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Stochastic Processes and Colored noises

Stochastic stationary noises with a non-white spectrum
arises in application.
Consider the stochastic differential equation

dXt = G (Xt , t) dt + F (Xt , t) dB(t).

If B is a Brownian motion, the notion of Itô integral can be
used so the differential dB can be viewed as a stochastic
process with a white spectrum.
Such notion does not exists in general if we replace B by a
general stationary increment Gaussian process.
The aim of this talk is to give meaning to this notation by
extending Itô’s integration theory.
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Fractional Brownian Motion

The fractional Brownian motion with Hurst parameter
0 < H < 1 is a zero mean Gaussian stochastic process
with covariance function

COV (t , s) =
1
2

(
|t |2H + |s|2H + |t − s|2H

)
, t , s ∈ R.

For H 6= 1
2 it is not a semi-martingale.

Stochastic calculus for fractional Brownian (fBm) has
attracted much attention in the last two decades, especially
due to apparent application in economics.
A Wick-Itô integral for the fBm was proposed. [Duncan, Hu
and Paskin-Duncan 2000], [Hu and Øksendal 2002].
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Fractional Brownian Motion
Spectral Properties

We have the following relation:

1
2

(
|t |2H + |s|2H + |t − s|2H

)
=

∫ ∞
−∞

1̂[0,t]1̂[0,s]

∗
m(ξ)dξ,

where
1[0,t] is the indicator function of the interval [0, t ]
f̂ =

∫∞
−∞ e−iuξf (u)du

m(ξ) = M(H)|ξ|1−2H and M(H) = H(1−H)
Γ(2−2H) cos(πH)

According to the theory of Gelfand-Vilenkin on generalized
stochastic processes, the time derivative of the fBm is a
stationary stochastic distribution with spectral density m(ξ).
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Fractional Brownian Motion
Member of a Wide Family

It suggests the the fBm is a member of a wide family of
stationary increments Gaussian processes whose
covariance function is of the form

COVm(t , s) =

∫ ∞
−∞

1̂[0,t]1̂[0,s]

∗
m(ξ)dξ (1)

for a function m(ξ) satisfies
∫∞
−∞

m(ξ)
1+ξ2 dξ <∞.

Main Goal of this Talk
Extend the Itô integral for Brownian motion to this family of
non-martingales stationary increments processes.

Stochastic integration for this family was first proposed by
[Alpay, Atia and Levanony].
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Stochastic Processes Induced by Operators
Definition

For a given spectral density function m(ξ) such that∫∞
−∞

m(ξ)
1+ξ2 dξ <∞, we associate an operator

Tm : L2 (R) −→ L2 (R) , T̂mf (ξ) = f̂ (ξ)
√

m(ξ), f ∈ L2 (R) .

or
m Tmff

This operator is in general unbounded.
1[0,t] ∈ domTm for each t ≥ 0.
The covariance function (1) can now be rewritten as

COVm(t , s) =

∫ ∞
−∞

1̂[0,t]1̂[0,s]

∗
m(ξ)dξ =

(
Tm1[0,t],Tm1[0,s]

)
L2(R)

.
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Structure of the Talk

To each operator Tm we associate a Gaussian probability
space (Ω,F ,Pm) which will be called the m-noise space.
Stochastic process with covariance function(
Tm1[0,t],Tm1[0,s]

)
L2(R)

is naturally defined on the m-noise
space.
We use the analogue of the S-transform to define a
Wick-Itô integral on this space.
Application to optimal control theory.
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The m-Noise Space
Notations

We use an analogue of Hida’s white noise space as our
underlying probability space.
Notations:

S - Schwartz space of real rapidly decreasing functions.
Ω is the dual of S , the space of tempered distributions.
B(Ω) is the Borel σ-algebra.
〈ω, s〉 = 〈ω, s〉Ω,S , s ∈ S and ω ∈ Ω will denote the bilinear
pairing between S and Ω.

Lemma
[Jorgensen] Tm as an operator from S ⊂ L2(R), endowed with
the Frèchet topology, into L2(R) is continuous.
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Definition of the Probability Space
Bochner-Minlos Theorem

It follows that Cm(s) = e−
1
2‖Tms‖2

L2(R) is a characteristic
functional on S .

