
Fast index for approximate string matching

Dekel Tsur∗

Abstract

We present an index that stores a text of length n such that given a
pattern of length m, all the substrings of the text that are within Hamming
distance (or edit distance) at most k from the pattern are reported in O(m+
log log n + #matches) time (for constant k). The space complexity of the
index is O(n1+ǫ) for any constant ǫ > 0.

1 Introduction

One of the fundamental problems in pattern matching is indexing a text t such
that given a query pattern p, all the occurrences of p in t can be reported efficiently.
This can be solved optimally using suffix trees [12]: The construction time and space
complexity of the index is O(n), and the query time is O(m + #matches), where
n is the length of t, m is the length of p, and #matches is the number of times p
appears in t. For simplicity, we shall assume throughout the paper that the size of
the alphabet is constant.

A natural extension of text indexing is to allow approximate search in the index.
Formally, given a text t and an integer k, the goal is to build an index for t such
that given a query string p, all the substrings of t with Hamming distance (or
edit distance) at most k from p can be reported efficiently. Again for simplicity,
we assume throughout that k is constant. Building an approximate index with
almost linear space and query time was a major open problem. The first efficient
approximate index was obtained for the case k = 1 by Amir et al. [1]. The index of
Amir et al. uses O(n log2 n) space, and answer queries in time O(m logn log log n+
#matches). A faster query time is obtained using the data-structure of [2]. Linear
space indices that support one error were given in [7, 8].

A big breakthrough was obtained by Cole et al. [4] which presented an index that
supports an arbitrary number of errors. The index of Cole et al. uses O(n logk n)
space and answers queries in time O(m+logk n·log logn+#matches). Chan et al. [3]
gave an O(n)-space index that answers queries in time O(m+(logn)k(k+1) log log n+
#matches).

Most of the results above work for both Hamming distance or edit distance. We
note that the query time complexity of the edit distance index in [4] is O(m+logk n ·

∗Department of Computer Science, Ben-Gurion University of the Negev. Email: dekelts@cs.
bgu.ac.il

1

log log n+ 3k ·#matches). However, as we assume here that k is constant, the time
complexity becomes O(m+ logk n · log log n+#matches).

The indices mentioned above have worst case performance guarantees. Indices
with good performance on average were given in [5, 6, 9–11].

In this paper, we show how to speed-up the query time in the index of Cole et al.
This comes at a cost of increasing the space complexity of the index. More precisely,
we show that for every integer α with 2 ≤ α ≤ n/2, there is an O(n(α logα log n)k)-
space index (for Hamming distance or edit distance) that answers queries in time
O(m + (logα n)

k log log n + #matches). In particular, for every fixed ǫ > 0, one
can take α = logǫ/2k n and get an index with space complexity O(n logk+ǫ n) and
query time O(m + logk n/(log logn)k−1 + #matches) (recall that k is assumed to
be constant, so logα n = Θ(log / log logn)). To get faster query time, one can take
α = nǫ/2k for some ǫ > 0 and get an index with space complexity O(n1+ǫ) and query
time O(m+ log log n+#matches).

2 Preliminaries

Let s1, . . . , sn be a collection of strings, where each string ends with the character
‘$’, and ‘$’ does not appear elsewhere in s1, . . . , sn. A compressed trie for s1, . . . , sn
is a rooted tree T that has n leaves and each internal vertex has at least two children.
Every edge of T is labeled by a string. Every string si corresponds to a distinct leaf
vi of T such that the concatenation of the labels of the edges on the path from the
root of T to vi is exactly si.

A location l on a compressed trie T is pair (v, s) where v is a vertex of T and
s is an empty string or a proper prefix of the label of some edge between v and a
child of v. We will sometimes refer to a vertex v as a location (v, ǫ) and vice versa.

For a vertex v in a compressed trie T , the string that corresponds to v is the
concatenation of the labels on the path from the root of T to v. For a location
l = (v, s), the string that corresponds to l, denoted str(l), is the concatenation of
the string that corresponds to v and s.

