Operator Algebras Associated with Unitary Commutation Relations

Baruch Solel (jointly with S.C. Power)

Technion - Israel Institute of Technology
Function theory and operator theory: Infinite dimensional and free settings
BGU June 2011

Background: Non commutative disc algebras

Write E for \mathbb{C}^{n} and consider the (full) Fock space of E :

$$
\mathcal{F}(E)=\mathbb{C} \oplus E \oplus E^{\otimes 2} \oplus E^{\otimes 3} \oplus \cdots
$$

For $e \in E$, write L_{e} for the operator on $\mathcal{F}(E)$ defined by

$$
L_{e}\left(\xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{k}\right)=e \otimes \xi_{1} \otimes \xi_{2} \otimes \cdots \otimes \xi_{k}
$$

and $L_{e} c=c e$ for $c \in \mathbb{C}$.
Write \mathcal{A}_{n} for the norm-closed algebra generated by all these operators. Equivalently, it is generated by the n shifts $L_{e_{1}}, L_{e_{2}}, \ldots, L_{e_{n}}$ where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for E. This is Popescu's non commutative disc algebra.

The representations of \mathcal{A}_{n}

Note that $\left(L_{e_{1}}, \ldots, L_{e_{n}}\right)$ is a row contraction (a contraction from $\mathcal{F}(E)^{(n)}$ to $\mathcal{F}(E)$; equivalently $\left.\sum L_{e_{i}} L_{e_{i}}^{*} \leq I\right)$. Thus \mathcal{A}_{n} is

generated by a row contraction.

Given a completely contractive representation π of \mathcal{A}_{n} on H, if we write $T_{i}=\pi\left(L_{e_{i}}\right)$ then $\left(T_{1}, \ldots, T_{n}\right)$ is a row contraction.
Conversely, given a row contraction in $B(H)$, there is a completely contractive representation π of \mathcal{A}_{n} such that $T_{i}=\pi\left(L_{e_{i}}\right)$ for all i. These there facts above mean: \mathcal{A}_{n} is the (unique) operator algebra universal for row contractions.

Classification

Theorem: \mathcal{A}_{n} and \mathcal{A}_{m} are (isometrically) isomorphic if and only if $m=n$.
Reason: The character space (one-dimensional representations) of \mathcal{A}_{n} is $\overline{\mathbb{B}}_{n}$. If $\Phi: \mathcal{A}_{n} \rightarrow \mathcal{A}_{m}$ is an isomorphism $\alpha \mapsto \alpha \circ \Phi$ induces an homeomorphism from $\overline{\mathbb{B}}_{m}$ onto $\overline{\mathbb{B}}_{n}$. Thus $m=n$.

The Current Setup

A product system (of finite dimensional Hilbert spaces) over a semigroup S is a collection $\{H(s): s \in S\}$ of f.d. Hilbert spaces together with isomorphisms $\left\{U_{s, t}: H(s) \otimes H(t) \rightarrow H(s+t)\right\}$ and these isomorphisms behave "associatively".
If $S=\mathbb{N}$ and we write E for $H(1)$, we get $H(m)=E^{\otimes m}$
Now: $S=\mathbb{N}^{2}$ and we write $H(1,0)=E$ and $H(0,1)=F$. Then $H(1,1)=U_{(0,1),(1,0)}(E \otimes F)=U_{(1,0),(0,1)}(F \otimes E)$ and $U:=U_{(1,0),(0,1)}^{*} U_{(0,1),(1,0)}$ is an isomorphism of $E \otimes F$ and $F \otimes E$.
It is not hard to check that, from U we can reconstruct the product system (with $H(k, I)=E^{\otimes k} \otimes F^{\otimes l}$.)
Fixing the basis $\left\{e_{i}\right\}$ for E and $\left\{f_{j}\right\}$ for F, U is represented by an $n m \times n m$ unitary matrix u. We write

$$
e_{i} \otimes f_{j}=\sum u_{(i, j),(k, l)} f_{l} \otimes e_{k}
$$

The product system is defined by (n, m, u).

Write

$$
\mathcal{F}(n, m, u)=\sum_{k, l} H(k, l)
$$

or, concretely,

$$
\mathcal{F}(n, m, u)=\sum_{k, l} E^{\otimes k} \otimes F^{\otimes l}
$$

On this Fock space define "shifts":
Rightwards : $L_{e_{i}} \eta=e_{i} \otimes \eta, 1 \leq i \leq n$.
Upwards: $\quad L_{f_{j}} \eta=f_{j} \otimes \eta, 1 \leq j \leq m$.
We get

$$
\begin{equation*}
L_{e_{i}} L_{f_{j}}=\sum_{k, l} u_{(i, j),(k, l)} L_{f_{l}} L_{e_{k}} . \tag{1}
\end{equation*}
$$

The unital semigroup generated by $\left\{I, L_{e}, L_{f}: e \in E, f \in F\right\}$ will be denoted \mathbb{F}_{u}^{+}and the algebra it generates denoted $\mathbb{C}\left[\mathbb{F}_{u}^{+}\right]$. The norm closure of $\mathbb{C}\left[\mathbb{F}_{u}^{+}\right]$will be written \mathcal{A}_{u} and its closure in the weak* operator topology will be written \mathcal{L}_{u}.