By the Bochner-Minlos theorem there is a unique probability
measure Pm on Ω such that for all s ∈ S ,

Cm(s) = exp
{
−1

2
||Tms||2L2(R)

}
=

∫
Ω

ei〈ω,s〉dPm(ω) = E
[
ei〈·,s〉

]
〈ω, s〉 is viewed as a random variable on Ω.
The triplet (Ω,B(Ω),Pm) will be called the m-noise space.
The case Tm = idL2(R) (m ≡ 1) will lead back to Hida’s
white noise space.
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measure Pm on Ω such that for all s ∈ S ,

Cm(s) = exp
{
−1

2
||Tms||2L2(R)

}
=

∫
Ω

ei〈ω,s〉dPm(ω) = E
[
ei〈·,s〉

]
〈ω, s〉 is viewed as a random variable on Ω.
The triplet (Ω,B(Ω),Pm) will be called the m-noise space.
The case Tm = idL2(R) (m ≡ 1) will lead back to Hida’s
white noise space.
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The Process Bm
Definition

〈ω, s〉, s ∈ S , is a zero mean Gaussian random variable
with variance

E
[
〈·, s〉2

]
= ‖Tms‖2L2(R).

The last relation can be extended to any f ∈ dom(Tm),
such that 〈ω, f 〉, f ∈ dom(Tm) define a zero mean
Gaussian random variable with variance

E
[
〈·, f 〉2

]
= ‖Tmf‖2L2(R).

For t ≥ 0 we may define the stochastic process
Bm : Ω× [0,∞] −→ R by

Bm(t) := Bm(ω, t) := 〈ω,1[0,t]〉.
Bm plays the role of the Brownian motion in the m-noise
space.
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The Process Bm
Properties

The process {Bm}t≥0 is a zero mean Gaussian process
with covariance function
E [Bm(t)Bm(s)] =

(
Tm1[0,t],Tm1[0,s]

)
L2(R)

.

d
dt Bm (in the sense of distribution) has spectral density
m(ξ).
In view of the previous isometry, it is natural to define for
f ∈ dom(Tm),∫ t

0
f (u)dBm(u) = 〈ω,1[0,t]f 〉, t ≥ 0.
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The Process Bm
Examples

Example (Standard Brownian Motion)
Take m ≡ 1, then Tm = idL2(R) and

E[Bm(t)Bm(s)] =
(
Tm1[0,t],Tm1[0,s]

)
=

∫ ∞
−∞

1[0,t]1[0,s]
∗du = t∧s.

Example (Fractional Brownian Motion)

Take m(ξ) = M(H)|ξ|1−2H , then

E[Bm(t)Bm(s)] =

∫ ∞
−∞

1̂[0,t]1̂[0,s]

∗
m(ξ)dξ =

|t |2H + |s|2H − |t − s|2H

2
.
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An S-Transform Approach for Stochastic Integration
Motivation

We wish to define a Wick-Itô-Skorohod stochastic integral
based on the process {Bm}t≥0.
Recall that the Itô-Hitsuda integral in the white noise space
is defined by∫ ∆

0
X (t)dB(t) ,

∫ ∆

0
X (t) � d

dt
Bm(t)dt ,

where
{X (t)}0≥t∆ is a stochastic process
d
dt Bm(t) is the time derivative(in the sense of distributions)
of the Brownian motion.
� is the Wick product.

We need a Wiener-Itô Chaos decomposition of the white
noise space.
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An S-Transform Approach for Stochastic Integration
Motivation

Any X ∈ L2 (Ω,B,Pm) can be represented as

X =
∑
α

fαHα(ω).

Such basis for L2 (Ω,B(S ′),Pm) depends explicitly on m(ξ).

In order to keep our construction as general as possible, we
take an S-transform approach for the Wick-Itô-Skhorhod
integral.
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Definition of the Sm-Transform

We reduce to the σ-field G generated by {〈ω, f 〉}f∈dom(Tm).