The weight of a vertex v in a tree T is the number of descendent leaves of v. A
path [v1, . . . , vd] in a tree T is a heavy path if (1) v1 is the root of T , (2) vd is a leaf,
and (3) for every i < d, there is no child of vi with weight greater than the weight
of vi+1. A heavy path decomposition of a tree T is a set C of paths in T such that
(1) C contains a heavy path C of T , and (2) for every connected component T ′ in
T −C, C contains the paths in a heavy path decomposition of T ′ (T −C is the graph
obtained from T by removing the vertices of C). For a heavy path decomposition C
define TC to be a rooted tree whose set of vertices is C, and there is an edge from C
to C ′ in TC if there is a vertex v ∈ C such that the topmost vertex in C ′ is a child
of v in T .

Given a heavy path decomposition C of a compressed trie T and a location
l = (v, s) in T , nextloc(l) is the location reached when moving from l one character
along the path C ∈ C that contains v. Formally, nextloc(l) is the location l′ = (v′, s′)
such that the string str(l′) is the prefix of length |str(l)| + 1 of the string that
corresponds to the bottommost vertex of C. If there is no such location l′ then

2

nextloc(l) is undefined. We also define next(l) to be the last character of the string
that corresponds to nextloc(l).

For a vertex v in a compressed trie T , nextchars(v) is the set of all first char-
acters in the labels of the edges between v and its children. For a character
a ∈ nextchars(v), let w be the child of v such that the first character of the la-
bel of the edge (v, w) is a. We define Sub(T, v, a) to be the tree obtained by first
taking the subtree of T induced by v, w, and all the descendents of w. Furthermore,
if the label of (v, w) contains only one character then the vertex v and the edge
(v, w) are removed from Sub(T, v, a). Otherwise, the first character of the label of
(v, w) is erased.

Let T1, . . . , Td be compressed tries. The merge of T1, . . . , Td is a compressed trie
whose strings set is the union of the strings sets of T1, . . . , Td.

3 k-mismatches index

The following problem is a generalization of the indexing problem that was discussed
in the introduction.

Input A compressed trie T over strings s1, . . . , sn.

Query A string p, and a location l on T .

Output All the strings si such that str(l) is a prefix of si and the Hamming distance
between p and si[|str(l)| + 1..|str(l)| +m] is exactly k, where m is the length
of p.

A data-structure that solves the problem above is called an unrooted k-mismatches
index. A data-structure that solves a simpler variant of the problem in which str(l) is
always empty is called a rooted k-mismatches index. To solve the indexing problem
mentioned in the introduction, one can construct a rooted k′-mismatches index on
all the suffixes of the input string t for all k′ ≤ k. We note that we use Hamming
distance to simplify the presentation. The same techniques can also be used for edit
distance.

We first describe the k-mismatches index of Cole et al. [4]. The main idea is
to define new compressed tries called group trees, and recursively build a rooted
(k−1)-mismatches index on each group tree (the recursion stops when k is equal to
0). A k-mismatches query on T is answered by making (k − 1)-mismatches queries
on O(logn) group trees.

Let T be a compressed trie of the strings s1, . . . , sn, and let C be a heavy path
decomposition of T . Consider some heavy path C ∈ C, and let v1, . . . , vd be the
vertices along the path C (where v1 is the topmost vertex in the path). We define
error trees as follows: For every vertex vi and every a ∈ nextchars(vi) \ {next(vi)},
the error tree Err(T, vi, a) is equal to Sub(T, vi, a). The error tree Err(T, vi) is
the tree obtained by merging the trees Sub(T, vi, a) for every a ∈ nextchars(vi) \
{next(vi)}. Then, if the root u of the resulting tree has more than one child we add
a new root u′ and an edge (u′, u) with label s, where s is the string obtained by
concatenating the labels of the edges on the path from v1 to vi, and the character

3

$

b
c

a
bd

a
$

b
$

a
b

c

d
b

b
ba

$

(a)

a

b

$
b
$

(b)

