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Description/Preface

Mathematical and computational biology of viruses at the molecular or cellular levels
are more difficult to accurately address than at the population level. While it is easier to
achieve fairly good forecasts at the population level, as we have witnessed during the past
two years via the modeling and predicting of COVID-19 pandemics, the sophistication of
molecular and cellular biology processes requires significant challenges to be overcome
when mathematics and computations are applied. Nevertheless, it is a growing field
experiencing its own success. This Special Issue provides a glimpse into some of the
successes and aims to inspire more work within the wide spectrum of viral research at
these two distinct levels.

The present volume contains the seven articles that were accepted and published in
the Special Issue “Mathematical and Computational Biology of viruses at the Molecular or
Cellular Levels” during 2021–2022. The Special Issue covers representative topics related
to this theme. The first topic focuses on the molecular level and concentrates on the RNA
secondary structure of RNA viruses [1]. It starts with a mathematical analysis of the
RNA motifs in viruses, analyzing data from the web resource RNASIV (RNA structure in
viruses) [2] in order to categorize the various RNA structures based on their tree-graph
properties via an eigenvalue analysis [3], with the second eigenvalue of the Laplacian
matrix belonging to the coarse-grained tree-graph of the RNA secondary structure being
examined. The same concept is carried out in [4] for an eigenvalue analysis of HDVdb [5],
a database of HDV sequences that is divided into various HDV genotypes, in order to
predict whether the peculiar RNA-editing mechanism achieved by a conformational switch
in RNA that is known to occur in HDV genotype 3 [6] can occur in other genotypes as well.
Two publications that appeared independently at around the same time [4,7] addressed
this problem. A mathematical analysis by computations performed in [4] succeeded to
predict that the RNA editing mechanism by a conformational switch in HDV genotype
3 occurs in HDV genotype 7 as well. Here it is shown more clearly in Figure 1 (a zoom-in of
Figure 3(A) in [4]) that the familiar SL1 hairpin from genotype 3 with the GAAC tetraloop
is present also in genotype 7, while no systematic way from the computational standpoint
was presented in [7] to show the presence of the SL1 hairpin particularly in genotype 7 and
not in other genotypes, although the experiment performed in [7] with the added RNA
motifs surrounding SL1 in strain dFr7024 (as depicted in Figure 4(D) of [7]) was beneficial.
The impact of this finding would be revealed in the future as more data is gathered, but
it exemplifies the power of mathematics and computations to predict new findings at the
molecular or cellular levels.
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Figure 1. A zoom-in of Figure 3(A) in [4], where the folding prediction by energy minimization 
using either mfold/UNAFold [8] or Vienna’s RNAfold [9] of MG711735 from genotype 7 [5] is per-
formed, with an SL1-like hairpin that contains the sub-sequence “GAAC” as in SL1 from genotype 
3. The secondary structure is drawn using VARNA [10]. 

The HDV paper in [4] already mentions addressing HDV viral kinetics across the 
different genotypes through the use of a simple differential equation model (transitioning 
from the molecular to the cellular level), and from here on, the Special Issue is devoted to 
the cellular level. The next topic is a Markov chain-based stochastic modelling of the HIV-
1 life cycle in a CD4 T cell, as put forth in the paper by Sazonov et al. [11]. A new tool to 
simulate the HIV life cycle in infected cells is provided by a high-resolution mathematical 
model formulated as a Markov chain jump process. The model is applied to generate the 
statistical characteristics of the cell infection multiplicity, cooperative nature of viral rep-
lication, and variability in viral secretion by phenotypically identical cells. The results of 
the simulation with the model suggest that the stochastic effects inherent in HIV replica-
tion cycle must be considered among the relevant mechanisms contributing to the pheno-
typic diversity and variability of dynamics of HIV infection. In the next paper by Leder-
man et al. [12], the topic of unidentifiability in parameter estimation, referring to one’s 
inability to uniquely estimate the model parameters from the available data, is addressed. 
It is first examined using Lambda–Omega models and is then exemplified on a viral in-
fection kinetic model for HIV. The issue of unidentifiability appears in viral kinetic mod-
els, and it is important to understand the type of unidentifiability being faced to provide 
solutions to it. In this fundamental paper about unidentifiability, as well as in the next one 
that presents a simple mathematical model for studying HDV and HBV kinetics in a cou-
pled way [13], finite-difference numerical schemes are used to solve the underlying dif-
ferential equations of the model. Unlike applications such as in, for example, refs. [14,15], 
where more sophisticated numerical methods are needed to solve the differential equa-
tions of the model, in the papers in this Special Issue, the models are simple enough to 
utilize a standard Runge–Kutta scheme of the fourth order. In the two papers on HDV-
HBV interaction [13,16], the devised models were either solved numerically or solved an-
alytically using Wolfram’s Research Mathematica through the use of hypergeometric 
functions to represent the solution, and Berkeley Madonna was used for parameter 