Definition
For a random variable X ∈ L2 (Ω,G,Pm) define

(SmX )(s) , E
[
e〈·,s〉X (·)

]
e−

1
2‖Tms‖2

, s ∈ S .

Any X ∈ L2 (Ω,G,Pm) is uniquely determined by (SmX )(s).

Lemma

(SmBm(t)) (s) =
(
Tms,Tm1[0,t]

)
L2(R)

is everywhere differentiable with respect to t.
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Definition of the Stochastic Integral

Definition
A stochastic process X (t) : [0,∆] −→ L2 (Ω,G,Pm) will be
called Wick-Itô integrable if there exists a random variable
Φ ∈ L2 (Ω,G,Pm) such that

(SmΦ) (s) =

∫ ∆

0
(SmX (t)) (s)

d
dt

(SmBm(t)) (s)dt .

In that case we define Φ(∆) =
∫ ∆

0 X (t)dBm(t).

For any polynomial p ∈ R [X ], p (Bm(t)) is integrable.
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The Wick product of X ,Y ∈ L2 (Ω,G,Pm) can be defined by

(Sm (X � Y )) (s) = SmX (s)SmY (s)

So ∫ ∆

0
X (t)dBm(t) =

∫ ∆

0
X (t) � d

dt
Bm(t)

where the integral on the right is a Pettis integral.
If Bm is the Brownian motion (m(ξ) ≡ 1), our definition of
the stochastic integral coincides with the Itô-Hitsuda
integral [Hida1993].
If Bm is the fractoinal Brownian motion (m(ξ) = |ξ|1−2H ),
our definition of the stochastic integral reduces to the one
given in [Bender2003] which coincides with the
Wick-Itô-Skorokhod integral defined in [Duncan,Hu 2000]
and [Hu,Øksendal 2003].
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Itô’s Formula

We have the following version of Itô’s Formula:

X (t) =
∫ t

0 f (u)dBm(u) = 〈ω,1[0,t]f 〉
where f ∈ domTm and t ≥ 0, such that ‖Tm1[0,t]f‖2 is
absolutely continuous in t .

F ∈ C1,2 ([0, t ] ,R) with ∂
∂t F (Xt ),

∂
∂x F (Xt ),

∂2

∂x2 F (Xt ) all in
L1 (Ω× [0, t ]).
The following holds in L2 (Ω,G,PT ):

F (t ,Xt )− F (0,0) =

∫ t

0
f (u)

∂

∂x
F (u,X (u)) dBm (u)

+

∫ t

0

∂

∂u
F (u,X (u))du +

1
2

∫ t

0

d
du
‖Tm1[0,u]f‖2

∂2

∂x2 F (u,X (u))du
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Formulation of the Optimal Control Problem

Consider the scalar system subject to{
dxt = (Atdt + CtdBm(t)) xt + Ftutdt
x0 ∈ R (deterministic)

where A(·),C(·),F(·) : [0,∆] −→ R are bounded
deterministic functions.

Sysu xtt

Using Itô’s formula, one may verify that

x∆ = x0 exp
{∫ ∆

0
(At + Ftut ) dt +

∫ ∆

0
CtdBm(t)− 1

2
‖Tm1[0,∆]‖2

}
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Formulation of the Optimal Control Problem
continue

We present a quadratic cost functional

J
(
x0,u(·)

)
:= E

[∫ ∆

0

(
Qtx2

t + Rtu2
t

)
dt + Gx2

∆

]
.

where R(·),Q(·) : [0,∆]→ R, Rt > 0, Qt ≥ 0 ∀t ≥ 0 and
G ≥ 0.

We reduce ourselves to control signals of linear feedback
type:

ut = Kt · xt .

so the control dynamics reduces to{
dxt = [(At + FtKt ) dt + CtdBm(t)] xt

x0 ∈ R (deterministic)
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Formulation of the Optimal Control Problem
continue

And the cost may be associated directly with the feedback
gain Kt : [0,∆] −→ R:

J
(
x0,K(·)

)
:= E

[∫ ∆

0

(
Qt + K 2

t Rt

)
x2

t dt + Gx2
∆

]
, (2)

The optimal stochastic control problem:
Minimize the cost functional (2), for each given x0, over the set
of all linear feedback controls K(·) : [0,∆] −→ R.

