b1 − bm)

)

− 3
ai√
l
.

Using similar arguments we obtain a matching upper bound on ci(f).

5 Almost equal sized clusters

In this section we present an algorithm for finding a subcluster in the case where the
sizes of all clusters are almost equal: The algorithm requires that Γ = O(1/m log n).
We use algorithm Solve3 with a procedure Find that is described below.

Recall that the goal of procedure Find is to find a subcluster of G. We first
show that given a 1

10
-unbalanced pair L, R whose imbalance is large enough, we can

generate a subcluster of G using the following procedure (the input to the procedure
is a cluster graph G, and disjoint sets of vertices L, R, and S):

Subcluster(G, L, R, S):
1: Let v1, . . . , v|S| be an ordering of S such that f(v1) ≥ f(v2) ≥ · · · ≥ f(v|S|),

where f(v) = dL(v)− dR(v).
2: Let j be the first index for which f(vj)− f(vj+1) > 15

√

|L| · log n.
3: Return {v1, . . . , vj}.

Lemma 5.1. Let L and R be disjoint sets of vertices with |L| = |R|, and let S be
a random subset of V − (L ∪ R) of size at least 7m log n. Let bi = I(Vi, L, R) and
w.l.o.g. b1 ≥ b2 ≥ · · · ≥ bm. If b1−b2 > 30

√
log n/∆

√

|L| then procedure Subcluster
returns the subcluster V1 ∩ S with probability 1−O(1/n3).

Proof. Define l = |L| and D = 45
√

l · log n. The failure events of procedure
Subcluster are:

1. S ∩ Vi = ∅ for some i.

2. |f(v)− E [f(v)] | > 1
6
D for some vertex v ∈ S.

The probability that event 1 occurs is o(n−3). The probability that event 2 hap-
pens is o(n−3) (this follows from writing f(v) as a sum of 0/1 random variables
minus a sum of 0/1 random variables, and applying Corollary 2.3 on each of these
summations). For the rest of the proof assume that none of these events happens.
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For v ∈ Vi, E [f(v)] = ∆lbi (see the proof of Lemma 4.3). Since ∆lb1−∆lb2 > ∆l·
(30
√

log n/∆
√

l) = 2
3
D, it follows that minv∈V1∩S f(v)−maxv∈S−V1

f(v) ≥ (∆lb1 −
1
6
D) − (∆lb2 + 1

6
D) > 1

3
D. Furthermore, for v, v′ ∈ V1 ∩ S, |f(v) − f(v′)| ≤ 1

3
D.

Therefore, {v1, . . . , vj} = V1 ∩ S.

Procedure Find will build a 1
10

-unbalanced pair with imbalance at least 10
9
·30
√

log n/∆
√

|L|
and then use procedure Subcluster to find a subcluster. As outlined in Section 1.2,
building this pair consists of two stages. In the initialization stage, procedure Find
builds two initial sets L0 and R0 using procedure Partition and the cluster function
of Lemma 4.2. In the imbalance amplification stage, a series of pairs Lt, Rt is gen-
erated, where Lt, Rt is generated from Lt−1, Rt−1 using procedure Partition and the
cluster function of Lemma 4.3. Each pair Lt, Rt is 1

10
-unbalanced, and moreover,

the imbalance Lt, Rt is at least twice the imbalance of Lt−1, Rt−1. If we are able to
build such a series, then at some point we will have a 1

10
-unbalanced pair Lt, Rt with

imbalance at least 10
9
· 30
√

|L| · log n, and then we will use procedure Subcluster to
find a subcluster (Lemma 5.1).

The algorithm outlined above has a crucial problem: In order to use Lemma 4.3,
we need the imbalance of the pair Lt, Rt to be at most c/∆

√

|Lt| for some constant
c ≤ 1. The imbalance amplification stage might generate a pair Lt, Rt whose imbal-
ance is more than 1/∆

√

|Lt| but less than 10
9
· 30
√

log n/∆
√

|Lt|. In this situation,
we can neither generate a new pair Lt+1, Rt+1 or obtain a subcluster from the cur-
rent pair. The solution to this problem is to build at each iteration an additional
1
10

-unbalanced pair L̂t, R̂t. The pair L̂t, R̂t is built using procedure Partition and
the same cluster function that is used to build Lt, Rt, and therefore the imbalance
of L̂t, R̂t is approximately the same as the imbalance of Lt, Rt. By making the sets
L̂t and R̂t bigger than Lt and Rt by a factor of Ω(log n), we obtain that at every
step, either

• The imbalance of Lt, Rt is at most c/∆
√

|Lt|, and we can be build a new pair
Lt+1, Rt+1, or

• The imbalance of Lt, Rt is greater than c/∆
√

|Lt|. In this case, the imbalance

of L̂t, R̂t is Ω(1/∆
√

|Lt|) = Ω(
√

log n/∆

√

|L̂t|) and procedure Subcluster,

applied on L̂t, R̂t, can build a subcluster.

