
Tight bounds for string reconstruction using substring queries

Dekel Tsur
∗

Abstract

We resolve two open problems presented in [8]. First, we consider the problem of recon-
structing an unknown string T over a fixed alphabet using queries of the form “does the
string S appear in T ?” for some query string S. We show that every non-adaptive algorithm
must make Ω(ε−1/2n2) queries in order to reconstruct a 1−ε fraction of the strings of length
n. The second problem is reconstructing a string using queries of the form “does a string
from S appear in T ?”, where S is a set of strings. We show a non-adaptive reconstruction
algorithm for this model which is optimal both in the number of queries, and in the length
of the strings in the queries.

1 Introduction

Consider the following problem: There is some unknown string T of length n over a fixed alpha-
bet, and the goal is to reconstruct T by making queries of the form “does the string S appear in
T ?” for a query string S. Besides the theoretical interest, this problem is motivated by Sequenc-
ing by Hybridization (SBH) which is a method for sequencing unknown DNA molecules [2]. In
this method, the target string is hybridized to a chip containing known strings. For each string
in the chip, if its reverse complement appears in the target, then the two strings will bind (or
hybridize), and this hybridization can be detected. Thus, SBH can be modeled by the string
reconstruction problem described above.

Skiena and Sundaram [11] showed that every string can be reconstructed using (σ − 1)n +
2 log n + O(σ) queries, where σ is the size of the alphabet Σ (assuming that n is known to the
algorithm). They also showed a lower bound of 1

4(σ−3)n queries. The algorithm in [11] is adap-
tive, namely, each query can depend on the answers to the previous queries. When restricting
the algorithm to be non-adaptive (i.e., all of the queries must be determined in advance), the
problem becomes harder: At least σn/2/n queries are needed in order to reconstruct all strings
of length n, and O(σn/2) queries are sufficient [6].

A non-adaptive algorithm for the string reconstruction problem is composed of two parts:
The first part is designing a set of queries Q depending on the value of n, and the second part
is reconstructing the unknown string given the answers to the queries in Q. In this work, we
are mainly interested in the design of the query set. In other words, we are interested whether
a given query set provides enough information to solve the reconstruction problem.

The string reconstruction problem becomes easier when relaxing the requirement to recon-
struct all strings of length n. For a given query set Q, the resolution power p(Q,n) of Q is the
fraction of the strings of length n that can be unambiguously reconstructed from the answers to
the queries in Q. The query set containing all the strings of length 2 logσ n + 1

2 logσ ε−1 + O(1),
called the uniform query set, has a resolution power 1− ε [1,3,7,10]. The number of queries in
this set is O(ε−1/2n2) (for simplicity, we shall assume that σ is constant).

∗Caesarea Rothschild Institute of Computer Science, University of Haifa. Email: dekelts@cs.haifa.ac.il

1

The question whether the uniform query set is optimal remained open. This problem was
posed explicitly in [8, problem 36]. In this paper we settle this open problem by showing that
the uniform query set is asymptotically optimal. More precisely, we show that every query set
with resolution power at least 1− ε contains Ω(ε−1/2n2) queries.

Our lower bound also applies to other model which are described below:

Quantitative queries In this model, the queries are of the form “how many times does the
string S appear in T ?”. Clearly, the O(ε−1/2n2) upper bound for the uniform query set also
applies to this model. Our Ω(ε−1/2n2) lower bound is also true in this model.

Set queries In this models, each query is a set of strings, and the answer to the query is
whether at least one of the strings in the set appears in T . The size of a query set Q is the
number of sets (queries) in Q, the length of Q is the maximum length of a string that appears
in the sets of Q, and the weight of a Q is the sum of the sizes of the sets of Q. Frieze et
al. [4] showed that every query set Q with resolution power 1− ε has size of Ω(log2(1− ε) + n).
Moreover, the results of [1,3,7] imply that the length of Q must be at least 2 logσ n+ 1

2 logσ ε−1.
Our lower bound on the number of queries in the first model above implies that the weight of
Q must be Ω(ε−1/2n2).

Pevzner and Waterman [8, problem 37] presented the problem of designing a query set which
is optimal in its length and in the number of queries. Frieze et al. [4] gave a construction of
query sets with (asymptotically) optimal size, but the lengths of these query sets are Θ(log2

σ n).
Preparata and Upfal [9] gave an improved analysis for the construction of [4]. From this analysis,
it follows that there is a construction of query sets with optimal size, length 3 logσ n + O(1),
and weight O(n3) (we note that this result is not explicitly mentioned in [9]). In this paper, we
present a new construction of query sets that are optimal (asymptotically) in the size, length,
and weight.

Due to lack of space, some proofs are omitted from this abstract. We note that this work
focuses on the asymptotic behavior, so the constants in the theorems below were not optimized.
We finish this section with some definitions. For a string A, we denote its letters by a1, a2, . . .,
and we denote by A[i : j] the substring aiai+1 · · · aj . For two strings A and B, AB is the
concatenation of A and B. When we write log n, we assume base σ.