$

b
ba

$

(c)

a
$ $

a
$

b
c

a

b

b

(d)

Figure 1: Example of error trees. Figure (a) shows a heavy path v1, v2, . . . and the
vertices hanging from this path. The error trees Err(T, v2, a) and Err(T, v2, b)
are shown in Figures (b) and (c), respectively. Figure (d) shows the error tree
Err(T, v2), which is obtained by merging Err(T, v2, a) and Err(T, v2, b), and
adding a new root u′.

next(vi). If u has only one child we prepend the string s to label of the edge between
u and its child. See Figure 1 for examples of the definitions above.

The next step is to construct group trees from the error trees. Let wi be the
number of leaves in the tree Err(T, vi). For each vertex vi we assign an inter-
val Ii = [

∑
j<iwj ,

∑
j≤iwj). For an interval I = [a, b), we will denote left(I) =

a and right(I) = b. The merge of Err(T, vi), . . . ,Err(T, vj) will be denoted
Group1(T, vi, vj) and will be called type 1 group tree. We do not createGroup1(T, vi, vj)
for all i and j (as this would take too much space). Instead, the type 1 group trees
are constructed by the following procedure (an example is given in Figure 2).

1: For every C ∈ C which is not a leaf in TC do

2: Let v1, . . . , vd be the vertices of C with intervals I1, . . . , Id.
3: L1 ← {(1, d)}.
4: t← 1.
5: While Lt 6= ∅ do
6: Lt+1 ← ∅.
7: For every (i, i′) ∈ Lt do

8: a← left(Ii), b← right(Ii′).
9: Let j be the index such that a+b

2
∈ Ij .

10: If j ≥ i+ 1 then build the group tree Group1(T, vi, vj−1)
11: Build the group tree Group1(T, vj , vj).
12: If j ≤ i′ − 1 then build the group tree Group1(T, vj+1, vi′)
13: If j > i+ 1 then add (i, j − 1) to Lt+1.
14: If j < i′ − 1 then add (j + 1, i′) to Lt+1.

4

Figure 2: An example of type 1 group tree construction. The top line shows in-
tervals I1, . . . , I7 and the point a+b

2
∈ I3. Thus, the first iteration creates the

group trees Group1(T, v1, v2), Group1(T, v3, v3), and Group1(T, v4, v7). In the
next iteration, the following trees are created: Group1(T, v1, v1), Group1(T, v2, v2),
Group1(T, v4, v4), Group1(T, v5, v5), and Group1(T, v6, v7). In the final iteration,
the group trees Group1(T, v6, v6) and Group1(T, v7, v7) are created.

15: t← t+ 1.

For every vertex v in T we create group trees from the error trees Err(T, v, a) in
a similar way. These trees will be called type 2 group trees. On every group tree (of
type 1 or 2) we build a rooted (k−1)-mismatches index. Also, we build an unrooted
(k − 1)-mismatches index on T .

We now describe how to answer a rooted query p. This is done by performing
(k− 1)-mismatches queries on some group trees or on T . Let l be the location in T
such that str(l) is a prefix of p, and |str(l)| is maximal. The path that corresponds to
p is the path from the root of T to l. Let C1, . . . , Cr be the paths of C through which
the path that corresponds to p passes, in order from top to bottom. For t = 1, . . . , r,
let lt be the last location on Ct through which the path that corresponds to p passes.
Note that for t < r, lt must be a vertex.

For every path Ct, let v1, . . . , vd be the vertices of the path, and let j be the
minimum index such that |str(vj)| ≥ |str(lt)|. The following queries are performed:

1. If lt is not a leaf, do an unrooted (k − 1)-mismatches query on T with query
string p[|str(lt)|+ 2..m] and start position nextloc(lt).

2. Identify the type 1 group trees whose merge includes precisely the error trees
Err(T, v1), . . . ,Err(T, vj−1). On each group tree, do a (k − 1)-mismatches
query with query string p[|str(v1)|+ 1..m].

