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Motivation
Fractional Brownian Motion

Stochastic Processes and Colored noises

@ Stochastic stationary noises with a non-white spectrum
arises in application.

@ Consider the stochastic differential equation

dX; = G (X, t) dt + F (X, t) dB(t).

@ If Bis a Brownian motion, the notion of It6 integral can be
used so the differential dB can be viewed as a stochastic
process with a white spectrum.

@ Such notion does not exists in general if we replace B by a
general stationary increment Gaussian process.

@ The aim of this talk is to give meaning to this notation by
extending It&’s integration theory.
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@ The fractional Brownian motion with Hurst parameter
0 < H < 1 is a zero mean Gaussian stochastic process
with covariance function
1
cov(t,s) = 5 (mZH +s)2H 4|t — s|2H) , LSER.

For H # % it is not a semi-martingale.
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Fractional Brownian Motion

@ The fractional Brownian motion with Hurst parameter
0 < H < 1 is a zero mean Gaussian stochastic process
with covariance function

1
cov(t,s) = 5 (mZH +s)2H 1 |t — s|2H) , LSER.

For H # % it is not a semi-martingale.

@ Stochastic calculus for fractional Brownian (fBm) has
attracted much attention in the last two decades, especially
due to apparent application in economics.

@ A Wick-1t6 integral for the fBm was proposed. [Duncan, Hu
and Paskin-Duncan 2000], [Hu and @ksendal 2002].
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Spectral Properties

@ We have the following relation:

1 O — %
5 (119 152 = sP) = [ g yTiog m(e)de,

where - | 7
° 1[0 7 is the indicator function of the mterval [0 tl 7 wes
o f= S e f(u)du ] NV

o m(¢) = M(H)[¢['~2H and M(H):%
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Fractional Brownian Motion

Spectral Properties

@ We have the following relation:

1 O — %
5 (119 152 = sP) = [ g yTiog m(e)de,

where ) | s
° 1[0 7 is the indicator function of the mterval [0 tl N
o f= [ e H(u)u : NS T
o m(g) = ( )|§|1 2H and M(H) = % \/

@ According to the theory of Gelfand-Vilenkin on generalized
stochastic processes, the time derivative of the fBm is a
stationary stochastic distribution with spectral density m(¢).
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Fractional Brownian Motion
Member of a Wide Family

@ It suggests the the fBm is a member of a wide family of
stationary increments Gaussian processes whose
covariance function is of the form

— _— %

COVm(t, s) _/_ 10,q110,57 M(&§)dE (1)

for a function m(¢) satisfies [ 1”12 d¢ < .
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Fractional Brownian Motion
Member of a Wide Family

@ It suggests the the fBm is a member of a wide family of
stationary increments Gaussian processes whose
covariance function is of the form

——%

for a function m(¢) satisfies [ 1’"&; d¢ < oc.

Main Goal of this Talk

Extend the It6 integral for Brownian motion to this family of
non-martingales stationary increments processes.

@ Stochastic integration for this family was first proposed by
[Alpay, Atia and Levanony].
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Definition

@ For a given spectral density function m(¢) such that

oo m(§)
I° co T1e2 dé < oo, we associate an operator

Tm: Lo (R) — Lo (R), Twf(€) = H(€)V/m(E), fela(R).
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f—»—»Tmf
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Stochastic Processes Induced by Operators

Definition

@ For a given spectral density function m(¢) such that

f OOOO 1’12 d¢ < oo, we associate an operator
Tm:La(R) — Ly (R), Tpf(€) = H(€)V/m(E), fe La(R).

or

f—»—»Tmf

@ This operator is in general unbounded.
@ 194 € domTp, foreach t > 0.
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Stochastic Processes Induced by Operators

Definition

@ For a given spectral density function m(¢) such that

oo m(§)
I° co T1e2 dé < oo, we associate an operator

~

Tm: Lo (R) — Lo (R), Twf(€) = H(€)V/m(E), fela(R).
or

f—»—»Tmf

@ This operator is in general unbounded.
@ 194 € domTp, foreach t > 0.
@ The covariance function (1) can now be rewritten as

—

COVin(t, s) =/ o1, M(&)dE = (Tml . Tmlp.1) 1, m)

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Structure of the Talk

ulti-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Structure of the Talk

@ To each operator T, we associate a Gaussian probability
space (22, F, Pm) which will be called the m-noise space.

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Structure of the Talk

@ To each operator T, we associate a Gaussian probability
space (22, F, Pm) which will be called the m-noise space.