2 The lower bound

In this section, we show the Ω(ε−1/2n2) lower bound for the quantitative queries model. This
lower bound implies the other lower bounds mentioned in the introduction.

Theorem 1. There is a constant ε0 > 0 such that for every ε ≤ ε0, every query set Q with
p(Q,n) ≥ 1− ε satisfies |Q| = Ω(ε−1/2n2).

Proof. Consider some ε ≤ 1/500, and let Q be some query set with p(Q,n) ≥ 1− ε. The main
idea of the proof is to partition a subset of the strings of length n into pairs. The paired strings
will constitute at least 2ε fraction of the strings of length n, and thus Q will reconstruct at least
half of these strings. Every paired string that is reconstructed by Q needs to be distinguished
from the string it was pair to by some query. By showing that a single query can distinguish
between only a small part of the pairs, we will obtain a lower bound on the size of Q. The reason
we pair only part of the strings of length n is that some strings have a “complex” structure,
and thus handling them is difficult. Pairing only “simple” strings simplifies the analysis.

Let k = b2 log n + log(1/20
√

ε)c. We say that two indices i and j are far if |i− j| ≥ 3k + 1,
and they are close if |i − j| ≤ k. For a string A of length n, a pair of indices (i, j) with i < j

2

is called a repeat if A[i : i + k − 1] = A[j : j + k − 1]. A repeat (i, j) is called rightmost if
j 6= n− k + 1 and (i + 1, j + 1) is not a repeat (i.e., ai+k 6= aj+k).

A string u of length k will be called repetitive if it has a substring of length dk/2e that
appears at least twice in u. For example, for k = 6, the string ‘ababac’ is repetitive as the
string ‘aba’ appears twice in it. We say that two strings u and v of length k are similar if they
have a common substring of length dk/2e. An ordered pair (u, v) of dissimilar non-repetitive
strings of length k will be called a simple pair.

For every simple pair (u, v), let Bu,v be the set of all strings A of length n for which there
are indices i, i′, j, and j′ such that

1. i < i′ < j < j′.

2. Every two indices from {i, i′, j, j′} are far.

3. (i, j) and (i′, j′) are rightmost repeats, and there are no other rightmost repeats in A.

4. A[i : i + k − 1] = u and A[i′ : i′ + k − 1] = v.

From conditions 3 and 4, we have that the sets Bu,v are disjoint. We denote by B the union of
the sets Bu,v for all simple pairs (u, v).

For a string A ∈ Bu,v whose rightmost repeats are (i, j) and (i′, j′), let Â be the string
obtained from A by exchanging the substrings A[i + k : i′ − 1] and A[j + k : j ′ − 1], namely,

Â = a1 · · · ai+k−1aj+k · · · aj′−1ai′ · · · aj+k−1ai+k · · · ai′−1aj′ · · · an.

We claim that Â ∈ Bu,v. To verify this claim, note that

1. The indices i2 = i, i′2 = i + j′ − j, j2 = i + j′ − i′, and j′2 = j′ satisfy i2 < i′2 < j2 < j′2.

2. Since every two indices from {i, i′, j, j′} are far, we obtain that i′2 − i2 = j′ − j ≥ 3k + 1,
j2 − i′2 = j − i′ ≥ 3k + 1, and j ′2 − j2 = i′ − i ≥ 3k + 1, and therefore every two indices
from {i2, i′2, j2, j

′
2} are far.

3. (i2, j2) and (i′2, j
′
2) are rightmost repeats in Â. Moreover, every string of length k + 1

appears the same number of times in A and in Â. Therefore, if there is a rightmost
repeat (i′′2 , j

′′
2) 6= (i2, j2), (i

′
2, j

′
2) in Â, then there are indices i′′ and j′′ such that (i′′, j′′) 6=

(i, j), (i′ , j′) and (i′′, j′′) is a rightmost repeat in Â, a contradiction. Thus, (i2, j2) and
(i′2, j

′
2) are the only rightmost repeats in Â.

4. Â[i2 : i2 + k − 1] = A[i : i + k − 1] = u and Â[i′2 : i′2 + k − 1] = A[i′ : i′ + k − 1] = v.

Lemma 2. The number of simple pairs is (1− o(1))σ2k.

Proof. Let u be a random string of length k. For fixed indices i < j, the probability that
u[i : i + dk/2e − 1] = u[j : j + dk/2e − 1] is 1/σdk/2e. There are

(bk/2c+1
2

)

ways to choose the

indices i and j. Therefore, the probability that u is repetitive is at most
(

bk/2c+1
2

)

/σdk/2e =
O(log2 n/n) = o(1). Similarly, for two random strings u and v of length k, the probability that
u and v are similar is at most (bk/2c + 1)2/σdk/2e = o(1). The lemma follows from the two
bounds above.

Lemma 3. For every simple pair (u, v), |Bu,v| ≥ 1−o(1)
48

(

σ−1
σ

)2
n4σn−4k .

3

Proof. Fix a simple pair (u, v). Let A be a random string of length n, and let Y be the event

that A ∈ Bu,v. Our goal is to show that P [Y] ≥ 1−o(1)
48

(

σ−1
σ

)2
n4/σ4k.