3. If lt = vj and lt is not a leaf, identify the type 2 group trees whose merge
includes precisely the error trees Err(T, vj , a) for all a 6= p[|str(vj)| + 1]. On
each group tree, do a (k− 1)-mismatches query with query string p[|str(vj)|+
2..m].

Handling an unrooted query is done similarly: In this case the path that corresponds
to p starts at the query location l instead of the starting at the root. Handling the
paths C2, . . . , Cr is the same as before. For the path C1, the type 1 group trees that
are queried are the trees whose merge includes precisely the error trees Err(T, vi),
. . . ,Err(T, vj−1), where i is the minimum index such that |str(vi)| ≥ |str(l)| and j
is defined as before.

5

4 New index

Our construction is similar to the construction of Cole et al. We build more group
trees in order to reduce the number of group trees that are searched when answering
a query. In particular, while in the construction of Cole et al. a group tree consists
of error trees that come from one heavy path, in our construction some group trees
(called type 3 group trees) consist of error trees from several heavy paths.

Let α be some integer with 2 ≤ α ≤ n/2. The type 1 group trees are built using
procedure Build described below.

1: For every C ∈ C which is not a leaf in TC do

2: Let v1, . . . , vd be the vertices of C with intervals I1, . . . , Id.
3: L1 ← {(1, d)}.
4: t← 1.
5: While Lt 6= ∅ do
6: Lt+1 ← ∅.
7: For every (i, i′) ∈ Lt do

8: a← left(Ii), b← right(Ii′).
9: i0 ← i− 1.
10: For j = 1, . . . , α− 1 do

11: Let ij be the index such that a+ j
α
(b− a) ∈ Iij .

12: If ij > ij−1 then

13: If ij ≥ i+ 1 then build the group tree Group1(T, vi, vij−1).
14: Build the group tree Group1(T, vij , vij).
15: If ij ≤ i′ − 1 then build the group tree Group1(T, vij+1, vi′).
16: If ij > ij−1 + 2 then add (ij−1 + 1, ij − 1) to Lt+1.
17: If iα−1 < i′ − 1 then add (iα−1 + 1, i′) to Lt+1.
18: t← t+ 1.

The type 2 group trees are built similarly. We also define type 3 group trees as
follows. The weight of a path C ∈ C is the weight of the topmost vertex in C. A
path C ′ ∈ C is called bad if weight(C ′) > 1

α
weight(C), where C is the parent of C ′

in TC. We scan the vertices of the tree TC in a preorder. When we reach a vertex C
that has at least one bad child, we built a set B(C) containing the path C and all
paths C ′ ∈ C such that C ′ is a descendent of C in TC and weight(C ′) > 1

α
weight(C).

Note that every C ′ ∈ B(C) \ {C} is a bad path.
For every C ′, C ′′ ∈ B(C) such that C ′′ is a descendent of C ′ we create a

type 3 group tree, denoted Group3(T, C
′, C ′′), in the following way. Let C ′ =

C1, C2, . . . , Cr−1, Cr = C ′′ be the path from C ′ to C ′′ in TC . Let ui be the first
vertex in the path Ci, and for i < r let vi be the parent of ui+1 in T (note that
vi ∈ Ci). Let ci be the first character of the label of the edge (vi, ui+1). Let si be
the concatenation of the labels of the edges on the path from u1 to ui, and let s′i
be the concatenation of the labels of the edges on the path from u1 to vi, and the
character ci. The group tree Group3(T, C

′, C ′′) is the merge of the following trees.