@ Stochastic process with covariance function
(Tm10,1, Tm1[07S])L2(R) is naturally defined on the m-noise
space.

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Structure of the Talk

@ To each operator T, we associate a Gaussian probability
space (22, F, Pm) which will be called the m-noise space.

@ Stochastic process with covariance function
(Tm1p0,9> T [07S])L2(R) is naturally defined on the m-noise
space.

@ We use the analogue of the S-transform to define a
Wick-1t6 integral on this space.

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Structure of the Talk

@ To each operator T, we associate a Gaussian probability
space (22, F, Pm) which will be called the m-noise space.

@ Stochastic process with covariance function
(Tm1p0,9> T [07S])L2(R) is naturally defined on the m-noise
space.

@ We use the analogue of the S-transform to define a
Wick-1t6 integral on this space.

@ Application to optimal control theory.
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

The m-Noise Space

Notations

We use an analogue of Hida’s white noise space as our
underlying probability space.
Notations:

@ .7 - Schwartz space of real rapidly decreasing functions.
@ Q is the dual of .7, the space of tempered distributions.
@ B(Q) is the Borel o-algebra.

@ (w,s) = (w,S)q.», se.”andw € Q will denote the bilinear
pairing between . and Q.

[Jorgensen] Ty, as an operator from .7 C Lo(R), endowed with
the Fréchet topology, into Ly(R) is continuous.
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Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Definition of the Probability Space

Bochner-Minlos Theorem

_1 2
@ It follows that Cp(s) = e 2l TmsllL,e) ig g characteristic
functional on ..

By the Bochner-Minlos theorem there is a unique probability
measure P, on 2 such that for all s € .7,

1 ; .
Cm(S) = eXp {_ZHTmSH%Z(R)} = /Q e’<w’s>de(w) =K |:e’<'7s>:|

@ (w, s) is viewed as a random variable on Q.

@ The triplet (2, B(2), Pm) will be called the m-noise space.

@ The case Ty, = id),z) (M = 1) will lead back to Hida’s
white noise space.
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The Process B,

Definition

® (w,s), se.”,is azero mean Gaussian random variable
with variance

E|(,8)2] = I Tmsl,z)

@ The last relation can be extended to any f € dom(Tp,),
such that (w, f), f € dom(Ty,) define a zero mean
Gaussian random variable with variance

E (1] = I Tnf, gy

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

The Process B,

Definition

@ (w,s), s€.”,isazero mean Gaussian random variable
with variance

E|(,8)2] = I Tmsl,z)

@ The last relation can be extended to any f € dom(Tp,),
such that (w, f), f € dom(Ty,) define a zero mean
Gaussian random variable with variance

E |(H2] = I T2,z

@ For t > 0 we may define the stochastic process
Bm: Q x[0,00] — R by

Bm(t) := Bm(w, t) := (w, 110t
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Properties

@ The process {Bn};- is a zero mean Gaussian process
with covariance function
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The Process B,

Properties

@ The process {Bn};- is a zero mean Gaussian process
with covariance function
E [Bm(t)Bm(8)] = (Tm1[0,t]a Tm1[o,s])L2(R)'

° %Bm (in the sense of distribution) has spectral density

m().
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

The Process B,

Properties

@ The process {Bn};- is a zero mean Gaussian process
with covariance function
E [Bm(t)Bm(8)] = (Tm1[0,t]a Tm1[o,s])L2(R)'

° %Bm (in the sense of distribution) has spectral density

m(s).
@ In view of the previous isometry, it is natural to define for
f e dom(Tn),

t
/f(u)dsm(u):<w,1[o,t]f>, t>0.
0
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The Sy Transform

Stochastic Integration with respect to By,

The Process B,

Examples

Example (Standard Brownian Motion)
Take m =1, then T, = id},r) and

(e.9]

E[Bm(t)Bm(S)] - (Tm1[0,t]7 Tm1[oys]) = / 1[0,,]1[07s]*du =tAS.

Example (Fractional Brownian Motion)
Take m(€) = M(H)|¢|'=2H, then

° tRH + |s|?H — |t — |3
E[Bm(t)Bm(s)] :/ 1[071‘]1[0751 m(f)d{z ‘ ’ ’ ‘ 5 ’ ’ .

