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Abstract

Given a string S over a finite alphabet Σ, the character set (also called the finger-

print) of a substring S ′ of S is the subset C ⊆ Σ of the symbols occurring in S ′.
The study of the character sets of all the substrings of a given string (or a given
collection of strings) appears in several domains such as rule induction for natural
language processing or comparative genomics. Several queries about the character
sets of a string arise from these applications, especially:

(1) Output all the maximal locations of substrings having a given character set.

(2) Output for each character set C occurring in a given string (or a given collection
of strings) all the maximal locations of C.

Denoting by n the total length of the considered string or collection of strings, we
solve the first problem in Θ(n) time using Θ(n) space. We present two algorithms
solving the second problem. The first one runs in Θ(n2) time using Θ(n) space.
The second algorithm has Θ(n|Σ| log |Σ|) time and Θ(n) space complexity and is
an adaptation of an algorithm by Amir et al. (J. Discr. Alg., 26:1–13, 2003).

Key words: character sets, fingerprints, combinatorial algorithms on words,
comparative genomics, natural language processing

1 Introduction

The study of local composition of a given string S can be formalized by consid-
ering the subsets of symbols occurring in all the substrings of S. We define the
character set of a given substring S ′ as the set of all and only those symbols
having at least one occurrence in S ′. The present work is devoted to answer
the following two queries:
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Query 1: Given a string S and a set of characters C, find all maximal sub-
strings of S that have C as their character set.

Query 2: Given a string S, find for each character set C that occurs at least
once in S, all maximal substrings of S that have C as their character set.

Both queries can easily be extended to search in a collection of strings instead
of a single string.

Previous work about this topic was motivated by two main applications: natu-
ral language processing and comparative genomics. Query 2 was not explicitly
raised in these applications, but many of the problems considered are strongly
related to it.

In comparative genomics, one is interested in identifying, among the genomes
of two or more organisms, the regions composed of the same set of genes
(sometimes called clusters), disregarding the number and order of physical
occurrence of the genes of this cluster [1,2]. Here the considered strings are
the ordered sequences in which the genes of the organisms appear in the DNA.
Formalized with character sets, the problem becomes that of “finding all the
character sets appearing in all the strings of a given collection”. A first solution
of this particular problem was given by Uno and Yagiura [3]. This solution is
limited to the case of a collection of two strings which are both permutations
of a same set of n elements (i.e. each symbol appears only once in each string).
They presented an optimal O(n + K) time algorithm where K is the effective
number of common contiguous subsets between the two permutations (i.e.
the common character sets), which are called common intervals. Heber and
Stoye [4] extended this result to common intervals of k ≥ 2 permutations.
Unfortunately the simplicity of the model makes it unsuitable to be used on
real genomic data because of the presence of multiple copies of the same gene in
a genome (paralogous genes). A more general algorithm, presented by Schmidt
and Stoye in [6], solves the question of finding all the common intervals of two
strings (not only permutations) in Θ(n2) time using Θ(n2) space. In Section 4
of this paper we describe an alphabet independent algorithm solving the same
question in Θ(n2) time and Θ(n) space.

In the field of natural language processing, some techniques of automatic in-
duction of lexical classification rules may rely on the analysis of the statistics
of the character sets. The symbols considered here are the lexical categories
(noun, adjective, verb, . . . ). We refer to [7,8] for more details. For this type of
applications, Amir et al. [8] developed a general algorithm applicable both to
Queries 1 and 2, using an efficient encoding of the character sets (fingerprints).
After an O(n|Σ| logn log |Σ|) time preprocessing and saving a tree structure
of size O(n|Σ|) in memory, it allows to answer Query 1 in O(|Σ| logn) time. In
Section 3 of this paper we present another way to solve Query 1 that requires
linear time and space (with respect to the length of the sequence) which can
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be an efficient alternative to the solution of [8] when the alphabet has a high
cardinality. Using a direct adaptation of the preprocessing from [8], Query 2
can be answered in O(n|Σ| log n log |Σ|) time and Θ(n) space. In Section 5 of
this paper we improve this algorithm to require Θ(n|Σ| log |Σ|) time and Θ(n)
space.