1. For every i < r and every v ∈ Ci which is an ancestor of vi, the tree obtained
by taking Err(T, v) and prepending the string si to the label of the edge

6

a
b

c

a
b

c

c

d
d

a b
a$ $

b

ac$

d e
$ $

(a)

c

a
$ $

c
b

c

$

(b)

c

a
$ $

c
b

c
b
a
c
b
b

$

(c)

c

d
$ $

e

c
b
a
c
b
b

(d)

Figure 3: Example of type 3 group trees. The paths C ′ = C1, C2, and C ′′ =
C3 are shown in Figure (a). Two of the trees that are merged when creating
Group3(T, C

′, C ′′) are shown in (c) and (d). The tree in (c) is obtained from
Err(T, v) (shown in (b)) by adding the string s2 = abcab to the label of the edge
between the root and its child. The tree in (d) is obtained from Sub(T, v2, a) by
adding a new root, where the label of the new edge is s′2 = bbcabbc.

between the root of Err(T, v) and its only child.

2. For every i < r and every a ∈ nextchars(vi) \ {ci} (note that this includes
a = next(vi)), the tree obtained by taking Sub(T, vi, a) and if the root of this
tree has only one child, prepending the string s′i to the edge between the root
and its child. Otherwise, a new root is added and connected to the old root
by an edge, where the label of the edge is s′i.

An example is given in Figure 3.
Answering an unrooted query p is performed as follows. Let C1, . . . , Cr be the

paths of C through which the path that corresponds to p in T passes. Start with
t = 1. At each iteration, if t = r or Ct+1 is not a bad path, perform queries for Ct

as described in the previous section, and increase t by 1. Otherwise, do a rooted

7

(k − 1)-mismatches query on Group3(T, Ct, Ct′) and set t to t′, where t′ > t is the
maximum index such that Ct′ ∈ B(Ct). In more details, the algorithm is as follows
(we omit the queries on type 2 group trees which are handled similarly to the queries
on type 1 group trees).

1: Let C1, . . . , Cr be the paths of C through which the path that corresponds to p
in T passes.

2: t← 1.
3: While t ≤ r do

4: Let v1, . . . , vd be the vertices of Ct, with intervals I1, . . . , Id.
5: If t < r and Ct+1 is a bad path
6: Let t′ > t be the maximum index such that Ct′ ∈ B(Ct).
7: Do a rooted (k − 1)-mismatches query on Group3(T, Ct, Ct′) with query

string p[|str(v1)|+ 1..m].
8: t← t′.
9: Else

10: Let lt be the last location on Ct through which the path that corresponds
to p passes.

11: If lt is not a leaf then do an unrooted (k−1)-mismatches query on T with
query string p[|str(lt)|+ 2..m] and start position nextloc(lt).

12: Let j be the minimum index such that |str(vj)| ≥ |str(lt)|.
13: p′ ← p[|str(vj)|+ 1..m].
14: i← 1, i′ ← d.
15: While i < j do

16: a← left(Ii), b← right(Ii′).
17: Let β be the maximum integer such that a + β

α
(b− a) < right(Ij).

18: If β > 0 then let j1 be the index such that a + β
α
(b − a) ∈ Ij1 else

j1 ← i− 1.
19: If β < α−1 then let j2 be the index such that a+ β+1

α
(b−a) ∈ Ij2 else

j2 ← i′ + 1.
20: If j1 ≥ i+1 then do a rooted (k−1)-mismatches query onGroup1(T, vi, vj1−1)

with query string p′.
21: If i ≤ j1 < j then do a rooted (k−1)-mismatches query onGroup1(T, vj1, vj1)

with query string p′.
22: i← j1 + 1, i′ ← j2 − 1.
23: t← t+ 1

For an unrooted query, the path C1 is handled as in the handling of unrooted
queries described in the previous section. Then, C2, . . . , Cr are handled using the
algorithm above.

Theorem 1. The time for answering a query is O(m+(logα n)
k log log n+#matches).

Proof. Let t1, . . . , tr′ be the different values of t during the run of the algorithm.
We first give a bound on r′. We claim that for every i ≤ r′ − 2, weight(Cti+2

) ≤
1
α
weight(Cti): If Cti+1 is not a bad path then ti+1 = ti + 1 and weight(Cti+1

) ≤
1
α
weight(Cti). Since weight(C1) > weight(C2) > · · · > weight(Ct) and ti+2 ≥ ti+1,

8

we obtain that weight(Cti+2
) ≤ 1

α
weight(Cti). If Cti+1 is a bad path then Cti+1+1 is

not in B(Ct). Therefore, weight(Cti+2
) ≤ weight(Cti+1+1) ≤

1
α
weight(Cti).