Formally, procedure Find is as follows:

Find(G, V ′):
1: Let l̂ = 1015(m2∆−2 log2 n + m log5 n), l = l̂/(5 · 106 log n), l′ = l̂/(5 · 106 log2 n),

s = 2500m∆−2 log n, and D = 45

√

l̂ log n. Let lt = l for 0 ≤ t ≤ 2 and lt = l′ for
t ≥ 3.

2: Randomly select disjoint sets Ŵ and W0 of vertices from V ′ of sizes 2l̂ and 2l0,
respectively.

3: Randomly select some unchosen vertex u from V ′.
4: L̂0, R̂0 ← Partition(G, Ŵ , d{u}) and L0, R0 ← Partition(G, W0, d{u}).
5: For t = 0, 1, . . . , log n do
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u

Ŵ

W0 W1 W2

L0 L1 L2

R0 R1 R2

Figure 2: The sets created by procedure Find.

6: Randomly select disjoint sets Wt+1 and St of unchosen vertices from V ′ of
sizes 2lt+1 and s, respectively.

7: Let v1, . . . , vs be an ordering of St such that ft(v1) ≥ ft(v2) ≥ · · · ≥ ft(vs),
where ft(v) = dL̂t

(v)− dR̂t
(v).

8: If maxj{ft(vj)− ft(vj+1)} > D

9: Return Subcluster(G, L̂t, R̂t, St).
10: L̂t+1, R̂t+1 ← Partition(G, Ŵ , dLt − dRt).
11: Lt+1, Rt+1 ← Partition(G, Wt+1, dLt − dRt).
12: Output ‘Failure’.

See also Figure 2. The total number of vertices selected by procedure Find is at
most 2l̂ + 1 + s log n + 2

∑log n+1
t=0 lt ≤ 3l̂, and this number can be more than n/3 for

some choice of parameters, making the procedure inapplicable. However, we assume
that k ≥ 108∆−1

√
n log n, and in that case, m ≤ n

k
≤ ∆
√

n/(108 log n). Therefore,

3l̂ ≤ n/3.
Note that in the first three iterations of Steps 6–11, the sets Lt, Rt are bigger

than in the rest of the steps. The reason is that in these steps, the imbalance is
small, so in order to get a small relative difference between the imbalances and the
expected imbalances, we need to use bigger sets (see Theorem 4.1).

Denote bt
i = I(Vi, Lt, Rt), b̂t

i = I(Vi, L̂t, R̂t), rt
i = bt

i/b
t
1, and r̂t

i = b̂t
i/b̂

t
1. We also

denote c0
i = ci(d{u}) and ct

i = ci(dLt − dRt) for t ≥ 1. In the following, we assume
w.l.o.g. that the vertex u chosen in Step 3 is from V1. Let t∗ be the value of t when
the procedure Find stops. For simplicity, we assume that t∗ ≥ 4 and m ≥ 3. The
cases t∗ ≤ 3 or m = 2 are simpler and we omit the analysis for these cases.

In the next lemmas we analyze procedure Find. To prove its correctness, we
need to show that (1) Procedure Find executes step 9, and (2) When procedure
Find executes step 9, the condition of Lemma 5.1 is satisfied. In order to show (1),
we will show that bt

1 ≥ e · bt−1
1 , for all t. Since 1

n
≤ bt

1 ≤ 1, it follows that procedure
Find must stop after at most log n iterations. In order to show (2), we will show
that all the pairs Lt, Rt are 1

10
-unbalanced, that is rt

i ≤ 1
10

for all t and i > 1. More
specifically, we will show that r0

i ≤ 1
100

for all i > 1, and moreover, |rt
i−r0

i | ≤ 9
100

for
all t and i > 1. Note that Property 1 is trivially satisfied as there are no important
edges (the cluster V1 is determined only by the random choice of u).

Define dt = 1
100
· ∆

m
for t ≤ 2, and dt = 1

100
· ∆

m

√
log n for t ≥ 3. The following

events can cause procedure Find to fail:
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1. |bt
i − ct

i| > dt for some i and t.

2. |b̂t
i − ct

i| > dt for some i and t.

3. |Vi ∩ St| < 1
2
ais for some i and t.

4. |ft(v)− E [ft(v)]| ≤ 1
6
D for some t and v ∈ St.

The following Lemma bounds the probability of these events.

Lemma 5.2. Suppose that Γ ≤ 1/(10000m logn), k ≥ 108∆−1
√

n log n, and p, r ∈
[1
4
, 3

4
]. Then, the probability that at least one of the events 1–4 happens is O(n−3).

Proof. For fixed t, we have from Theorem 4.1 that the probability that |bt
i − ct

i| >
72amax

√

m
l

log n for some i is O(n−3.5). Since 72amax

√

m
l

log n = (1+o(1))72
√

1
ml

log n ≤
1

100
· ∆

m
, it follows that event 1 happens with probability O(log n · n−3.5) = o(n−3).

The same arguments gives that event 2 happens with probability o(n−3).
By Corollary 2.4, the probability that event 3 happens is o(n−3), and by Corol-

lary 2.3, the probability that event 4 happens is o(n−3).

For the rest of this section, we assume that events 1–4 do not happen. We first
analyze step 4 of procedure Find.