This paper is an extended version of two conference papers containing weaker
results, [5] and [6].

2 Basic definitions and statement of the problems

Given a string S over the finite alphabet Σ = {1, . . . , |Σ|}, |S| denotes the
length of S, S[i] refers to the ith character of S, and S[i, j] is the substring of S
that starts with the ith and ends with the jth character of S. For convenience,
we will always assume for a string S that S[0] = S[|S|+ 1] = δ, where the
special character δ does not occur elsewhere in S, so that border effects can
be ignored when speaking of the left or right neighbor of a character in S.

Definition 1 (character set) Given a string S, the character set of a sub-
string S[i, j] is defined by

CS(S[i, j]) = {S[k] | i ≤ k ≤ j}.

Definition 2 (location) Given a string S over an alphabet Σ and a subset
C ⊆ Σ, the interval [i, j] is a location of C in S if and only if CS(S[i, j]) = C.

Definition 3 (maximal) A substring S[i, j] of S is left-maximal if S[i− 1] /∈
CS(S[i, j]), it is right-maximal if S[j + 1] /∈ CS(S[i, j]), and it is maximal if
it is both left- and right-maximal.

The locations of two maximal substrings having the same character set cannot
overlap each other. An interval or a location [i, j] is called maximal if the
substring S[i, j] is maximal.

Queries 1 and 2 of the Introduction can now be expressed in terms of maximal
locations by the following two problems:

Problem 1 Given a string S over Σ and a character set C ⊆ Σ, output all
the maximal locations of C in S.

Problem 2 Given a string S over Σ, for each character set C ⊆ Σ with at
least one location in S, output all the locations of C in S.
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As pointed out in the Introduction, many related queries about character sets
like “output all the character sets with at least some fixed number of locations
in S” can be seen as particular instances of Problem 2. All that is needed are
appropriate filters of the output.

Another variation of the problem is the case where not only one string S is
given, but a collection of strings S = (S1, S2, . . . , Sk). This can be reduced
to the above problems by concatenating all the strings of the collection and
inserting a special symbol δ between them. By convention, the positions of
the special symbol will not be considered as positions of the string.

3 Finding all the maximal locations of a given character set

We start with a simple algorithm that solves Problem 1, i.e. given a string
S of length n over the alphabet Σ and a character set C ⊆ Σ, it outputs all
the maximal locations of C in S. Its complexity is linear with respect to the
length of S both in time and space.

Definition 4 (C-maximal) Given a character set C, a substring S[i, j] of
a string S is C-maximal if CS(S[i, j]) ⊆ C, S[i− 1] /∈ C and S[j + 1] /∈ C.

A C-maximal substring is maximal.

Remark 1 An interval [i, j] is a maximal location of a given character set C
if and only if the substring S[i, j] is C-maximal and |CS(S[i, j])| = |C|.

The algorithm solving Problem 1 is now straightforward. We assume the char-
acter set C is stored in a bit array of size |Σ|. Starting at the first position,
we read the characters of S in a left-to-right fashion up to position i, the first
position of an occurrence of a symbol of C, i.e. the start of the first C-maximal
substring of S. Next, to get the right boundary j of this C-maximal substring,
we move further, as long as we find symbols of C and, e.g. using again a bit
array of size |Σ|, count the number of different symbols encountered. With
the preceding remark, if this last number is equal to |C|, [i, j] is a maximal
location of C and we output this interval. We iterate this process starting at
position j + 1 until the end of S is reached.

Theorem 1 Given a string S of length n (or a collection S of strings of
overall length n) and a character set C, all maximal locations of C in S (re-
spectively S) can be found in Θ(n) time and space.
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4 Finding the locations of all character sets — first algorithm

Now we consider Problem 2. The general outline of our first algorithm for
solving this problem is that for each position i of the sequence S, all the
locations of character sets of substrings starting at i are reported. In the
following we will assume i to be fixed to some value between 1 and n = |S|.