—00
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The Sy Transform

Stochastic Integration with respect to By,

An S-Transform Approach for Stochastic Integration

Motivation

@ We wish to define a Wick-It6-Skorohod stochastic integral

based on the process {Bm} -
@ Recall that the Itd-Hitsuda integral in the white noise space

is defined by

/ X(t)aB(t / X(t) o L Bu(t)dt,
where

o {X(t)}y>a Is a stochastic process
° %Bm(t)?s the time derivative(in the sense of distributions)
of the Brownian motion.
@ ¢ is the Wick product.
@ We need a Wiener-Itd6 Chaos decomposition of the white

noise space.
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Stochastic Integration with respect to By,

An S-Transform Approach for Stochastic Integration

Motivation

Any X € L, (Q, B, Pn) can be represented as

X = fuHa(w).

Such basis for L, (2, B("), Pm) depends explicitly on m(¢). |

In order to keep our construction as general as possible, we
take an S-transform approach for the Wick-1t6-Skhorhod

integral.
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Definition of the S,,-Transform

@ We reduce to the o-field G generated by {{(w, )} tcgom(T,,)-

Definition
For a random variable X € L, (2,G, Pm) define

(SmX)(s) 2 E [et-9x()| ezl s 5.
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Definition of the S,,-Transform

@ We reduce to the o-field G generated by {{(w, )} tcgom(T,,)-

Definition
For a random variable X € L, (2,G, Pm) define

(SmX)(s) 2 E [et-9x()| ezl s 5.

@ Any X € L, (9,3, Pm) is uniquely determined by (SmX)(s).
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By
The Sy Transform

Stochastic Integration with respect to By,

Definition of the S,,-Transform

@ We reduce to the o-field G generated by {{(w, )} tcgom(T,,)-

Definition
For a random variable X € L, (2,G, Pm) define

(SmX)(s) 2 E [et-9x()| ezl s 5.

@ Any X € L, (9,3, Pm) is uniquely determined by (SmX)(s).

(SmBm(1)) (8) = (TmS, Tm110,0) .,y

is everywhere differentiable with respect to t.

D.Alpay and A. Kipnis Multi-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Outline

© Main Result

@ Stochastic Integration with respect to By,

Kipnis i-color noise spaces



Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Definition of the Stochastic Integral

Definition

A stochastic process X(t) : [0, A] — Lo (22, G, Pm) will be
called Wick-It6 integrable if there exists a random variable
o e L (2,G, Pn) such that

d

A
(5m) () = | (SnX(0) (9) g5 (SmBn(1) (s)e.

In that case we define (A) = fOA X(t)dBm(t).
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

Definition of the Stochastic Integral

Definition

A stochastic process X(t) : [0, A] — Lo (22, G, Pm) will be
called Wick-It6 integrable if there exists a random variable
o e L (2,G, Pn) such that

d

A
(5m) () = | (SnX(0) (9) g5 (SmBn(1) (s)e.

In that case we define (A) = fOA X(t)dBm(t).

@ For any polynomial p € R [X], p(Bm(t)) is integrable.
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@ The Wick product of X, Y € L, (Q2,G, Pm) can be defined by
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The Sy Transform
Stochastic Integration with respect to By,

@ The Wick product of X, Y € L, (Q2,G, Pm) can be defined by

/ X(1)dB(t) / X(t Bm(t)

where the integral on the right is a Pettis mtegral.

@ So
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform
Stochastic Integration with respect to By,

@ The Wick product of X, Y € L, (Q2,G, Pm) can be defined by

/ X(1)dB(t) / X(t Bm(t)

where the integral on the right is a Pettis mtegral.

@ If By, is the Brownian motion (m(¢&) = 1), our definition of
the stochastic integral coincides with the Ité6-Hitsuda
integral [Hida1993].

@ So
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The Sy Transform
Stochastic Integration with respect to By,

@ The Wick product of X, Y € L, (Q2,G, Pm) can be defined by

/ X(1)dB(t) / X(t Bm(t)

where the integral on the right is a Pettis mtegral.

@ If By, is the Brownian motion (m(¢&) = 1), our definition of
the stochastic integral coincides with the Ité6-Hitsuda
integral [Hida1993].

e If By, is the fractoinal Brownian motion (m(¢) = |£|1—2"),
our definition of the stochastic integral reduces to the one
given in [Bender2003] which coincides with the
Wick-1t6-Skorokhod integral defined in [Duncan,Hu 2000]
and [Hu,Jksendal 2003].
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The Sy Transform

Stochastic Integration with respect to By,

[t6’s Formula

We have the following version of It6’s Formula:
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Stochastic Processes Induced by Operators
The m-Noise Space and the Process By
The Sy Transform

Stochastic Integration with respect to By,

Main Result

[t6’s Formula

We have the following version of Ité’s Formula:
o X(t fO dBm <w,1[07t]f>

@ where f € domTp, and t > 0, such that || Tp1jo 412 is
absolutely continuous in t.