Lemma 5.3. Under the conditions of Lemma 5.2, with probability 1−O(1/n3),

1. b0
1, b̂

0
1 ≥ (1− 1

100
)4

3
∆
m

.

2. For all i > 1,− 1
2
− 1

50
≤ r0

i , r̂
0
i ≤ 1

100
.

Proof. In the proof of lemma (and also in the proofs of the next lemmas), we only
prove the bounds on b0

i and r0
i , as the bounds on b̂0

i and r̂0
i are similar.

(1) From Lemma 4.2, we have that

c0
1 = 2a1(1− a1)∆ ≥ 2(1− o(1))

1

m
(1− (1 + o(1))

1

m
)∆ ≥ (1− o(1))

4

3

∆

m
.

Therefore, b0
1 ≥ c0

1 − d0
1 ≥ (1− 1

100
)4

3
∆
m

.
(2) By Lemma 4.2, c0

i = −2a1ai∆ for every i > 1. Therefore, b0
i ≤ c0

i +d0 ≤ d0 ≤
1

100
· ∆

m
. Thus, r0

i ≤ 1
100

. Furthermore, c0
i ≥ −2((1 + o(1)) 1

m
)2∆ ≥ −(1 + o(1)) 2

3
∆
m

, so
b0
i ≥ c0

i − d0 ≥ −(1 + 1
50

)2
3

∆
m

. Thus, r0
i ≥ −(1 + 1

50
)2

3
∆
m

/((1− 1
100

)4
3

∆
m

) ≥ −1
2
− 1

50
.

Next, we analyze the first three iterations of steps 6–11.

Lemma 5.4. Under the conditions of Lemma 5.2, with probability 1−O(1/n3),

1. For all 0 ≤ t ≤ 3, bt
1 ≥ logt/2 n · b0

1 and b̂t
1 ≥ logt/2 n · b̂0

1.

2. For all 0 ≤ t ≤ 3 and all i > 1, |rt
i − r0

i | ≤ t
100

and |r̂t
i − r̂0

i | ≤ t
100

.

Note that by combining Lemma 5.3(2) and Lemma 5.4(2) we obtain that − 1
2
− 1

10
≤

rt
i ≤ 1

10
.
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Proof. The lemma is proved using induction on t. The base t = 0 it true due to
Lemma 5.3. Assuming we proved (1) and (2) for t, we will prove these bounds for
t + 1. For the rest of the proof, we assume w.l.o.g. that bt

1 ≥ bt
2 ≥ · · · ≥ bt

m.
(1) From the induction hypothesis, it suffices to prove that bt+1

1 ≥ √log n · bt
1.

For a vertex v ∈ Vi ∩ St, E [ft(v)] = ∆l̂b̂t
i. We have that ∆l̂(b̂t

1 − b̂t
2) ≤ 2D, because

otherwise, the difference between the minimum value of ft(v) for v ∈ V1 ∩ St and
the maximum value of ft(v

′) for v′ ∈ St − V1 would be at least 2D − 2 · 1
6
D > D,

contradicting the fact that the algorithm did not stop at iteration t. From the fact
that |bt

i − bt
j| ≤ 2dt, |b̂t

i − b̂t
j| ≤ 2dt, and rt

i ≥ −1
2
− 1

10
(the latter is true due to the

induction hypothesis) we have that for all i and j, |bt
i − bt

j| ≤ |b̂t
i − b̂t

j| + 4
100
· ∆

m
≤

16
10

b̂t
1 + 2

50
· ∆

m
. By the induction hypothesis b̂t

1 ≥ ∆
m

and b̂t
1 ≤ 10

9
(b̂t

1 − b̂t
2). Therefore,

for all i and j, |bt
i − bt

j| ≤ (16
10

+ 2
50

)b̂t
1 < 2(b̂t

1 − b̂t
2) ≤ 4D/∆l̂ = 180

√
log n/∆

√

l̂. As

l̂ = 5 · 106 · l log n, we conclude that for all i and j, |bt
i− bt

j| ≤ 180√
5·106
· 1

∆
√

l
< 1

12
· 1

∆
√

l
.

Denote F0 = γ∆
√

l (where γ is defined in Lemma 4.3), and F = F0/m. By
Lemma 4.3,

bt+1
1 ≥ F0a1

(

bt
1 −

m
∑

j=1

ajb
t
j −

(

2Γ∆ + 5

√

2

ml
log n ·∆ +

2

9
· 1

122

)

(bt
1 − bt

m)

)

− 3
a1√

l
− dt+1

1 .

We now give bounds for the terms in the inequality above.

• (1− o(1))F ≤ F0a1 ≤ (1 + o(1))F (follows from the fact that Γ = o(1)).

• Since rt
i ≥ −1

2
− 1

10
, it follows that |bt

j| ≤ bt
1 for all j. Using the fact that

∑m
j=1 bt

j = 0, we obtain that

m
∑

j=1

ajb
t
j =

m
∑

j=1

(

aj −
1

m

)

bt
j ≤

m
∑

j=1

∣

∣

∣

∣

aj −
1

m

∣

∣

∣

∣

bt
1 ≤ mΓbt

1 = o(bt
1).