4.1 Maximal substrings starting at a given position — Ranks of symbols

By definition, a (left-) maximal substring starting at a position i of S cannot
include the first occurrence of S[i− 1] following i. Denoting by L the list of
symbols occurring between i (included) and the first occurrence of S[i− 1]
following i (excluded), ordered according to their first occurrences, the char-
acter sets of maximal substrings starting at i are the sets {L[1], . . . , L[m]} for
all integers m ∈ {1, . . . , |L|}.

Definition 5 (rank) We define for each symbol x ∈ Σ its rank as the index
of x in L if x occurs in L, and as +∞ if not.

The rank of a character x will be stored in the entry Rank[x] of a table Rank

of size |Σ|. We fix always Rank[δ] to +∞.

Definition 6 (complete) A substring S[a, b] is complete if and only if

{Rank[S[l]] | l ∈ [a, b]} = {1, . . . , max
l∈[a,b]
{Rank[S[l]]}}.

An interval [a, b] is complete if S[a, b] is complete.

Remark 2 A substring has the same character set as a substring starting at
i if and only if it is complete.

4.2 Related maximal intervals

The number of maximal substrings grows in general as a quadratic function of
the length of the sequence. We will see in this subsection that, among these,
at most |S| maximal substrings can be complete.

Definition 7 (rank interval) For each position k of S, the rank interval of
k, denoted Int[k], is the interval [a, b] containing k such that the substring
S[a, b] satisfies:
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(1) Rank[S[l]] ≤ Rank[S[k]] for all l ∈ [a, b];
(2) Rank[S[a− 1]] > Rank[S[k]] and Rank[S[b + 1]] > Rank[S[k]].

Rank intervals are hierarchically nested:

Lemma 1 If Int[k] and Int[k′] are two rank intervals, then Int[k]∩Int[k′] ∈
{∅, Int[k], Int[k′]}. More precisely, if Int[k] ∩ Int[k′] 6= ∅ we have:

(1) Int[k] ⊆ Int[k′] if and only if Rank[S[k]] ≤ Rank[S[k′]];
(2) Int[k] ⊇ Int[k′] if and only if Rank[S[k]] ≥ Rank[S[k′]];
(3) Int[k] = Int[k′] if and only if Rank[S[k]] = Rank[S[k′]].

Proof: We just prove the first assertion, the other ones being direct conse-
quences.

(⇒) By definition, the maximum rank over Int[k′] is reached in position k′.
If Int[k] ⊆ Int[k′] then Rank[S[k]] ≤ Rank[S[k′]].

(⇐) Let Int[k] = [a, b] and Int[k′] = [a′, b′] be two rank intervals such that
Int[k] ∩ Int[k′] 6= ∅. Assume that Rank[S[k]] ≤ Rank[S[k′]]. As Int[k] ∩
Int[k′] 6= ∅, we have either a ∈ [a′, b′] or b ∈ [a′, b′]. If a ∈ [a′, b′] then b
cannot be strictly greater than b′ because otherwise b′ + 1, whose rank is
strictly greater than Rank[S[k′]], would belong to [a, b], which would be in
contradiction to the hypothesis. In the same way, if b ∈ [a′, b′] then a cannot
be strictly smaller than a′. Hence assertion (1) is proved. 2

The hierarchical structure of the collection Int[k] for all k ≥ i can be repre-
sented as a tree whose nodes are associated to the intervals Int[k] (possibly
for several indices k if they produce the same interval) and whose topology
reflects the nesting structure as described by Lemma 1. Note that the set of
all the leaves having a given node Int[k] as ancestor corresponds to the set of
positions of S bounded by it. In Figure 1, we show the tree corresponding to
the ranks associated to position i = 1 of S = abcdacadbab.