This control problem was formulated and solved in the
case of fractional Brwonian motion by Hu and Yu Zhou
2005, and appears in [Biagini,Hu,Øksendal,Zhang 2008].
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Solution
Riccati Equation

Theorem

If d
dt ‖Tm1[0,t]C(·)‖2 is bounded in (0,∆), then the optimal linear

feedback gain K̃t is given by

K̃t = −Ft

Rt
pt . (3)

where {pt , t ∈ [0,∆]} is the unique positive solution of the
Riccati equation{

ṗt + 2pt
[
At + d

dt ‖Tm1[0,t]C(·)‖2
]

+ Qt −
F 2

t
Rt

p2
t = 0

p∆ = G
(4)
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Solution
Idea of Proof

Proof.
Using Itô’s formula with:
xt = x0 exp

[∫ t
0 cudBm(u) +

∫ t
0 (Au + FuKu) du − 1

2‖Tm (1tC) ‖2
]
, leads

to

p∆x2
∆ = p0x2

0 + 2
∫ ∆

0
x2

t CtptdBm(t)

+

∫ ∆

0
x2

t

[
ṗt + 2pt (At + FtKt ) + 2pt

d
dt
‖Tm1t‖2

]
dt .

Taking the expectation of both sides and substituting the Riccati
equation (4) yields

J (x0,K (·)) = p0x2
0 + E

∫ ∆

0

(
Kt + Bt

Rt
pt

)2
dt ,

of which the result follows.
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Simulation

We use the following specification
A2

C2 = SNR, x0 = 5, F = 0.3
in the state-space model which results in{

dxt =
(
A + 1

20.3Kt
)

xtdt + xtCdBm(t),
(

SNR = A2

C2

)
x0 = 5.

We take Bm that corresponds to the spectral density

m(ξ) = α|ξ|1−2H + βsinc2 (∆(ξ − 2πf0)) ,

with ∆ = 20, f0 = 2, H = 0.6, α = 0.05 and β = 80.
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Simulation
m(ξ) = α|ξ|0.6 + βsinc2 (∆(ξ − 2πf0))

We compare the cost function

J(x0,K(·)) = E
[∫ ∆

0
(1 + 2Kt ) x2

t dt + 2x2
∆

]
,

for the two controllers KOpt (·) and KNai(·) and their
corresponding state-space trajectories. Where:

KOpt (·) is the optimal controller from Theorem 7 for a
system perturbated by dBm.
KNai(·) is the optimal controller designed for a system
perturbated by the time derivative of a Brownian motion, so
it assumes m(ξ) ≡ 1.
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m(ξ) = α|ξ|0.6 + βsinc2 (∆(ξ − 2πf0))

Average ratio
JNai
JOpt

for different SNR values (10,000 samples)

JH=0.6
JOpt

JNai
JOpt
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We started with a spectral density m (ξ) subject to∫ ∞
−∞

m(ξ)

1 + ξ2 dξ <∞.

We have used a variation on Hida’s white noise space and
the S-transform to develop Wick-Itô stochastic integral for
non-martingales Gaussian processes with covariance

COV (t , s) =

∫ ∞
−∞

1̂[0,t]1̂[0,s]

∗
m(ξ)dξ,

It extends many works on stochastic calculus for fractional
Brownian motion from the past two decades.
We have formulated and solved a stochastic optimal
control problem in this new setting.
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D. Alpay and A. Kipnis.
Stochastic integration for a wide class of non-martingale
Gaussian processes
In preparation.

Yaozhong Hu and Xun Yu Zhou.
Stochastic control for linear systems driven by fractional
noises.
SIAM Journal on Control and Optimization,
43(6):2245–2277, 2005.

D.Alpay and A. Kipnis Multi-color noise spaces



Appendix For Further Reading

For Further Reading II

C. Bender.
An S-transform approach to integration with respect to a
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Y.Hu and B.Øksendal
Fractional white noise calculus and application to finance.
Infinite Dimentional Analysis, Vol.6, No. 1 pp.1-32, 2003.
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