o Fe C'2([0,1],R) with S F(X;), 2 F(Xt), 2 2 F(X;) allin
L1 (Q X [0, t])
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Stochastic Processes Induced by Operators
Main Result The m-Noise Space and the Process By

The Sy Transform

Stochastic Integration with respect to By,

[t6’s Formula

We have the following version of Ité’s Formula:
o X(t fO dBm <w,1[07t]f>

@ where f € domTp, and t > 0, such that || Tp1jo 412 is
absolutely continuous in t.

o Fe C'2([0,1],R) with S F(X;), 2 F(Xt), 2 2 F(X;) allin
L1 (Q X [0, t])

@ The following holds in L, (2, G, Pr):

F(t,X;) — F(0,0) /f X(u)) dBu ()

t 2
+ [ GaFexw) )du+2/ Tt ouf? ez Flu X(u)du
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Outline

e Applications
@ Optimal Control
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Formulation of the Optimal Control Problem
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Formulation of the Optimal Control Problem

@ Consider the scalar system subject to

dx; = (Atdt + CtdBm(f)) Xy + Frupdt
Xo € R (deterministic)

where A, Cy, Fy : [0, A] — R are bounded
deterministic functions.

u— Sys —>X¢
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Formulation of the Optimal Control Problem

@ Consider the scalar system subject to

dx; = (Atdt + CtdBm(f)) Xy + Frupdt
Xo € R (deterministic)

where A, Cy, Fy : [0, A] — R are bounded
deterministic functions.

ut—> Sys |—>»X

t

@ Using Ité’s formula, one may verify that

A A ’
XA = Xo €Xp {/0 (At + Fruy) df+/0 CtdBm(t) — EH Tm1[O,A]||2}
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Formulation of the Optimal Control Problem

continue

@ We present a quadratic cost functional

A
J (X0, ) = E [/ (@it + Ru?) ot + Gxi] .
0

where R(.), Q(.) : [0, A] —R, R >0 Q>0Vt>0and
G>0.

Uy

> Sys > Xt
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Formulation of the Optimal Control Problem

continue

@ We present a quadratic cost functional
A
J (X0, ) = E [/ (@it + Ru?) ot + Gxi] .
0

where R(.), Q(.) : [0, A] —R, R >0 Q>0Vt>0and

G>0.
@ We reduce ourselves to control signals of linear feedback
type: u
t
ur = Kz - X;. » Sys :Xt
so the control dynamics reduces to

dx; = [(At + Fth) dt + CtdBm(t)] Xt
Xp € R (deterministic)
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Formulation of the Optimal Control Problem

continue

@ And the cost may be associated directly with the feedback
gain K; : [0,A] — R:

A
J (X0, K)) =E U (Q, + K,ZRI) x2dt + Gxg] . (2
0
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Applications

Formulation of the Optimal Control Problem

continue

@ And the cost may be associated directly with the feedback
gain K; : [0,A] — R:

A
J (X0, K)) =E U (Q, + K,ZRI) x2dt + Gxg] . (2
0

The optimal stochastic control problem:

Minimize the cost functional (2), for each given xg, over the set
of all linear feedback controls K. : [0, A] — R.
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Applications

Formulation of the Optimal Control Problem

continue

@ And the cost may be associated directly with the feedback
gain K; : [0,A] — R:

A
J (X0, K)) =E U (Q, + K,ZRI) x2dt + Gxg] . (2
0

The optimal stochastic control problem:

Minimize the cost functional (2), for each given xg, over the set
of all linear feedback controls K. : [0, A] — R.

@ This control problem was formulated and solved in the
case of fractional Brwonian motion by Hu and Yu Zhou
2005, and appears in [Biagini,Hu,dksendal,Zhang 2008].
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Solution

Riccati Equation

If %11 Tm1 0,4 C()|I? is bounded in (0, A), then the optimal linear
feedback gain K; is given by

Kt = ——5-pr- 3)

where {p;, t € [0, A]} is the unique positive solution of the
Riccati equation

4
P — G 4)

. F2
{ Pe+2p; [Ar+ Gl Tl g ClI2] + O — Ep2 =0
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Solution

Idea of Proof

Proof

Using I1té’s formula with:

Xt = Xo €Xp {fo’ CudB(U) + [ (Ay+ FuKy) du — 3| T (1,C) \\2}, leads
to

A
PaXa = PoXa + 2/ x? CyprdBm(t)
0
A
+/ [,Ot +2p; (At + FiKt) +2pr— ||Tm1t||2} dt.
0