The construction of the intervals Int[k] can be done in linear time. Initializing
a stack by pushing the position 0 of infinite rank, we iterate the following
process for each position k from 1 to |S|+ 1:

(1) Pop from the stack all the positions of rank smaller than Rank[S[k]] and
fix the right bound of their corresponding intervals to k− 1 (for all these
positions, k is the smallest position of greater rank).

(2) Let t be the top of the stack, i.e. the greatest position t < k of rank
greater or equal to Rank[S[k]]. If Rank[S[k]] = Rank[S[t]], fix the left
bound of Int[k] to the left bound of Int[t], otherwise to t + 1.

(3) Push the position k on the stack.
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positions : 1 2 3 4 5 6 7 8 9 10 11

S : a b c d a c a d b a b

Rank : 1 2 3 4 1 3 1 4 2 1 2

s s s s

s s

s s

s

Int[1] Int[5] Int[7] Int[10]

Int[2] Int[9] = Int[11]

Int[3] Int[6]

Int[4] = Int[8]

Fig. 1. Tree representation of the hierarchy of the rank intervals associated to posi-
tion 1 of S = abcdacadbab.

As the last iteration is done with the position |S| + 1 of infinite rank, all
the intervals of interest (i.e. not including any position of infinite rank) are
computed.

Theorem 2 If a maximal substring S[a, b] is complete, then [a, b] is a rank
interval.

Proof: Assume S[a, b] both maximal and complete. There is j > i such
that CS(S[i, j]) = CS(S[a, b]) = C (Remark 2). By definition of Rank,
there is no symbol in C of infinite rank, and each integer between 1 and
m = max{Rank[x] | x ∈ C} appears as a rank of a symbol of C. In other
words, {Rank[x] | x ∈ C} = {1, . . . , m} and S[a, b] is complete. As S[a, b]
is maximal, the symbols S[a− 1] and S[b + 1] are not in C. Moreover, each
rank in {1, . . . , m} has a unique antecedent in Σ and we have necessarily that
Rank[S[a− 1]] and Rank[S[b + 1]] are strictly greater than m. Let k ∈ [a, b]
such that Rank[S[k]] = m. It follows from the preceding and the definition
of the rank interval Int[k] that [a, b] = Int[k]. 2

4.3 Selecting the complete rank intervals

Definition 8 (rank distance) If k and k′ are positions of S, the rank dis-
tance between k and k′, denoted d(k, k′), is the maximum rank of symbols
occurring in S between k and k′, both included.

Computing the rank distance between two positions of S is exactly the Range
Maximum Query Problem and can be solved in constant time per query after
Θ(|S|) time preprocessing [9].
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Remark 3 Let Int[k] be a rank interval, and j ∈ Int[k] a position inside this
interval. The rank distance between j and a position outside Int[k] is strictly
greater than the rank distance between j and any position inside Int[k].

Definition 9 (rank-nearest) Let k be a position and I a non-empty set of

positions of S. Denote by
←−
k the greatest position of I smaller than k, if it

exists, and 0 otherwise. Similarly, denote by
−→
k the smallest position of I

greater than k, if it exists, and |S| + 1 otherwise. The rank-nearest position
of k in I, denoted N(k, I), is:

•
←−
k if d(k,

←−
k ) ≤ d(k,

−→
k )

•
−→
k otherwise.

Definition 10 (successor) Let k be a position of S with a finite rank and
P the set of positions of rank Rank[S[k]] + 1. If P is not empty and if the
rank-nearest position of k in P , N(k, P ), belongs to {1, . . . , |S|}, the successor
of k is N(k, P ), otherwise k does not have a successor.

Successors will be stored in a table Succ where for each k, 1 ≤ k ≤ n, entry
Succ[k] is the successor of k. By chaining positions of S of successive rank
forward and backward and using the solution of the Range Maximum Query
Problem of [9], the computation of the table Succ is possible in Θ(|S|) time
and space.

Definition 11 (path) A path of level l is a sequence of l positions of S
satisfying the following recursive definition:

• A path of level 1 is a position of the symbol of rank 1.
• A sequence (p1, . . . , pl+1) is a path of level l + 1 if:
· the sequence (p1, . . . , pl) is a path of level l;
· Rank[S[pl+1]] = l + 1;
· denoting by E the set of the last positions of the paths of level l having

pl+1 as successor, we have pl = N(pl+1, E).