Let I be the set of all pairs (α = (i, j), β = (i′, j′)) such that i, i′, j, j′ satisfy conditions 1
and 2 in the definition of Bu,v. For a pair of indices α = (i, j), let Zα be the event that
(i, j) is a rightmost repeat in A, and let Zw

α be the event that (i, j) is a rightmost repeat and
A[i : i+k−1] = w. For (α, β) ∈ I, let Yα,β = Zu

α∧Zv
β∧
∧

γ 6=α,β Zγ (note that the indices of γ can

be close). The events {Yα,β}α,β∈I are disjoint, so P [Y] = P
[

∨

(α,β)∈I Yα,β

]

=
∑

(α,β)∈I P [Yα,β].

Clearly,

P [Yα,β] = P
[

Zu
α ∧ Zv

β

]

P

[

∧

γ

Zγ

∣

∣

∣

∣

∣

Zu
α ∧ Zv

β

]

= P
[

Zu
α ∧ Zv

β

]

(

1− P

[

∨

γ

Zγ

∣

∣

∣

∣

∣

Zu
α ∧ Zv

β

])

≥ P
[

Zu
α ∧ Zv

β

]

(

1−
∑

γ

P
[

Zγ |Zu
α ∧ Zv

β

]

)

.

We now estimate the probabilities in the last expression. As every two indices from α and β are

far, we have that the events Zu
α and Zv

β are independent, so P
[

Zu
α ∧ Zv

β

]

=
(

(σ − 1)/σ2k+1
)2

.

To estimate P
[

Zγ |Zu
α ∧ Zv

β

]

, consider some pair of indices γ = (γ1, γ2) with γ1 < γ2. An

index in γ can be close to at most one index in α or β. We consider four cases:

Case 1 If at most one index from γ is close to an index in α or β, then the events Zγ and Zu
α∧Zv

β

are independent, so P
[

Zγ |Zu
α ∧ Zv

β

]

= P [Zγ] = (σ − 1)/σk+1 (note that P [Zγ] = (σ − 1)/σk+1

even if the indices of γ are close).
For the rest three cases, we assume that γ1 is close to an index j1 ∈ α ∪ β, and γ2 is close

to an index j2 ∈ α ∪ β.

Case 2 Suppose that j1 6= j2 and j1, j2 are both from α or both from β. If γ2 − γ1 = j2 − j1

then let l = min{j1, γ1}. The letters A[l + k] and A[l + j2 − j1] are required to be equal by one
of the events Zγ and Zu

α ∧ Zv
β, and are required to be unequal by the other event. Therefore,

P
[

Zγ |Zu
α ∧ Zv

β

]

= 0. If γ2 − γ1 6= j2 − j1 then we have from [1, p. 437] that the events Zγ and

Zu
α ∧ Zv

β are independent, so P
[

Zγ |Zu
α ∧ Zv

β

]

= (σ − 1)/σk+1.

Case 3 Suppose that j1 = j2. W.l.o.g. assume that j1 is from α. The event Zγ consists of k
letter equality events A[γ1 + l] = A[γ2 + l] for l = 0, . . . , k − 1. Let S be the set of all indices
l such that the letters A[γ1 + l] and A[γ2 + l] are inside the substring A[j1 : j1 + k − 1]. For
every l ≤ k − 1, if l ∈ S then the event A[γ1 + l] = A[γ2 + l] depends on the event Zu

α ∧ Zu
β ,

and otherwise these events are independent. More precisely, if event Z u
α happens, then for every

l ∈ S we have that A[γ1 + l] = A[γ2 + l] if and only if u[γ1 + l − j1 + 1] = u[γ2 + l − j1 + 1].
Thus, P [A[γ1 + l] = A[γ2 + l]|Zu

α] is either 0 or 1. If the latter probability is 0 for some l,

then P
[

Zγ |Zu
α ∧ Zv

β

]

= 0. Otherwise, we have that there is a substring of u of length |S|
that appears twice in u. Since u is non-repetitive, we have that |S| ≤ dk/2e − 1. The events
A[γ1 + l] = A[γ2 + l] for l /∈ S are independent, and they are independent of the event Zu

α ∧Zu
β .

Therefore, P
[

Zγ |Zu
α ∧ Zv

β

]

= 1/σk−|S| ≤ 1/σbk/2c+1.

4

Case 4 If one of the indices j1 and j2 is from α and the other is from β, we can use similar
argument to the one used in case 3, using the fact that u and v are dissimilar. In this case,

P
[

Zγ |Zu
α ∧ Zv

β

]

≤ 1/σbk/2c+1.

The number of pairs γ for which cases 1 or 2 occur is at most
(n
2

)

. The number of pairs γ
for which cases 3 or 4 occur is at most 7(2k + 1)2: There are 4 ways to choose the indices j1

and j2 (from α ∪ β) for case 3, and 3 ways to choose these indices in case 4. After choosing j1

and j2, there are at most 2k + 1 ways to choose each of the two indices of γ. We conclude that

∑

γ

P
[

Zγ |Zu
α ∧ Zv

β

]

≤
(

n

2

)

σ − 1

σk+1
+ 7(2k + 1)2

1

σbk/2c+1
≤ 1

2
.