Taking the expectation of both sides and substituting the Riccati
equation (4) yields
2 A B 2
J(0, K () = pox§ +E J3* (Ke+ &py) o,
of which the result follows. O

¢
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Simulation
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Simulation

@ We use the following specification
A =SNR, x=5F=03
in the state-space model which results in

{dxt = (A+ 10.3K;) x¢dt + x;CdB(t), (SNR _ Ai)

X0:5.
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Applications Optimal Control

Simulation

@ We use the following specification
A =SNR, x=5F=03
in the state-space model which results in

{dxt = (A+ 10.3K;) x¢dt + x;CdB(t), (SNR _ Ai)

Xp = 5.

@ We take By, that corresponds to the spectral density
m(&) = al¢|'"? + psinc® (A(¢ - 2h)),

with A = 20, fy = 2, H = 0.6, o = 0.05 and /3 = 80.
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Simulation
m(€) = al€|>® + Bsinc? (A(€ — 2xh))

We compare the cost function
A
Jooke,) = E [/ (1 +2K;) xPdt +2x4 |,
K. 0

for the two controllers Kop:(-) and Kpnz(-) and their
corresponding state-space trajectories. Where:
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Applications Optimal Control

Simulation
m(€) = al€|>® + Bsinc? (A(€ — 2xh))

We compare the cost function
A
Joory) = E [/ (1 +2K) xZdt + 252 | |
for the two controllers Kop:(-) and Kpnz(-) and their

corresponding state-space trajectories. Where:

@ Kopi(+) is the optimal controller from Theorem 7 for a
system perturbated by dB,.
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Applications Optimal Control

Simulation
m(€) = al€|>® + Bsinc? (A(€ — 2xh))

We compare the cost function
A
Jooke,) = E [/ (1 +2K;) xPdt +2x4 |,
K. 0

for the two controllers Kop:(-) and Kpnz(-) and their
corresponding state-space trajectories. Where:
@ Kopi(+) is the optimal controller from Theorem 7 for a
system perturbated by dB,.
@ Kpai(+) is the optimal controller designed for a system
perturbated by the time derivative of a Brownian motion, so
it assumes m(¢) = 1.

D.Alpay and A. Kipnis Multi-color noise spaces



Simulation
m(€) = al€|>® + Bsinc? (A(€ — 2xh))

Cost

Optimal Control

Applications

Average ratio j—g% for different SNR values (10,000 samples)
P

JH=0.6 INai
JOpt l-/Opt

SNR(dB]
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Summary

Summary

@ We started with a spectral density m (§) subject to

> m(¢)
/oo1+§2d§<oo.
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Summary

Summary

@ We started with a spectral density m (§) subject to

> m(¢)
/oo1+§2d§<oo.

@ We have used a variation on Hida’s white noise space and
the S-transform to develop Wick-It6 stochastic integral for
non-martingales Gaussian processes with covariance

—

cov(t.s) = [ Toqipg m)de,
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Summary

Summary

@ We started with a spectral density m (§) subject to

> m(¢)
/oo1+§2d§<oo.

@ We have used a variation on Hida’s white noise space and
the S-transform to develop Wick-It6 stochastic integral for
non-martingales Gaussian processes with covariance

—

cov(t.s) = [ Toqipg m)de,

@ It extends many works on stochastic calculus for fractional
Brownian motion from the past two decades.
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Summary

Summary

@ We started with a spectral density m (§) subject to

> m(¢)
/oo1+§2d§<oo.

@ We have used a variation on Hida’s white noise space and
the S-transform to develop Wick-It6 stochastic integral for
non-martingales Gaussian processes with covariance

—

cov(t.s) = [ Toqipg m)de,

@ It extends many works on stochastic calculus for fractional
Brownian motion from the past two decades.

@ We have formulated and solved a stochastic optimal
control problem in this new setting.
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For Further Reading |

[H D. Alpay and A. Kipnis.
Stochastic integration for a wide class of non-martingale
Gaussian processes
In preparation.

[§ Yaozhong Hu and Xun Yu Zhou.
Stochastic control for linear systems driven by fractional
noises.
SIAM Journal on Control and Optimization,
43(6):2245-2277, 2005.
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For Further Reading I

[§ C.Bender.
An S-transform approach to integration with respect to a
fractional Brownian motion.
Bernoulli, 9(6):955-983, 20083.

[H Y.Hu and B.@ksendal
Fractional white noise calculus and application to finance.
Infinite Dimentional Analysis, Vol.6, No. 1 pp.1-32, 2003.
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