The algebras

Remark: If u is a permutation matrix, the algebra \mathcal{A}_{u} is the (non selfadjoint) algebra associated with a finite graph of rank 2 and a single vertex.

Representations

Every c.c. representation π of \mathcal{A}_{u} gives rise to two row contractions $\tilde{T}=\left(T_{1}, \ldots, T_{n}\right)$ and $\tilde{S}=\left(S_{1}, \ldots, S_{n}\right)$ $\left(T_{i}=\pi\left(L_{e_{i}}\right), S_{j}=\pi\left(L_{f_{j}}\right)\right)$ satisfying

$$
T_{i} S_{j}=\sum_{k, l} u_{(i, j),(k, l)} S_{l} T_{k} .
$$

But this is not sufficient. (Davidson et al.).
Define, for two u-commuting row contractions \tilde{T}, \tilde{S} and $0<s<1$,

$$
\Delta_{s}(T, S)=I-s^{2}\left(\tilde{T} \tilde{T}^{*}+\tilde{S} \tilde{S}^{*}\right)+s^{4} \tilde{T}\left(I_{\mathbb{C}^{n}} \otimes \tilde{S} \tilde{S}^{*}\right) \tilde{T}^{*}
$$

(viewing \tilde{T} and \tilde{S} as maps from $\mathbb{C}^{n} \otimes H$ to H).

Theorem

(Popescu, Skalski) Let \tilde{T}, \tilde{S} be two u-commuting row contractions. If there is some $\rho \in(0,1)$ such that for all $s \in(\rho, 1)$, $\Delta_{s}(T, S) \geq 0$ then there is a (unique) c.c. representation π of \mathcal{A}_{u} such that $\pi\left(L_{e_{i}}\right)=T_{i}$ and $\pi\left(L_{f_{j}}\right)=S_{j}$. In fact, \mathcal{A}_{u} is "universal" for such pairs of row contractions (i.e.: It is generated by such a pair and every such pair defines a c.c. representation).

Corollary: The character space of \mathcal{A}_{u} can be identified with

$$
\Omega_{u}:=\left\{(z, w) \in \overline{\mathbb{B}}_{n} \times \overline{\mathbb{B}}_{m}: z_{i} w_{j}=\sum_{k, l} u_{(i, j),(k, l)} z_{l} w_{k}\right\}
$$

$\left(\Delta_{s}(z, w)=I-s^{2}\left(\|z\|^{2}+\|w\|^{2}\right)+s^{4}\|z\|^{2}\|w\|^{2}=\right.$ $\left(1-s^{2}\|z\|^{2}\right)\left(1-s^{2}\|w\|^{2}\right)$.)
Also: The character space of \mathcal{L}_{u} can be identified with

$$
\left\{(z, w) \in \mathbb{B}_{n} \times \mathbb{B}_{m}: z_{i} w_{j}=\sum_{k, l} u_{(i, j),(k, l)} z_{l} w_{k}\right\} .
$$

Classification

Notation:

$$
V_{u}:=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m}: z_{i} w_{j}=\sum_{k, l} u_{(i, j),(k, l)} z_{l} w_{k}\right\}
$$

So that $\Omega_{u}=V_{u} \cap \overline{\mathbb{B}}_{n} \times \overline{\mathbb{B}}_{m}$.
The classification problem :
Let u be an $n m \times n m$ unitary matrix and v be an $n^{\prime} m^{\prime} \times n^{\prime} m^{\prime}$ unitary matrix. They give rise to \mathcal{A}_{u} and \mathcal{A}_{v}.

The Aim: When are \mathcal{A}_{u} and \mathcal{A}_{v} isomorphic and what the isomorphisms $\Phi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$ look like?