Since |I| =
(n−3·3k

4

)

= (1− o(1))n4/24, it follows that P [Y] ≥ 1−o(1)
48

(

σ−1
σ

)2
n4/σ4k.

We note that the proof of Lemma 3 also implies that |Bu,v| ≤ 1
24

(

σ−1
σ

)2
n4σn−4k.

From Lemmas 2 and 3 we have that

|B| ≥ 1− o(1)

48

(

σ − 1

σ

)2 n4

σ2k
· σn ≥ 1− o(1)

48
· 1
4
· n4

σ2k
· σn ≥ 2ε · σn.

Since p(Q,n) ≥ 1− ε, it follows that Q reconstructs at least half of the strings in B.
If a string A ∈ B is uniquely reconstructible by Q, then there must be a query q ∈ Q that

distinguishes between A and Â, that is, q appears a different number of times in A and Â. If
q appears more times in A than in Â we say that q separates A. Let M denote the maximum
over all q ∈ Q, of the number of strings in B that q separates. From the definition of M we
have that the number of strings in Q is at least 1

2 |B|/M . To complete the proof of the theorem,
we will give an upper bound on M .

Lemma 4. M ≤ 1
6n4 · (σ−1)2

σ3k+4 · σn.

Proof. If q is a string of length at most k + 1, then for every string A, q appears the same
number of times in A and Â. Thus, q does not separate any string in B. Consider some string
q ∈ Q of length k + l where l ≥ 2.

In order to bound the number of strings that q separates, consider some random string A.
If A ∈ B and the rightmost repeats of A are (i, j) and (i′, j′), then q separates A if and only if
one appearance of q in A is a superstring of one of the following substrings of A: A[i− 1: i+k],
A[i′− 1: i′ + k], A[j − 1: j + k], or A[j ′− 1: j′ + k]. In other words, q separates A if and only if
q = A[h : h + k + l− 1] for h ∈ {i− l + 1, . . . , i− 1} ∪ {i′ − l + 1, . . . , i′ − 1} ∪ {j − l + 1, . . . , j −
1} ∪ {j′ − l + 1, . . . , j ′ − 1}, and denote the latter event by X(i,j),(i′,j′).

Consider some fixed h. Recall that Zα denotes the event that α is a rightmost repeat in A.
If l ≤ 2k, then P

[

q = A[h : h + k + l − 1] Z(i,j) ∧ Z(i′,j′)

]

= 1/σk+l since the substring A[h : h+
k+ l−1] intersects only one of the substrings A[i : i+k−1], A[i′ : i′ +k−1], A[j : j +k−1], and
A[j′ : j′+k−1]. If l > 2k, there we can consider the event that a fixed substring of q of length 3k is
equal to a corresponding substring of A[h : h+k+l−1]. The probability of this event, conditioned
on the event Z(i,j) ∧Z(i′,j′) is 1/σ3k, and therefore, P

[

q = A[h : h + k + l − 1] Z(i,j) ∧ Z(i′,j′)

]

≤
1/σ3k. Thus, for every l, P

[

q = A[h : h + k + l − 1] Z(i,j) ∧ Z(i′,j′)

]

≤ 1/σk+min(l,2k). Since there
are 4(l − 1) ways to choose h for fixed i, i′, j, and j′, it follows that

P
[

X(i,j),(i′,j′) Z(i,j) ∧ Z(i′,j′)

]

≤ 4(l − 1)

σk+min(l,2k)
≤ 4

σk+2
.

5

Since the inequality above is true for every i, i′, j, and j′, we conclude that the number of
strings that q separates is at most

4

σk+2
·
∑

(α,β)∈I

P [Zα ∧ Zβ] · σn ≤ 4

σk+2
· n

4

24
· (σ − 1)2

σ2k+2
· σn.

From Lemma 4, the number of strings in Q is at least

|B|
2M
≥

1−o(1)
48

(

σ−1
σ

)2 n4

σ2k · σn

2 · 1
6n4 · (σ−1)2

σ3k+4 · σn
= Ω(σk) = Ω(ε−1/2n2).

3 Set queries model

We now show a construction of query sets in the set queries model which is optimal in all
measures. We will give our result in a slightly different model, called the gapped queries model,
in which each query is a single word q that contains gaps, namely don’t care symbols which
are denoted by φ. The answer to a query q for a string A is “yes” if and only if q matches
to a substring of A, where a don’t care symbol matches to every symbol. Such a query q
can be translated to the set queries model by creating a set q ′ containing all the words of
length |q| that matches to q. For example, if q = aφφb and the alphabet of A is {a, b}, then
q′ = {aaab, aabb, abab, abbb}.

We will construct a query set Q of the following form: We will choose k = logσ n + O(1),
and build a set I ⊆ {1, . . . , 2k} of size k. Then, Q will consists of all the strings q of length 2k
such that the i-th letter of q is a regular character if i ∈ I and φ if i /∈ I. Our goal is to choose
a set I that maximizes the resolution power of Q.