We can illustrate this definition using the example of Figure 1. If we consider
the rank arising from the first position of the sequence (displayed in the third
line of the figure), there are four paths of level one: (1), (5), (7) and (10).
Following the above definition and considering the successors of their last
positions, some of these paths can be continued to paths of level two. In
particular, position 2 is the successor of three last positions of paths of level
one: 1, 5 and 7. Among these, position 1 is the rank-nearest of position 2. So,
the only path of the next level that includes position 2 is (1, 2), and the paths
(5) and (7) cannot be continued.

If we iterate the same process, we can compute the whole set of paths which is
given by the sequences of positions (1, 2, 3, 4), (5), (7), (10, 9, 6) and all their
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non-empty prefixes.

Note that each position of S appears in at most one path.

Theorem 3 A rank interval Int[k] is complete if and only if it contains a
path of level Rank[S[k]].

Proof: (⇐) By definition, if Int[k] contains a path of level Rank[S[k]], then
it is complete.

(⇒) Reciprocally let us assume Int[k] to be complete and for each l, 1 ≤ l ≤
Rank[S[k]], let Pl be the set of paths of level l included in Int[k]. We will
prove by induction that Pl is not empty for any l ≤ Rank[S[k]]. In particular,
there is at least one position of rank 1. So P1 is not empty.

Assume that Pl is not empty for some level l < Rank[S[k]]. As Int[k] is com-
plete, each last position of a path in Pl has a successor in Int[k] (Remark 3).
Hence, there is at least one position u ∈ Int[k] of rank l+1 that is a successor
of a last position of a path in Pl. Let E be the set of the last positions of a
path of level l having u as successor. As E includes at least one position of
Int[k] (from the preceding and Remark 3 again), the position pl = N(u, E)
belongs to Int[k]. Applying recursively the same argument to pl−1, . . ., p1,
the positions of smaller ranks of the path ending at pl, allows us to conclude
that this path is included in Int[k]. Finally (p1, . . . , pl, u) is a path included
in Int[k] and Pl+1 is not empty. 2

4.4 Algorithm

The general strategy of the algorithm is, for each position i of S, to compute
all the maximal locations of the growing character sets admitting a maximal
location starting at i. As we want to output the locations of a given character
set only once, the intervals computed are reported only if the first maximal
location found starts at i.

Theorem 2 states that all the maximal intervals of which corresponding sub-
strings have eventually the same character set as a maximal substring starting
at i are the rank intervals associated to position i, but only those which are
complete. The table Rank of all rank intervals associated to a position i is
pre-computed. In order to prepare the completeness test, at the same time
also the preprocessing used for rank distance queries is performed and the
successor table is filled.

A direct consequence of Theorem 3 is that a rank interval [a, b] is complete if
and only if there is a position k ∈ [a, b] such that:
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• Int[k] = [a, b],
• k is the last position of a path included in Int[k].

If we have the set of all the paths of a given level l, testing if their bounds
are included in the rank interval of their last positions will give us all the
maximal locations of the character set of cardinality l admitting a maximal
location starting at i. To perform this test, we just need to represent each
path of level l by an element recording the two following fields:

• pos, the last position of the path, and
• bound, the smallest interval containing the path.

We store the elements corresponding to all the paths of a given level in a
chained list List.

The construction of the paths of growing levels is done iteratively. Before
starting, List is initialized with all the positions of rank 1, in ascending order.
At each iteration, after testing the preceding inclusion and possibly reporting
the maximal intervals, the list is updated to go from level l to level l+1. First
one needs to remove from List all the elements corresponding to paths that
cannot be continued. According to Definition 11, this arises in two situations:
when a last position does not have a successor or when a last position is not
the rank-nearest of its successor among the other candidates. If we assume
that the last positions are ordered in ascending order in List for the level
l, their respective successors are, by construction, also in ascending order. In
particular, all the last positions having the same successor appear successively
in List, and the rank-nearest from this successor is easy to determine (we just
need to consider the last positions bounding this successor). Next the field pos

of the elements of the list corresponding to paths that can be continued to
paths of level l + 1 are replaced by their successors and the field bound. At
the end of the iteration, the elements of List are still ordered in ascending
order of their field pos. So as List is ordered at its initialization, it will be
ordered for all the iterations.