• 2Γ∆ = o(1) (follows from the fact that Γ = o(1)).

• 5
√

2
ml

log n ·∆ = o(1) (follows from the fact that l ≥ 2 · 108 log4 n).

• b1 − bm ≤ 2b1 (follows from the fact that rt
i ≥ −1

2
− 1

10
).

• From the fact that F = γ∆
√

l/m ≥ 3
2
∆
√

l/m > 10000
√

log n and bt
1 ≥ logt/2 n·

∆/m we conclude that

3
a1√

l
<

3√
l

= O

(

1√
log n

∆

m

)

= o(Fbt
1),

and
dt+1

1 = o(Fbt
1).
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Combining the bounds above we get

bt+1
1 ≥ (1− o(1))Fbt

1 − (1 + o(1))
1

324
Fbt

1 − o(Fbt
1) >

(

1− 1

200

)

Fbt
1 >

√

log n · bt
1.

(2) Using the induction hypothesis, we need to show that |rt+1
i − rt

i| ≤ 1
100

. In
the first part we have shown that bt+1

1 ≥ (1− 1
200

)Fbt
1. Using similar arguments we

obtain that bt+1
1 ≤ (1 + 1

200
)Fbt

1, or in other words, |bt+1
1 − Fbt

1| ≤ 1
200

Fbt
1. Similarly,

|bt+1
i − Fbt

i| ≤ 1
200

Fbt
1. Therefore,

∣

∣

∣

∣

bt+1
i

bt+1
1

− rt
i

∣

∣

∣

∣

≤
∣

∣bt+1
i − Fbt

i

∣

∣+
∣

∣Fbt
i − rt

ib
t+1
1

∣

∣

bt+1
1

=

∣

∣bt+1
i − Fbt

i

∣

∣+ rt
i

∣

∣Fbt
1 − bt+1

1

∣

∣

bt+1
1

≤ (1 + 1
10

) 1
200

Fbt
1

(1− 1
200

)Fbt
1

<
1

100
.

Finally, we analyze the remaining iterations of steps 6–11.

Lemma 5.5. Under the conditions of Lemma 5.2, with probability 1−O(1/n3),

1. For 4 ≤ t ≤ t∗, bt
1 ≥ 2t−3 log3/2 n · b0

1 and b̂t
1 ≥ 2t−3 log3/2 n · b̂0

1.

2. For all 4 ≤ t ≤ t∗ and all i > 1, |rt
i − r0

i | ≤ t−3
100 log n

+ 3
100

and |r̂t
i − r̂0

i | ≤
t−3

100 log n
+ 3

100
.

Note that by combining Lemma 5.3(2), and Lemma 5.5(2) we obtain that − 1
2
− 1

10
≤

rt
i ≤ 1

10
.

Proof. Again we prove the lemma using induction. Assume we proved (1) and (2)
for t. W.l.o.g. bt

1 ≥ bt
2 ≥ · · · ≥ bt

m.
(1) It suffices to prove that bt+1

1 ≥ 2bt
1. Similarly to the proof of Lemma 5.4, we

have that for all i and j, |bt
i − bt

j| ≤ 180
√

log n/∆
√

l̂, and since l̂ = 5 · 106 · l′ log2 n,
we conclude that |bt

i − bt
j| ≤ 180√

5·106 log n
· 1

∆
√

l′
≤ 1

12
√

log n
· 1

∆
√

l′
.

Denote F ′
0 = γ∆

√
l′, and F ′ = F ′

0/m. By Lemma 4.3,

bt+1
1 ≥ F ′

0a1

(

bt
1 −

m
∑

j=1

ajb
t
j −

(

2Γ∆ + 5

√

2

ml′
log n ·∆ +

2

9
· 1

122 log n

)

(bt
1 − bt

m)

)

− 3
a1√
l′
− dt+1

1 .

Now,

•
(

1− 1
104 log n

)

F ′ ≤ F ′
0a1 ≤

(

1 + 1
104 log n

)

F ′.

• ∑m
j=1 ajb

t
j ≤ mΓbt

1 ≤ 1
104 log n

bt
1.

• 2Γ∆ ≤ 2
104 log n

.

• 5
√

2
ml′

log n ·∆ ≤ 5
104 log n

.
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• bt
1 − bt

m ≤ 2bt
1.

• 3 a1√
l′

= O
(

1√
l′

)

= O
(

∆
m

)

= o
(

1
log n

F ′bt
1

)

, where the last equality follows from

the fact that F ′ = γ∆
√

l′/m ≥ 3
2
∆
√

l′/m > 10000 and bt
1 ≥ log3/2 n ·∆/m.

• dt+1
1 = 1

100
· ∆

m

√
log n ≤ 1

106·log n
· F ′bt

1.

Thus,

bt+1
1 ≥

(

1− 1

104 log n

)

F ′bt
1 − (1 + o(1))

(

1 + 4 + 10

104
+

1

324
+

1

106

)

1

log n
F ′bt

1 − o(F ′bt
1)

≥
(

1− 1

200 logn

)

F ′bt
1.