In order to understand the intuition for building I, consider the following generic recon-
struction algorithm that receives as input the answers to the queries of a set Q ′ on the string
A. We assume that for every q ∈ Q′, all the strings in q has length l, and that the first and last
l − 1 letters of A are known. The algorithm for reconstructing the first dn/2e letters of A is as
follows: (Reconstructing the last bn/2c letters is performed in a similar manner.)

1. Let s1, s2, . . . , sl−1 be the first l − 1 letters of A.

2. For t = l, l + 1, . . . , dn/2e do:

(a) Let Bt be the set of all strings B of length l′, such that the string s1 · · · st−1B is
consistent with the answers for Q′ on A (i.e., for every q ∈ Q′, if the answer to q on
s1 · · · st−1B is “yes”, then the answer to q on A is “yes”).

(b) If all the strings in Bt have a common first letter a, then set st ← a. Otherwise, stop.

3. Return s1 · · · sdn/2e.

Clearly, for every t, the set Bt contains the string at · · · at+l′−1. Thus, if the algorithm finishes,
then s1 · · · sdn/2e = a1 · · · adn/2e. Moreover, the algorithm stops in iteration t if and only if there
is a string B ∈ Bt whose first letter is not equal to at, and s1 · · · st−1B is consistent with the
answers for Q′ on A. Such a string B will be called a bad string (w.r.t. t).

Now, suppose that we run the algorithm above with Q′ being the uniform query set of size
k (that is, all the strings of length k without don’t care symbols). Then, the algorithm stops in
iteration t if and only if there is a bad string B ′ ∈ Bt such that every substring of s1 · · · st−1B

′

of length k is also a substring A. The latter events happens if and only if every substring of

6

B = st−k+1 · · · st−1B
′ of length k is a substring A. Now, the event that the first substring of

B of length k is a substring of A has small probability. However, if this event happens, then
probability that second substring of B of length k is a substring of A is at least 1/σ: If the
first event happens then B[1 : k] = A[i : i + k − 1] for some i. Therefore, A[i + k] = B[k + 1]
is a sufficient condition for the second event, and the probability that A[i + k] = B[k + 1] is
1/σ. This “clumping” phenomenon is also true for the other substrings of B, and therefore, the
algorithm fails with relatively large probability.

In order to reduce the failure probability, we will use gapped queries as described above, and
our goal is to build a set I which will reduce the “clumping” phenomenon. Here, the algorithm
fails at iteration t if and only if there is bad a string B ′ ∈ Bt such that every substring of
B = st−2k+1 · · · st−1B

′ of length 2k is equal to a substring A on the letters of I. The event that
the first substring of B is equal to to a substring of A on the letters of I has small probability
(note that we need to assume that 2k ∈ I otherwise this event will always occur). The event
that the second substring of B is equal to a substring of A on the letters of I still depends on
the first event, but now the conditional probability is small: To see this, assume that B[1 : 2k]
is equal to A[i : i + 2k − 1] on the letters of I. Then, the event that B[2 : 2k + 1] is equal to
A[i + 1: i + 2k] on the letters of I consists of k letters equalities. Some of this equalities are
satisfied due to the fact that B[1 : 2k] is equal to A[i : i + 2k − 1] on the letters of I, while
the other equalities are satisfied with probability 1/σ each. To have a small probability for the
event that B[2 : 2k +1] is equal to a substring of A on the letters of I, we need that the number
of letter equalities of the first kind to be small. This implies the following requirement on I:
The intersection of I and {x + 1 : x ∈ I} should be small.

We now formalize the idea above. We will define what is a good set I, show that such
set exists using the probabilistic method, and then show that if I is a good set, then the set
Q has sufficiently large resolution power. We note that Halperin et al. [5] used randomized
construction of gapped queries, but their analysis is quite different from ours.

Define α = 1
12 , β = 4

25 , b = 80 + 1
2 logσ

8
ε , and k = dlogσ n + be. For an integer x, we denote

I + x = {y + x : y ∈ I}. We say that a set I ⊆ {1, . . . , 2k} is good if it satisfies the following
requirements:

1. |I| = k.

2. If X ⊆ {0, . . . , αk−1} and |X| ≥ 5
8αk then

⋃

x∈X(I+x) = {1+min(X), . . . , 2k+max(X)}.

3. For every integer x 6= 0, |I \ (I + x)| ≥ (1
2 − β)k.

4. For every integers x 6= 0 and x′ 6= 0, |I \ ((I + x) ∪ (I + x′)) | ≥ (1
4 − β)k.

Lemma 5. There exists a good set I.

Proof. Let I be a subset of {1, . . . , 2k} which is built by taking the set Î = {1, . . . , αk}∪{2k−
αk + 1, . . . , 2k} and then, for each j in {αk + 1, . . . , 2k − αk}, j is added to I with probability
(1− 2α)/(2 − 2α). We will show that I is good with positive probability.