For each position i of S, all the steps of the initializations are of complexity
linear in |S| both in time and space. During the execution of the loop of
construction each position of S is parsed and stored at most twice: (possibly)
once as successor and once as last position of a path. The construction of the
paths is also linear both in space and time.

The whole procedure is summarized in Algorithm 1. Altogether, we have:

Theorem 4 Given a string S of length n, Algorithm 1 reports the locations
of all the maximal substrings of S, gathered by character sets, in Θ(n2) time
using Θ(n) space.
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Algorithm 1
{Main loop}
for each position i of S do

{Initialization}
Compute the table Rank

Compute the table of intervals Int

Perform the preprocessing for the Range Maximum Queries

Compute the table Succ

Initialize List with the positions of rank 1 in increasing order

while List is not empty do

{Test if there are locations to output}
first ← the first element of List verifying first.bound ⊆ Int[first.pos]
if the left end of Int[first.pos] ≥ i then

output Int[first.pos]
previous← Int[first.pos]
for each element e following first in List do

if e.bound ⊆ Int[e.pos] and Int[e.pos] 6= previous then

output Int[e.pos]
previous← Int[e.pos]

end if

end for

output newline {no more maximal substring with the same character set}
end if

{Compute the next level}
for each element e in List do

if Succ[e.pos] does not exist or e.pos is not the nearest index of
Succ[e.pos] among the positions of the list having the same successor
then

remove e from List

else

e.pos ← Succ[e.pos]
{Update e.bound}
if e.pos < e.bound.start then

e.bound.start← e.pos

end if

if e.pos > e.bound.end then

e.bound.end← e.pos

end if

end if

end for

end while

end for
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5 Finding the locations of all character sets — second algorithm

In this section we show how to improve the algorithm of Amir et al. [8] for
solving Problem 2 by a factor of log n. We first give a short description of
the original algorithm in Section 5.1, and then we present our improvement
in Section 5.2. W.l.o.g., we assume in the following that |Σ| is a power of 2.

5.1 A Θ(n|Σ| log |Σ| log n) algorithm

Given a string S of length n over alphabet Σ, the algorithm performs |Σ|
iterations, where in the k-th iteration it finds all the substrings of S with
character sets of size k. The algorithm maintains a maximal interval [a, b]
over S, and arrays Count[1..|Σ|] and Life[1..|Σ|]. Count[i] is the number
of times the character i appears in S[a, b], and Life[i] is 1 if Count[i] > 0
(namely, if i is in the character set of S[a, b]), and 0 otherwise.

Initially, the interval [a, b] spans the longest prefix of S whose character set has
size k. Then, the interval is moved in the following way: First, b is increased
until the character set of S[a, b] has size k + 1, and then a is increased until
the character set of S[a, b] has size k (the array Count is used to find the new
values for a and b). The interval movement is repeated until the end of S is
reached. This way, all the character sets of all substrings of S can be found in
Θ(n|Σ|) time. However, each set may be encountered several times. Therefore,
the algorithm needs to identify and collate multiple occurrences of the same
character set in order to solve Problem 2. This is done using additional data
structures.

A subarray Life[i2l +1..(i+1)2l] of Life (0 ≤ l ≤ log |Σ|, 0 ≤ i ≤ |Σ|/2l− 1)
will be called a block of level l. The main idea is to assign a name for every
block in Life in all the configurations of Life. The names are consistent,
namely two blocks of the same level with the same content are assigned the
same name. In particular, in all the maximal locations of some character set
C, the names assigned to the entire array (i.e., to the block of level log |Σ|)
are equal.