In particular, bt+1
1 ≥ 2bt

1.
(2) Similarly to the proof of Lemma 5.4, |bt+1

1 − Fbt
1| ≤ 1

200 log n
Fbt

1. Similarly,

|bt+1
i − Fbt

i| ≤ 1
200 log n

Fbt
1. Therefore, |rt+1

i − rt
i| ≤ 1

100 log n
.

Lemma 5.6. Under the conditions of Lemma 5.3, with probability 1 − O(1/n3),
procedure Find returns a subcluster of V1 of size at least 1200 logn/∆2. The running
time of procedure Find is O(m3∆−4 log3 n · (m + log n) + m2 log9 n).

Proof. By Lemma 5.5, for all 4 ≤ t ≤ t∗, bt
1 > 2t · b0

1. We have that b0
1 > 1

n
, so

bt
1 > 2t/n. Since bt

1 ≤ 1 by definition, we conclude that t∗ < log n, namely procedure
Find stops at Step 9. We now look at the last iteration of procedure Find. W.l.o.g.
assume that b̂t∗

1 ≥ b̂t∗

2 ≥ · · · ≥ b̂t∗

m.
For v ∈ Vi, E [ft∗(v)] = ∆l̂b̂t∗

i . As maxj{ft∗(vj) − ft∗(vj+1)} > D, we have that

there is an index i such that ∆l̂b̂t∗

i −∆l̂b̂t∗

i+1 > 2
3
D. By Lemma 5.5, ∆l̂(b̂t∗

1 − b̂t∗

2 ) ≥
∆l̂(b̂t∗

i − b̂t∗

i+1) > 2
3
D. Therefore, procedure Subcluster returns the subcluster V1∩St∗

(Lemma 5.1). Finally, we have that |V1 ∩ St∗ | ≥ 1
2
a1s ≥ 1200 logn/∆2.

We now compute the time complexity of Find: In a single iteration, the time to
compute ft(v) for all v ∈ St is O(sl̂), and the time taken by the call to Partition is
O(ltl̂). Therefore, the time complexity of Find is

O(sl̂ log n + ll̂ + l′l̂ log n) = O

(

m3

∆4
log3 n · (m + log n) + m2 log9 n

)

.

Lemma 5.7. Γ ≤ (maxi |Vi|/k − 1)/m.

Proof. Denote r = maxi |Vi|/k = amax/amin. By definition, Γ = max{amax− 1
m

, 1
m
−

amin}. Clearly,

amax = ramin ≤
r

m

and

amin =
1

r
amax ≥

1

r
· 1

m
≥ (1− (r − 1))

1

m
.

Therefore, amax − 1
m
≤ (r − 1)/m and 1

m
− amin ≤ (r − 1)/m.

We are now ready to prove Theorem 1.1.
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Proof (Theorem 1.1). Let G be a cluster graph that satisfies the requirements of
Theorem 1.1 and requirements (R1)–(R3) from Section 3. From Lemma 5.7 we get
that for every cluster collection G′ of G,

ΓG′ ≤ max
i
|Vi,G′|/kG′ ≤ max

i
|Vi|/k

≤ 1 + 1/(10000m logn) ≤ 1 + 1/(10000mG′ log nG′).

It follows that every cluster collection of G satisfies the requirements of Lemma 5.6.
Theorem 1.1 now follows from Lemma 5.6 and Lemma 3.3.

6 Unequal sized clusters

In this section we give an algorithm for finding a subcluster in the general case. We
use algorithm Solve3 and procedure Find2 which is similar to procedure Find that
was given in Section 5.

We first describe the main differences between procedures Find2 and Find. First,
unlike procedure Find, in which the vertex u was chosen randomly, in procedure
Find2 the vertex u must be chosen in a way that ensures that the size of the cluster
that contains u is almost equal to the size of the largest cluster. This is done in
the following way: Procedure Find2 randomly chooses two sets of vertices U1 and
U2, and then selects u to be the vertex from U1 with highest dU2

-value. A second
difference comes from the fact that our analysis in the general case is less tight than
the analysis in the case of almost equal sized clusters. As a result, procedure Find2

can perform only a constant number of iterations. This leads to a different choice
of parameters (namely, the sizes of the sets built by the algorithm).

Procedure Find2 is as follows:

Find2(G, V ′, ε):

1: Let λ = 23d1/εe+1

, l̂ = 1010λ15(m∆−2 log2 n+m2∆−2(1+ε) log n), l = l̂/(106λ11 log n),

s = 2500m∆−2 log n, D = 50λ2

√

l̂ log n, u1 = 3m log n and u2 = 1
100

n.

2: Randomly select disjoint sets U1, U2, Ŵ , and W0 of vertices from V ′ of sizes s,
u1, u2, 2l̂, and 2l, respectively.

3: Let u be a vertex in U1 such that dU2
(u) is maximum.