Since weight(C1) = n and weight(Ct) ≥ 1, we conclude that r′ ≤ 2 + 2 logα n.
Therefore, the number of (k− 1)-mismatches queries performed at lines 7 and 11 is
at most r′ ≤ 2 + 2 logα n.

We next bound the number of queries performed on type 1 group trees. During
the execution of lines 15–22, we say that the current interval is the interval Ii∪Ii+1∪
· · · ∪ Ii′ . The sequence of current intervals during the execution of the algorithm
(for all t) is decreasing in lengths. If for some Ct, lines 15–22 are executed s times,
then the length of the current interval decreases by a factor of at least αmax(1,s−1).
Thus, lines 15–22 are executed at most 2 + 2 logα n times, and the number queries
performed on type 1 group trees is at most 4 + 4 logα n. Using similar analysis, the
number of queries on type 2 group trees is at most 8 + 8 logα n (in each iteration of
the search in the type 2 group trees, up to 4 queries can be made).

Combining the bounds above, we have that the total number of (k−1)-mismatches
queries performed when answering a rooted queries is at most 14+ 14 logα n. When
answering an unrooted query, at most 18+ 18 logα n (k− 1)-mismatches queries are
made (the additional 4+4 logα n queries are due to the special handling of the path
C1). Using induction, the total number of 0-mismatches queries performed for a
rooted or unrooted query is at most (18 + 18 logα n)

k = O((logα n)
k).

Using the LCP data-structures of Cole et al. [4] we have that after a prepro-
cessing stage that takes O(m) time, the i-th 0-mismatches query takes O(log log n+
#matchesi) time, where #matchesi is the number of matches returned by the query.
Since each approximate match of p in t is reported exactly once,

∑
i #matchesi =

#matches. Therefore, the total time complexity of a k-mismatches query is O(m+
(logα n)

k log logn +#matches).

Theorem 2. The space complexity of the index is O(n(α logα logn)k).

Proof. First, we bound the total number of leaves in all type 1 group trees (the
analysis is similar to the analysis of Cole et al.). Define Sk(n) = (5α logα log n)k.
We will show that the total number of leaves in all group trees that are built for a
k-mismatches index over a compressed trie T with n leaves is at most Sk(n) ·n. The
claim is proved using induction on k. The base k = 0 is trivial.

Suppose we proved the claim for k − 1, and consider some k-mismatches index
over a compressed trie T with n leaves. Let T1, . . . , Td be all the type 1 group trees
that are built for T by procedure Build, and denote by xi the number of leaves in
Ti. By induction, we have that the (k − 1)-mismatches indices constructed on the
trees T1, . . . , Td have at most

∑d
i=1 Sk−1(xi) · xi leaves.

For a leaf v of T , let i(v, 1), . . . , i(v, dv) denote the indices of group trees in which
v appears. Clearly,

∑d
i=1 Sk−1(xi)·xi =

∑
v

∑dv
j=1 Sk−1(xi(v,j)). The function Sk−1(x)

is an increasing function of x. Therefore,
∑d

i=1 Sk−1(xi) · xi ≤
∑

v

∑dv
j=1 Sk−1(n) =

Sk−1(n)
∑

v dv.
We now give a bound on dv. Fix some leaf v of T . We partition the group trees

that contain v into sets, where each set consists of all the trees that are generated
during one execution of lines 10–16 of procedure Build. In each set the number of
trees that contain v is at most α − 1. Similarly to the proof of Theorem 1, the

9

number of sets is at most log n + logα n ≤ 2 logn. It follows that the number of
leaves in the (k − 1)-mismatches indices built on the type 1 group trees is at most
(α− 1) · 2 logn · Sk−1(n). Similarly, the number of leaves in the indices built on the
type 2 group trees is at most (α− 1) · 2 logn · Sk−1(n).