The naming is performed as follows: Consider the initial configuration of Life

(i.e., the one that corresponds to the first interval). The name of a block in
level 0 is the corresponding value in Life. Now, suppose that we assigned
names for all the blocks of level l − 1. We will assign names to the blocks
of level l from left to right. A block of level l is composed of two blocks of
level l − 1. Suppose that the current block is composed of two blocks whose
names are x and y. If the pair (x, y) appeared previously, then the name of
the current block is the name that was assigned to the pair (x, y). Otherwise,
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10

8 9

5 6 6 7

2 3 2 4 2 4 4 3

0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0

(a)

12

11 9

7 6 6 7

4 3 2 4 2 4 4 3

1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0

(b)

Fig. 2. An example of blocks naming. Figure (a) shows an example of naming for
the array Life = 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0. Figure (b) shows the names
after changing Life[1] to 1 (changed names appear in boldface). Note that the first
block on level 2 has name 7, as the pair (4, 3) appeared previously, while the first
block on level 3 has a new name (11), as the pair (7, 6) did not appear previously.

assign the minimum unused name to the pair (x, y), and also assign this name
to the current block. See Figure 2 for an example.

After each movement of the interval [a, b], two positions in the array Life are
changed: In one position, a 1 is changed into 0, and in a second position, a 0 is
changed into 1. After each of these changes, the algorithm updates the names
of the blocks. This can be done efficiently as only one block changes its name
in each level (see Figure 2).

Checking whether a pair (x, y) appeared previously can be done in O(log n)
time using balanced binary search trees. Thus, creating the names for the first
interval takes O(|Σ| log |Σ| log n) time, and updating the names after each
interval movement takes O(log |Σ| log n) time. Therefore, the total time com-
plexity of the algorithm is O(n|Σ| log |Σ| log n).

5.2 A Θ(n|Σ| log |Σ|) algorithm

Consider some fixed k. The improved algorithm differs from the algorithm
of the previous section in the order in which names are assigned to blocks:
The new algorithm first assigns names to the level 1 blocks of Life for all
possible intervals (with character set of size k). Then, the algorithm assigns
names to the level 2 blocks for all possible intervals, and this is continued
until the algorithm assigns names to the blocks of level log |Σ|. As in the
previous algorithm, we need to ensure that the names are consistent. For
obtaining the names, the algorithm builds lists L1, . . . , Llog |Σ|. The list Ls will
contain |Σ|/2s elements corresponding to the |Σ|/2s blocks of level s in the
initial configuration of Life (i.e., the configuration that corresponds to the first
interval), and one element for each level s block whose name is changed due to a
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change in Life. Each element of Ls is a tuple (x, y, z, i) that corresponds to the
i-th block in level s at some configuration of Life, where x and y are the names
assigned to the two sub-blocks of the block, and z is the name that is assigned
to the block. The algorithm also maintains arrays Name1, . . . ,Namelog |Σ|−1.
The array Names[1..|Σ|/2s] is used to store the names of all the blocks of level
s at some configuration of Life.

Assigning names to the blocks of level 1 is done as follows: Start with the initial
configuration of Life, and for j = 1, . . . , |Σ|/2, add the tuple (Life[2j −
1],Life[2j], 0, j) to the list L1. Note that the third element of the tuple is
0, which means that the block has not been assigned a name yet. When a
name is assigned to the block, the 0 will be replaced by that name. Recall
that during the movement of the interval [a, b], the cells of Life are changed.
Every time a cell in Life changes its value, add the tuple (Life[2di/2e −
1],Life[2di/2e], 0, di/2e) to L1, where i is the index of the cell.