4: L̂0, R̂0 ← Partition(G, Ŵ , d{u}) and L0, R0 ← Partition(G, W0, d{u}).
5: For t = 0, 1, . . . , d1/εe do
6: Randomly select disjoint sets Wt+1 and St of unchosen vertices from V ′ of

sizes 2l and s, respectively.
7: Let v1, . . . , vs be an ordering of St such that ft(v1) ≥ ft(v2) ≥ · · · ≥ ft(vs),

where ft(v) = dL̂t
(v)− dR̂t

(v).
8: If maxj{ft(vj)− ft(vj+1)} > D
9: Let j be the first index for which ft(vj)− ft(vj+1) > 2

5λ2 D,
10: Return {v1, . . . , vj}.
11: L̂t+1, R̂t+1 ← Partition(G, Ŵ , dLt − dRt).
12: Lt+1, Rt+1 ← Partition(G, Wt+1, dLt − dRt).

See Figure 3. The total number of vertices selected by procedure Find2 is u1 +
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Figure 3: The sets created by procedure Find2.

u2 + 2l̂ + (d1/εe + 1) · (2l + s). We assume that the bound k ≥ 106λ8∆−1
√

n log n ·
(
√

log n + ∆−ε) is satisfied, and in that case, the total number of vertices selected
by procedure Find is less than n/3.

In order to satisfy Property 1, we make a small change in procedure Find2:
During the calls to procedure Find2 by algorithm Solve3, the set U2 is chosen only
once, at the first call to Find2, and its vertices are marked (the marks on the vertices
are maintained globally in the algorithm). In the next calls to Find2, we use the
set U2 that was chosen in the first call, without the vertices that were removed
from the graph G. Moreover, the set U1 is chosen randomly from all the unmarked
vertices of V ′, and then its vertices are marked. Finally, the other random sets in
the algorithm are chosen from the unmarked vertices of V ′, but their vertices are
not marked. Clearly, the sets U1 that are chosen at the different calls to Find2 are
disjoint, and therefore Property 1 is satisfied (the important pairs are all pairs (u, v)
where u ∈ U2 and v ∈ U1 for some set U1). For simplicity, we will analyze below the
original procedure Find2.

We now analyze procedure Find2. We assume w.l.o.g. that the vertex u chosen
in Step 3 belongs to the cluster V1. Recall that Ai = |Vi| and Amax = maxi Ai.

Lemma 6.1. If k ≥ 1200 logn then with probability 1 − O(1/n3), A1 ≥ Amax −
150∆−1

√
n log n.

Proof. Let Vi be a cluster of maximum size. Denote A′
j = |U2 ∩ Vj| for all j.

Consider the following failure events:

1. U1 ∩ Vi = ∅.

2. |dU2
(v)− E [dU2

(v)]| > √3 · 4u2 log n =
√

3
5

√
n log n for some v ∈ U1.

3. |A′
j − Aj

n
u2| >

√
3 · 4 · u2 log n =

√
3

5

√
n log n for some j.

The probability of event 1 is at most (1− ai)
u1 ≤ e−aiu1 ≤ e−u1/m = n−3. By

Corollary 2.3 and Corollary 2.4, the probability that events 2 or 3 happen is O(n−3).
For the rest of the proof, assume that events 1–3 do not happen.

Let w be a vertex from U1 ∩ Vi. For v ∈ Vj we have E [dU2
(v)] = A′

j∆ + u2r.
Thus,

A′
1∆ + u2r +

√
3

5

√

n log n ≥ dU2
(u) ≥ dU2

(w) ≥ A′
i∆ + u2r −

√
3

5

√

n log n,
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so A′
1 ≥ A′

i − 2
√

3
5

∆−1
√

n log n. Therefore,

A1 ≥
n

u2
A′

1 −
n

u2

√
3

5

√

n log n

≥ n

u2

A′
i − 100 · 2

√
3

5
∆−1

√

n log n− 100 ·
√

3

5

√

n log n

≥ Ai − 150∆−1
√

n log n.

In the following lemma we use the same definitions of bt
i, b̂t

i, rt
i, r̂t

i, ct
i, and t∗ as in

Section 5. We again assume that m ≥ 3. Define d = 1
λ2 ·a1∆. The events which can

cause a failure of procedure Find2 are:

1. A1 < Amax − 150∆−1
√

n log n.

2. St ∩ Vi = ∅ for some i and t.

3. |ft(v)− E [ft(v)]| > 1
5λ2 D for some t and v ∈ St.

4. |bt
i − ct

i| > d for some i and t.

Lemma 6.2. Let ε > 0 be some constant. If maxi ai < 2/3, k ≥ 106λ8∆−1
√

n log n ·
(
√

log n + ∆−ε), p, r ∈ [1
4
, 3

4
], and ∆ ≤ 1

10λ3 , then the probability that at least one of
events 1–4 happens is O(n−3).

Proof. The probability that event 1 happens is O(n−3) (Lemma 6.1). By Theo-
rem 4.1 we have that the probability that |bt

i−ct
i| > 72amax

√

m
l

log n for some i and t

is o(n−3). Assuming that event 1 does not happen, A1 ≥ Amax − 150∆−1
√

n log n ≥
(1− 150/(106λ8

√
log n))Amax = (1− o(1))Amax. Therefore,

72amax

√

m

l
log n ≤ 72

100λ2
· amax∆ ≤

1

λ2
· a1∆,

so the probability that event 2 happens (assuming that event 1 does not happen) is
o(n−3). The probability that event 3 or 4 happen is O(n−3).