Let m = (2− 2α)k and l = (1− 2α)k. Using Stirling’s formula, we obtain that

P [|I| = k] =

(

m

l

)(

l

m

)l (

1− l

m

)m−l

=
m!

l!(m− l)!
· l

l(m− l)m−l

mm

≥
√

2πm
(

m
e

)m

1.09
√

2πl
(

l
e

)l · 1.09
√

2π(m− l)
(

m−l
e

)m−l
· l

l(m− l)m−l

mm

=
1

1.092
√

2π

√

m

l(m− l)
≥ 1

3
√

l
≥ 1

3
√

k
,

7

namely, the set I satisfies requirement 1 with probability at least 1/(3
√

k). We will show that
for each other requirement, the probability that it is not satisfied is 2−Ω(k). Therefore, there is
a positive probability that all the requirements are satisfied.

Requirement 2 Let j be an index from {αk + 1, . . . , 2k}. Let Y be the number of integers
x ∈ {0, . . . , αk − 1} such that j ∈ I + x. For every x ∈ {0, . . . , αk − 1}, the probability that
j ∈ I + x is either 1 (if j ∈ Î + x) or 1−2α

2−2α . Thus, E [Y] ≥ 1−2α
2−2ααk. By Chernoff bounds,

Y > 3
8αk with probability 1 − 2−Ω(k). Therefore, for a set X ⊆ {0, . . . , αk − 1} with size at

least 5
8αk, we have that j ∈ ⋃x∈X(I + x). This property holds for every j ∈ {αk + 1, . . . , 2k}

with probability 1− (2− α)k2−Ω(k) = 1− 2−Ω(k).
Now, for every integers m and M with 0 ≤ m < M ≤ αk−1, for every set X ⊆ {0, . . . , αk−1}

such that min(X) = m and max(X) = M , we have that

⋃

x∈X

(I + x) ⊇
⋃

x∈X

(Î + x) = {1 + m, . . . , αk + M} ∪ {2k − αk + 1 + m, . . . , 2k + M}.

Therefore, the probability that requirement 2 is not satisfied is 2−Ω(k).

Requirement 3 Let Y be the number of positions in I ∩{αk +1, . . . , 2k−αk} which are not
in I + x. At least (2− 3α)k elements of {αk + 1, . . . , 2k − αk} are not contained in Î + x. For
each such element, the probability that it appears in I and not in I + x is

1− 2α

2− 2α
· 1

2− 2α
=

30

121
.

Therefore, E [Y] ≥ 30
121 (2 − 3α)k ≥ (1

2 − 1
2β)k. Using Chernoff bounds, we obtain that the

probability that Y < (1
2 − β)k is 2−Ω(k).

Requirement 4 Using the same arguments as above, we obtain that the probability that
|I \ ((I + x) ∪ (I + x′)) | < (1

4 − β)k is 2−Ω(k).

For the rest of the section, we assume that I is good. We use the reconstruction algorithm that
is giving in the beginning of this section with Q′ = Q, l = 2k, and l′ = αk.

Lemma 6. The probability that the algorithm fails is at most ε/2.

Proof. Fix an iteration t. Recall that a bad string (w.r.t. t) is a string in Bt whose first letter
is not equal to at. We will bound the probability that there is a bad string w.r.t. t. We generate
a random path B ′ = b′1 · · · b′αk as follows: b′1 is selected uniformly at random from Σ−{at}, and
for i > 1, b′i is selected uniformly from Σ. Note that each letter of B ′ has a uniform distribution
over Σ.

Let B = S[t− 2k + 1: t − 1]B ′, and denote B = b1 · · · b2k+αk−1. By definition, B ′ is a bad
string if and only if there are indices r1, . . . , rαk, called probes, such that B[i : i+2k−1] is equal
to A[ri : ri + 2k− 1] on the letters of I for all i. We denote by E(ri) the event corresponding to
the probe ri (i.e. E(ri) is the event B[i : i + 2k − 1] is equal to A[ri : ri + 2k − 1] on the letters
of I). Since b′1 6= at, we have that ri 6= t− 1 + i for all i.

For a probe ri, the index i is called the offset of the probe, and the value ri is called the
position of the probe. A probe ri is called close if ri ∈ {t − 2k + 2, . . . , t}. Two probes ri and
ri′ will be called adjacent if ri′ − ri = i′− i, and they will be called overlapping if |ri′ − ri| < 2k
and they are not adjacent. The adjacency relation is an equivalence relation. We say that

8

an equivalence class of this relation is close if it contains a close probe, and we say that two
equivalence classes are overlapping if they contain two probes that are overlapping.