Figure 1. A zoom-in of Figure 3(A) in [4], where the folding prediction by energy minimization using
either mfold/UNAFold [8] or Vienna’s RNAfold [9] of MG711735 from genotype 7 [5] is performed,
with an SL1-like hairpin that contains the sub-sequence “GAAC” as in SL1 from genotype 3. The
secondary structure is drawn using VARNA [10].

The HDV paper in [4] already mentions addressing HDV viral kinetics across the
different genotypes through the use of a simple differential equation model (transitioning
from the molecular to the cellular level), and from here on, the Special Issue is devoted to
the cellular level. The next topic is a Markov chain-based stochastic modelling of the HIV-1
life cycle in a CD4 T cell, as put forth in the paper by Sazonov et al. [11]. A new tool to
simulate the HIV life cycle in infected cells is provided by a high-resolution mathematical
model formulated as a Markov chain jump process. The model is applied to generate
the statistical characteristics of the cell infection multiplicity, cooperative nature of viral
replication, and variability in viral secretion by phenotypically identical cells. The results of
the simulation with the model suggest that the stochastic effects inherent in HIV replication
cycle must be considered among the relevant mechanisms contributing to the phenotypic
diversity and variability of dynamics of HIV infection. In the next paper by Lederman
et al. [12], the topic of unidentifiability in parameter estimation, referring to one’s inability
to uniquely estimate the model parameters from the available data, is addressed. It is
first examined using Lambda–Omega models and is then exemplified on a viral infection
kinetic model for HIV. The issue of unidentifiability appears in viral kinetic models, and it
is important to understand the type of unidentifiability being faced to provide solutions
to it. In this fundamental paper about unidentifiability, as well as in the next one that
presents a simple mathematical model for studying HDV and HBV kinetics in a coupled
way [13], finite-difference numerical schemes are used to solve the underlying differential
equations of the model. Unlike applications such as in, for example, refs. [14,15], where
more sophisticated numerical methods are needed to solve the differential equations of
the model, in the papers in this Special Issue, the models are simple enough to utilize
a standard Runge–Kutta scheme of the fourth order. In the two papers on HDV-HBV
interaction [13,16], the devised models were either solved numerically or solved analytically
using Wolfram’s Research Mathematica through the use of hypergeometric functions to
represent the solution, and Berkeley Madonna was used for parameter estimation. The
improved kinetic model for HDV-HBV interaction [16] ameliorates the deficiencies of
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past models [17,18], and the initial attempt in [13] presented a new concept, but it only
considered scarce data from very few patients. Next, in the paper by Grebennikov et al. [19],
a calibrated mathematical model of antiviral immune response to SARS-CoV-2 infection
is developed, and the new model considers the innate and antigen-specific responses to
SARS-CoV-2 infection. Thus far, more than a dozen of mathematical models of SARS-CoV-2
infection have been developed, such as in [20], and the study in [19] is unique in that
it highlights the value of mathematical modelling in gaining a mechanistic view of the
kinetic regulations of SARS-CoV-2 infections and antiviral immune responses. Finally, it is
worthwhile to mention that viral kinetic models can become more complicated in a variety
of ways, an example being HCV multiscale models [21–24], presenting new mathematical
challenges that could be the topic of a future Special Issue.

As Guest Editors of this Special Issue, we thank the authors of the papers for their
high-quality contributions, the reviewers for their valuable comments for improving the
submitted works, and the administrative staff of the journal for their helpful support.
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contributions and this Editorial. They were invaluable for the success of our Special Issue.
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