For the rest of the section assume that events 1–4 do not happen.

Lemma 6.3. Under the conditions of Lemma 6.2, with probability 1−O(1/n3),

1. b0
1, b̂

0
1 ≥ 1

2
a1∆.

2. For all i > 1,− 3
2
≤ r0

i , r̂
0
i ≤ 1

2
.

3. For all 1 ≤ t ≤ t∗, bt
1 ≥ 2∆−εt · b0

1 and b̂t
1 ≥ 2∆−εt · b̂0

1.

4. For all 1 ≤ t ≤ t∗ and all i > 1, −23t ≤ rt
i, r̂

t
i ≤ 1− 1/23t

.
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Proof. Again, we prove the bounds of the lemma only for bt
i and rt

i , as the bounds
for b̂t

i and r̂t
i are similar.

(1) By Lemma 4.2, we have that

c0
1 = 2a1(1− a1)∆ >

2

3
a1∆.

Therefore, b0
1 ≥ c0

1 − d1 ≥
(

2
3
− 1

λ2

)

a1∆ > 1
2
a1∆.

(2) By Lemma 4.2, c0
i = −2a1ai∆ for every i > 0. Therefore, b0

i ≤ c0
i + d ≤ d <

1
2
a1∆. Furthermore, c0

i ≥ −c0
1 (as ai ≤ 1− a1), so b0

i ≥ c0
i − d > −(1 + 1

2
)c0

1. Thus,
−3

2
≤ r0

i ≤ 1
2
.

(3) Fix some t. We will show that bt+1
1 ≥ 2∆−εbt

1. W.l.o.g. assume that bt
1 ≥

bt
2 ≥ · · · ≥ bt

m.
As in the proof of Lemma 5.4, we have that

|bt
i − bt

j| ≤ |b̂t
i − b̂t

j|+ 4 · 1

λ2
· a1∆ ≤ λ

(

λ + 1 +
8

λ2

)

(b̂t
1 − b̂t

2)

≤ 2λ2 · 2D
∆l̂

= 200λ4 ·
√

log n

∆
√

l̂
=

1

5λ1.5
· 1

∆
√

l

for all i and j.
Denote F0 = γ∆

√
l (where γ is defined in Lemma 4.3), F = F0amax and Y =

(
∑m

j=1 ajb
t
j)/b

t
1. By Lemma 4.3,

bt+1
1 ≥ F0a1

(

bt
1 −

m
∑

j=1

ajb
t
j −

(

2Γ∆− 5

√

amax

l
log n ·∆− 2

9

(

1

5λ1.5

)2
)

(

bt
1 − bt

m

)

)

− 3
a1√

l
− d1.

We have

• (1− o(1))F ≤ F0a1 ≤ F .

• 2Γ∆ ≤ 1
5λ3 .

• 5
√

amax

l
log n ·∆ ≤ 5

102λ2 · 1
10λ3 .

• bt
1 − bt

m ≤ (1 + λ)bt
1.

• 3 a1√
l

= O
(

a1
∆√

m log n

)

= o(Fbt
1) (since F ≥ 3

2
∆
√

l/m ≥ 150λ2∆−ε and bt
1 ≥

1
2
a1∆).

• d1 = 1
λ2 · a1∆ ≤ 1

75λ4 Fbt
1.

Thus,

bt+1
1 ≥ F0a1 · (1− Y )bt

1 −
(

λ + 1

5λ3
+

λ + 1

200λ5
+

2(λ + 1)

225λ3
+

1

75λ4
+ o(1)

)

Fbt
1

≥ F0a1(1− Y )bt
1 −

1

4λ2
Fbt

1.
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Now,

m
∑

j=1

ajb
t
j ≤ a1b

t
1 +

m
∑

j=2

ajb
t
2 = a1b

t
1 + (1− a1)b

t
2 ≤

2

3
bt
1 +

1

3
bt
2 = (

2

3
+

1

3
rt
2)b

t
1.

Therefore, 1− Y ≥ 1
3
(1− rt

2)b
t
1 ≥ 1

3λ
and

bt+1
1 ≥ (1− o(1))(1− Y )Fbt

1 −
1

4λ2
Fbt

1 ≥
(

1− o(1)− 3λ

4λ2

)

(1− Y )Fbt
1

≥
(

1− 1

λ

)

(1− Y )Fbt
1 ≥

1

2
· 1

3λ
· Fbt

1 ≥
1

6λ
· 150λ2∆−εbt

1 > 2∆−εbt
1.