Our goal is to estimate the probability that all the events E(ri) happen. This is easy if these
events are independent, but this is not necessarily true. The cause of dependency between the
events are close, adjacent, and overlapping probes. We consider several cases (the first six cases
are rare cases, while the last two cases are the more common cases):

Case 1 There is an equivalence class which overlaps with at least two different equivalence
classes, and all these classes are not close. Let ri1 , ri2 and ri3 be probes from these classes, where
ri1 is from the first class, and ri2 , ri3 are from the other two classes. From [1], the events E(ri1)
and E(ri2) are independent, so the probability that both events happen is σ−2k. I is good, so it
satisfies requirement 4. Event E(ri3) consists of k equalities between a letter of B and a letter
of A. From requirement 4, at least (1

4 − β)k of the letter equalities involve a letter of A that
does not participate in the equalities of the events E(ri1) and E(ri2). Therefore, the probability

that the events E(ri), E(ri1), and E(ri2) happen is at least σ−(2+ 1

4
−β)k. The number of ways

to choose the positions of the probes ri1 , ri2 , and ri3 is at most n · (2 · (2 + α)k − 1)2, and the
number of ways to choose the offsets of these probes is

(αk
3

)

≤ (αk)3. Furthermore, there are
at most n/2 ways to choose t, and (σ − 1) · σαk−1 ways to choose the string B ′. Therefore, the
overall probability that case 1 happens during the run of the algorithm is at most

n

2
σαk · n · ((4 + 2α)k − 1)2(αk)3

σ(2+ 1

4
−β)k

= O

(

k5

σ(1

4
−α−β)k

)

= o(1).

Case 2 There are two pairs of overlapping equivalence classes, and all these classes are not
close. Let ri1 , ri2 , ri3 , and ri4 be probes from these classes, where ri1 and ri2 are from one pair
of overlapping classes, and ri3 and ri4 are from the other pair. The events E(ri1) and E(ri2) are
independent. Moreover, since ri3 does not overlap with ri1 or ri2 (otherwise, we are in case 1), the
event E(ri3) is independent of E(ri1) and E(ri2). Therefore, P [E(ri1) ∧E(ri2) ∧E(ri3)] = σ−3k.

From the fact that I is good, it follows that P [E(ri4)|E(ri1) ∧E(ri2) ∧E(ri3)] ≥ σ−(1

2
−β)k.

Therefore, the probability that case 2 happens is at most

n

2
σαk · n

2 · ((4 + 2α)k − 1)2(αk)4

σ(3+ 1

2
−β)k

= O

(

k6

σ(1

2
−α−β)k

)

= o(1).

Case 3 There are two close equivalence classes. Let ri1 and ri2 be probes from these classes.

Then, P [E(ri1)] = σ−k, and P [E(ri2)|E(ri1)] ≥ σ−(1

2
−β)k. Thus, the probability of this case is

bounded by
n

2
σαk · ((2 + α)k)2(αk)2

σ(3

2
−β)k

= O

(

k4

σ(1

2
−α−β)k

)

= o(1).

Case 4 There is a pair of overlapping classes, and a close equivalence class. The close class
can be either one of the two classes of the overlapping pair, or a third class. In both cases, using
the same arguments as above, the probability of such an event is o(1).

If cases 1–4 do not happen, then there is at most one pair of overlapping equivalence classes
or one close equivalence class. However, this case does not affect the analysis of the next cases,
so we assume in the sequel that there are no overlapping or close probes.

9

Case 5 The adjacency relation contains 3 equivalence classes each of size at least 2. Let
ri1 , . . . , ri6 be probes from these classes, where ri2j−1

and ri2j are adjacent for j = 1, 2, 3.
Since these probe do not overlap, we have that the events E(ri1) ∧ E(ri2), E(ri3) ∧ E(ri4),
and E(ri5) ∧ E(ri6) are independent. From the fact that I is good it follows that an event
E(ri2j−1

) ∧ E(ri2j) contains at least (3
2 − β)k distinct letter equalities, so the probability that

all the events happen is at least
(

σ−(3

2
−β)k

)3
. Hence, the probability that case 5 happens is

n

2
σαk · n3(αk)3

σ3(3

2
−β)k

= O

(

k3

σ(1

2
−α−3β)k

)

= o(1).

Case 6 The adjacency relation contains 2 equivalence classes each of size at least 3. Using
similar arguments to the ones in case 5, the probability of this case is at most

nσαk · n2(αk)2

σ2(7

4
−2β)k

= O

(

k2

σ(1

2
−α−2β)k

)

= o(1).

In the following, we assume that cases 5 and 6 do not happen, so there is at most one equivalence
class of size at least 3. All the over equivalence classes, except perhaps one class, have size 1.

Case 7 The adjacency equivalence relation contains at least αk
3 equivalence classes of size 1.

Let ri1 , . . . , riαk/3
be the corresponding probes. We have that the events E(rij) for j =

1, . . . , αk/3 are independent, so for fixed probes, the probability of
∧αk/3

j=1 E(rij) = σ−k·αk/3.
For each probe rij , there are at most n ways to choose its position. The number of ways to

choose the offsets of the probes is
(

αk
αk/3

)

≤ 2αk. Therefore, the probability of this case is

n

2
σαk · 2αk ·

(n

σk

)
αk
3 ≤ n

(

8

σb−1

)
αk
3

≤ n

σ(b−4)αk/3
≤ ε

4
.