After building L1, create a copy L′
1 of L1, and store pointers from each element

in L′
1 to the corresponding element in L1. Then, lexicographically sort the list

L′
1, where the key of an element (x, y, 0, i) of L1 is (x, y). Afterward, traverse

L′
1 from its start to its end, and assign a name to each element of L′

1 and the
corresponding element in L1: The first element of L′

1 is assigned the name 1.
For an element (x, y, 0, i) whose previous element is (x′, y′, z′, i′), assign the
name z′ if (x, y) = (x′, y′), and assign the name z′ + 1 otherwise (assigning a
name z to (x, y, 0, i) means that the zero is replaced by z).

To assign names to the blocks of level 2, the algorithm uses the array Name1.
Initially, Name1 contains the names of the level 1 blocks of the first con-
figuration of Life. That is, Name1[s] is equal to the name assigned to the
s-th element in L1. Then, the list L2 is built as follows: For j = 1, . . . , |Σ|/4,
add the tuple (Name1[2j − 1],Name1[2j], 0, j) to L2. Furthermore, for ev-
ery k > |Σ|/2, let (x, y, z, i) be the k-th element of L1. Change the value of
Name1[i] to z, and add the tuple (Name1[2di/2e−1],Name1[2di/2e], 0, di/2e)
to L2. As before, a copy L′

2 of L2 is generated and its elements are sorted. By
traversing L′

2, the elements of L2 are assigned names. This process is repeated
for building the lists L3, . . . , Llog |Σ|.

To analyze the time complexity, notice that the length of a list Ls is at most
|Σ|/2s + 2n ≤ 3n (we assume that |Σ| ≤ n, otherwise we use the algorithm of
Section 4). It follows that the names of the blocks of each level are bounded
by 3n. Using radix sort, sorting a list L′

s takes O(n) time. Therefore, the time
complexity of the algorithm is Θ(n|Σ| log |Σ|). The space complexity of the
algorithm is Θ(n) (note that after the list Ls is built, the lists Ls−1 and Ls

can be erased).

The time complexity of the algorithm can be further reduced to Θ(n|Σ| log( |Σ|
log n

+
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2)): Let s = min(log |Σ|, dlog log ne). A block in level s can be assigned
a name directly by treating the contents of the block as a number in bi-
nary representation and using this number as the name (we assume a RAM
model in which arithmetic operations on integers between 0 and nO(1) are per-
formed in constant time). Thus, the algorithm needs to assign names only for
blocks with level greater than s. The number of levels which are processed is
log |Σ| − s + 1 = O(log( |Σ|

log n
+ 2)). We therefore have:

Theorem 5 Given a string S of length n, the algorithm described above finds
the locations of all the maximal substrings of S, gathered by character sets, in
Θ(n|Σ| log( |Σ|

log n
+ 2)) time using Θ(n) space.

6 Conclusion

Compared to the amount of results on characterizing and finding substrings
of sequences, the study of character sets of substrings of sequences is still in
its infancy. In this paper we presented a very simple algorithm reporting all
the maximal locations of a given character set in linear time, independent
of the alphabet size, by direct parsing, and two algorithms for reporting the
locations of maximal substrings gathered by character set of a given string or a
collection of strings. The first of these two algorithms is alphabet independent
and runs in Θ(n2) time, the second one runs in Θ(n|Σ| log( |Σ|

log n
+ 2)) time.

As the possible number of different character sets occurring in a string of
length n over an alphabet Σ is of order Θ(n|Σ|), none of the algorithms above
solves Problem 2 in an optimal way. Moreover, their respective complexities
show that the choice of using one or the other of these algorithms will depend
(asymptotically) on the rate of the alphabet size relative to the length of
the considered sequence. In particular, when considering a sequence of genes,
we have |Σ| = Θ(n), favoring the first algorithm, but for natural language
processing |Σ| is a priori fixed with regard to the length of the texts, favoring
the second algorithm.
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a Language-independent System for Parsing Unrestricted Text. Mouton de
Gruyter, 1995.

[8] A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting
via Parikh mapping. J. Discr. Alg., 26:1–13, 2003.

[9] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings

of the 4th Latin American Symposium on Theoretical Informatics, LATIN 2000,
volume 1776 of LNCS, pages 88–94. Springer Verlag, 2000.

16