(4) By Lemma 4.2,

bt+1
i ≤ F0ai

(

bt
i −

m
∑

j=1

ajb
t
j +

(

2Γ∆− 5

√

amax

l
log n ·∆− 2

9

(

1

5λ1.5

)2
)

(bt
1 − bt

m)

)

+ 3
ai√
l
+ d

≤ F0ai

(

bt
i −

m
∑

j=1

ajb
t
j

)

+
1

4λ2
Fbt

1

≤ F max(0, bt
i −

m
∑

j=1

ajb
t
j) +

1

4λ2
Fbt

1

≤
(

max(0, rt
i − Y ) +

1

4λ2

)

Fbt
1.

We have already shown above that

bt+1
1 ≥

(

1− 1

λ

)

(1− Y )Fbt
1

Hence

rt+1
i ≤ max(0, rt

i − Y ) + 1
4
λ−2

(1− λ−1)(1− Y )
≤
(

1 +
2

λ

)

max(0, rt
i − Y ) + 1

4
λ−2

1− Y
.

As
m
∑

j=1

ajb
t
j ≥

m
∑

j=1

ajb
t
m = bt

m = rt
mbt

1,

we have that Y ≥ rt
m ≥ −23t

, and it follows that

rt+1
i ≤

(

1 +
2

λ

)

rt
i − rt

m + 1
4
λ−2

1− rt
m

≤
(

1 +
2

λ

)

1− 1

23t + 23t
+ 1

4
λ−2

1 + 23t

≤ 1 +
2

λ
+

2

1 + 23t ·
1

4λ2
− 1

23t (1 + 23t)
≤ 1− 1

23t+1
.
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Using similar arguments we obtain that

rt+1
i ≥

(

1 +
2

λ

)

min(0, rt
i − Y )− 1

4
λ−2

1− Y
≥
(

1 +
2

λ

)

rt
i − 1− 1

4
λ−2

1− (2
3

+ 1
3
rt
2)

=

(

1 +
2

λ

)

· 3 · r
t
i − 1− 1

4
λ−2

1− rt
2

≥ 3

(

1 +
2

λ

) −
(

23t
+ 1
)

− 1
4
λ−2

1/23t

≥ −4 · 22·3t ≥ −23t+1

.

Lemma 6.4. Under the conditions of Lemma 6.2, with probability 1 − O(1/n3),
procedure Find2 returns a subcluster of V1 of size at least 1200 log n/∆2. The running
time of procedure Find2 is O(m4∆−4(1+ε) log n + m2∆−4 log3 n + m∆−1n log n).

Proof. If ∆ ≤ 1
10λ3 , then from Lemma 6.3 we conclude (similarly to the proof of

Lemma 5.6) that with probability 1−O(1/n3), procedure Find2 returns a subcluster
of size at least 1200 logn/∆2.

We now consider the case when ∆ > 1
10λ3 . We will show that procedure Find2

stop after the first iteration and return a subcluster of V1 of the required size.
W.l.o.g. assume that b̂0

1 ≥ b̂0
2 ≥ · · · ≥ b̂0

m. The proofs of items 1 and 2 in
Lemma 6.3 are also valid for the case ∆ > 1

10λ3 . Therefore, we have that b̂0
1 − b̂0

2 ≥
1
2
b̂0
1 ≥ 1

4
a1∆ ≥ 1

5
∆
m

. For v ∈ Vi, E [f0(v)] = ∆l̂b̂0
i . Thus,

min
v∈S0∩V1

f0(v)− max
v∈S0−V1

f0(v) ≥ ∆l̂(b̂0
1 − b̂0

2)− 2 · 1

5λ2
D ≥ 1

10λ3
· l̂ · 1

5

∆

m
− 2

5λ2
D > D.

Hence, procedure Find2 stops at Step 10 and {v1, . . . , vj} = V1 ∩ S0.
As the number of iterations is at most d1/εe = O(1), the time complexity of

Find2 is O(sl̂ + ll̂ + u1u2) = O(ll̂ + u1u2) = O(m4∆−4(1+ε) log n + m2∆−4 log3 n +
mn log n).

Combining Lemma 5.6 and Lemma 6.4 proves Theorem 1.2.
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List of Symbols

Symbol Meaning Introduced on page

∆ p− r 1

Γ maxi |ai − 1
m
| 17

Ai |Vi| 7

ai |Vi|/n 7

Amax maxi Ai 7

amax Amax/n 7

bt
i I(Vi, Lt, Rt) 23

ci(f) 2ai

∑

j 6=i aj(p
>
ij(f)− p<

ij(f)) 14

c0
i ci(d{u}) 23

ct
i ci(dLt − dRt) 23

dS(v) Number of neighbors of v in S 3

dt

{

1
100
· ∆

m
if t ≤ 2

1
100
· ∆

m

√
log n if t ≥ 3

23

ft(v) dL̂t
(v)− dR̂t

(v) 23

I(Vi, L, R) |Vi∩L|−|Vi∩R|
|L| 13

k mini |Vi| 1

m Number of clusters 1

n Number of vertices 2

p Probability for an edge between vertices of same cluster 1

p>
ij(f) P [f(v) > f(w)|v ∈ Vi ∩ T, w ∈ Vj ∩ T ] 14

r Probability for an edge between vertices of different clusters 1

rt
i bt

i/b
t
1 23

Vi i-th underlying cluster 1
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