Case 8 If case 7 does not happen, then there is an equivalence class of size at least 2
3αk−1 ≥

5
8αk. Let ri1 , . . . , ris be the probes of this class, and let rj1 , . . . , rjs′

be the rest of the probes.
Denote by m and M the minimal and maximal offsets in ri1 , . . . , ris , respectively, and let
l = m − 1 + αk − M . By the fact that I is good, we have that the letter equality event
of E(ri1) ∧ · · · ∧ E(ris) involves continuous segments of letters in B and A. In other words,
E(ri1)∧ · · ·∧E(ris) happens if and only if B[m : M +2k−1] = A[p : p+2k+M −m−1], where
p is the minimal position in ri1 , . . . , ris . Therefore, P [E(ri1) ∧ · · · ∧E(ris)] = σ−(2k+M−m) =
σ−((2+α)k−l). Moreover, the event E(ri1) ∧ · · · ∧E(ris) depends only on the value of m and M
and not on the choice of the probes ri1 , . . . , ris .

The events E(rj1), . . . , E(rjs′
), perhaps except one, are independent, and each event has

probability σ−k. In order to avoid multiplying the probability by the number of ways to choose
the offsets of the probes rj1 , . . . , rjs′

, we will consider only the events of probes with offset either
less than m or greater than M . The number of such probes is l. For a fixed value of l, there
are l + 1 ways to choose m and M . Therefore, the probability of this case is

αk
∑

l=0

n

2
σαk n

σ(2+α)k−l
· (l + 1) ·

(n

σk

)max(0,l−1)
≤ 1

σ2b
·

αk
∑

l=0

l + 1

2l
≤ 4

σ2b
≤ ε

4
.

We obtain the following theorem:

Theorem 7. For every ε > 0 and n, there is a query set Q such that p(Q,n) ≥ 1− ε, the size
of Q is O(ε−1/2n), the length of Q is 2 logσ n+ logσ

1
ε +O(1), and the weight of Q is O(ε−1n2).

10

In the rest of this section, we consider the time complexity of reconstructing a string A given
the answers to the query set defined above. The reconstruction algorithm presented in the
beginning of the section can be made more efficient. Instead of checking consistency for every
B ∈ Bt separately, we do the following: For i = 1, . . . , αk, we build the set B i

t of all the strings
B of length i such that s1 · · · st−1B is consistent with the answers for Q on A. The set Bi

t (for
i > 1) is built from Bi−1

t by going over every string B ∈ Bi−1
t and every character b ∈ Σ, and

checking whether s1 · · · st−1Bb is consistent. This can be done by considering only one query in
Q (the unique query in Q that matches to the suffix of s1 · · · st−1Bb of length 2k) and checking
whether the answer to this query on A is “yes”. After building B i

t, if all the strings in this set
has a common first letter, we stop.

Using arguments similar to the ones of 6, we obtain that the expected size of every set B i
t is

O(1), and moreover, the expected number of sets B1
t ,B2

t , . . . which are built for some t is O(1). It
follows that the expected running time of the reconstructing algorithm is O(nk) = O(n logσ n).

References

[1] R. Arratia, D. Martin, G. Reinert, and M. S. Waterman. Poisson process approximation for
sequence repeats, and sequencing by hybridization. J. of Computational Biology, 3(3):425–
463, 1996.

[2] W. Bains and G. C. Smith. A novel method for nucleic acid sequence determination. J.
Theor. Biology, 135:303–307, 1988.

[3] M. E. Dyer, A. M. Frieze, and S. Suen. The probability of unique solutions of sequencing
by hybridization. J. of Computational Biology, 1:105–110, 1994.

[4] A. Frieze, F. Preparata, and E. Upfal. Optimal reconstruction of a sequence from its
probes. J. of Computational Biology, 6:361–368, 1999.

[5] E. Halperin, S. Halperin, T. Hartman, and R. Shamir. Handling long targets and errors in
sequencing by hybridization. In Proc. 6th Annual International Conference on Computa-
tional Molecular Biology (RECOMB ’02), pages 176–185, 2002.

[6] D. Margaritis and S. Skiena. Reconstructing strings from substrings in rounds. In Proc.
36th Symposium on Foundation of Computer Science (FOCS 95), pages 613–620, 1995.

[7] P. A. Pevzner, Y. P. Lysov, K. R. Khrapko, A. V. Belyavsky, V. L. Florentiev, and A. D.
Mirzabekov. Improved chips for sequencing by hybridization. J. Biomolecular Structure
and Dynamics, 9:399–410, 1991.

[8] P. A. Pevzner and M. S. Waterman. Open combinatorial problems in computational molec-
ular biology. In Proc. 3rd Israel Symposium on Theory of Computing and Systems, (ISTCS
95), pages 158–173, 1995.

[9] F. Preparata and E. Upfal. Sequencing by hybridization at the information theory bound:
an optimal algorithm. J. of Computational Biology, 7:621–630, 2000.

[10] R. Shamir and D. Tsur. Large scale sequencing by hybridization. J. of Computational
Biology, 9(2):413–428, 2002.

[11] S. Skiena and G. Sundaram. Reconstructing strings from substrings. J. of Computational
Biology, 2:333–353, 1995.

11