It remains to bound the number of leaves in the indices built on the type 3 group
trees. We begin by bounding the size of B(C) for some path C. Consider the subtree
T ′ of TC that is induced by the vertices of B(C). For every two leaves C1 and C2

in T ′, the set of vertices of T that are descendents of the topmost vertex in C1 is
disjoint with the set of vertices of T that are descendents of the topmost vertex in
C2. It follows that the sum of weights of the leaves of T ′ is less than or equal to
weight(C). Since each leaf in T ′ has weight greater than 1

α
weight(C), we conclude

that T ′ has at most α leaves. By the definition of heavy path decomposition, we
have that if C1 is a child of C2 in T ′ then the weight of C1 is less than half the
weight of C2. Therefore, for every leaf C ′ in T ′, the number of ancestors of C ′ in T ′

is at most logα. Thus, |B(C)| ≤ α logα.
Using the same arguments as above, the number of leaves in the (k−1)-mismatches

indices built on the type 3 group trees is at most Sk−1(n)
∑

v d
′
v, where d′v is the

number of type 3 group trees that contain the leaf v. A type 3 group tree that con-
tains v must be of the form Group3(T, C

′, C ′′) where C ′ is a path through which
the path from the root of T to v passes. The number of such paths is at most log n.
Moreover, for fixed C ′, there are at most α logα ways to choose C ′′. Therefore,
d′v ≤ α logα log n.

We conclude that the total number of leaves in the indices built on all group
trees is at most

(2 · 2(α− 1) logn+ α logα log n) · Sk−1(n) ≤ 5α logα logn · Sk−1(n) = Sk(n).

References

[1] A. Amir, D. Keselman, G. M. Landau, N. Lewenstein, M. Lewenstein, and
M. Rodeh. Dictionary matching with one error. J. of Algorithms, 37(2):309–
325, 2000.

[2] A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over
tree cross products. In Proc. 8th European Symposium on Algorithms (ESA),
pages 120–131, 2000.

[3] H. Chan, T. W. Lam, W. Sung, S. Tam, and S. Wong. A linear size index
for approximate pattern matching. In Proc. 17th Symposium on Combinatorial
Pattern Matching (CPM), LNCS 4009, pages 49–59, 2006.

[4] R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proc. 36th ACM Symposium on Theory Of
Computing (STOC), pages 91–100, 2004.

[5] C. Epifanio, A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino. Languages
with mismatches. Theoretical Computer Science, 385(1-3):152–166, 2007.

10

[6] A. Gabriele, F. Mignosi, A. Restivo, and M. Sciortino. Indexing structures for
approximate string matching. In Proc. 5th Italian Conference on Algorithms
and Complexity (CIAC), pages 140–151, 2003.

[7] T. N. D. Huynh, W. K. Hon, T. W. Lam, and W. K. Sung. Approximate
string matching using compressed suffix arrays. In Proc. 15th Symposium on
Combinatorial Pattern Matching (CPM), pages 434–444, 2004.

[8] T. W. Lam, W. K. Sung, and S. S. Wong. Improved approximate string match-
ing using compressed suffix data structures. In Proc. 16th International Sym-
posium on Algorithms and Computation (ISAAC), pages 339–348, 2005.

[9] M. G. Maaß and J.Nowak. Text indexing with errors. In Proc. 16th Symposium
on Combinatorial Pattern Matching (CPM), pages 21–32, 2005.

[10] G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate
string matching. J. of Discrete Algorithms, 1(1):205–239, 2000.

[11] G. Navarro and E. Chávez. A metric index for approximate string matching.
Theoretical Computer Science, 352(1–3):266–279, 2006.

[12] P. Weiner. Linear pattern matching algorithm. In Proc. 14th IEEE Symposium
on Switching and Automata Theory, pages 1–11, 1973.

11