The homeomorphism induced on the character space Given an isomorphism Ψ of \mathcal{A}_{u} onto \mathcal{A}_{v}, it defines a map from the character space of \mathcal{A}_{u} to the character space of \mathcal{A}_{v} (by $\phi \mapsto \phi \circ \Psi^{-1}$) and we get a map $\theta_{\Psi}: \Omega_{u} \rightarrow \Omega_{v}$. Clearly, θ_{Ψ} is a homeomorphism and, since $\Omega_{u} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$ is the interior of Ω_{u}, θ_{ψ} maps $\Omega_{u} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$ onto $\Omega_{v} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$.
If Ψ is an isomorphism of \mathcal{L}_{u} into \mathcal{L}_{v} which is a homeomorphism with respect to the w^{*}-topologies, θ_{Ψ} is a homeomorphism of $\Omega_{u} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$ onto $\Omega_{u} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$.

An important role will be played by the core.
The core
For every (i, j), write $u_{(i, j)}$ for the $n \times m$ matrix whose k, l-entry is $u_{(i, j),(k, l)}$. Thus, the (i, j) row of u provides the n rows of $u_{(i, j)}$. Also write $E_{i, j}$ for the $n \times m$ matrix whose i, j-entry is 1 and all other entries are 0 and $C_{(i, j)}$ for the matrix $u_{(i, j)}-E_{i, j}$.

Lemma

With $C_{(i, j)}$ defined as above, we have

$$
V_{u}=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{m}: \forall i, j, \quad\left\langle C_{(i, j)} w, \bar{z}\right\rangle=0\right\}
$$

Definition

We define the core of Ω_{u} to be the set

$$
\Omega_{u}^{0}:=\left\{(z, w) \in \overline{\mathbb{B}}_{n} \times \overline{\mathbb{B}}_{m}: \forall i, j, \quad C_{(i, j)} w=0, C_{(i, j)}^{t} z=0\right\} .
$$

Characterization of the core :

Theorem

For $(z, w) \in \mathbb{B}_{n} \times \mathbb{B}_{m}$ the following conditions are equivalent.
(1) $(z, w) \in \Omega_{u}^{0}$.
(2) There exists a completely isometric automorphism $\Theta_{z, w}$ of \mathcal{L}_{u} that is a homeomorphism with respect to the w^{*}-topologies and restricts to an automorphism of \mathcal{A}_{u}, such that $\theta_{\Theta_{z, w}}(0,0)=(z, w)$.
(3) There exists an algebraic automorphism Ψ of \mathcal{A}_{u} such that $\theta_{\psi}(0,0)=(z, w)$.

The automorphism $\Theta_{z, w}$ can be written explicitly using
Voiculescu's analysis of the automorphisms of \mathcal{E}_{n}.

About the proof of (3) \Rightarrow (1)

It uses:

Lemma

A point $(z, w) \in \Omega_{u}$ lies in the core Ω_{u}^{0} if and only if every $(\lambda, \mu) \in \mathbb{C}^{n} \times \mathbb{C}^{m}$ defines a homomorphism $\rho: \mathbb{C}\left[\mathbb{F}_{u}^{+}\right] \rightarrow T_{2}$ such that

$$
\rho\left(L_{e_{i}}\right)=\left(\begin{array}{cc}
z_{i} & \lambda_{i} \\
0 & z_{i}
\end{array}\right)
$$

and

$$
\rho\left(L_{f_{j}}\right)=\left(\begin{array}{cc}
w_{j} & \mu_{j} \\
0 & w_{j}
\end{array}\right)
$$

for all i, j.
Write $\rho_{z, w, \lambda, \mu}$ for it.

Given Ψ and (z, w) as in (3), for every $(\lambda, \mu) \in \mathbb{C}^{n} \times \mathbb{C}^{m}$, $\rho_{0,0, \lambda, \mu} \circ \Psi^{-1}$ is a homomorphism on $\mathbb{C}\left[\mathbb{F}_{\mu}^{+}\right]$and, thus, it is of the form $\rho_{z, w, \lambda^{\prime}, \mu^{\prime}}$ for some (unique) $\left(\lambda^{\prime}, \mu^{\prime}\right)=\psi(\lambda, \mu)$.

If (z, w) is not in Ω_{u}^{0}, then the set of all (λ, μ) for which there is $\rho_{z, w, \lambda, \mu}$ is a subspace of $\mathbb{C}^{n} \times \mathbb{C}^{m}$ of dimension strictly smaller than $n+m$ and, as is shown above, it contains the continuous image (under the injective map ψ) of $\mathbb{C}^{n} \times \mathbb{C}^{m}$. This is impossible.

About the proof of (1) \Rightarrow (2)
We need to construct $\Theta_{z, w}$ s.t. $\theta_{\Theta_{z, w}}(0,0)=(z, w)$; that is

$$
\alpha_{(0,0)}\left(\Theta_{z, w}^{-1}(X)\right)=\alpha_{(z, w)}(X)
$$

It follows from:
Proposition Suppose $(z, w) \in \Omega_{u}^{0} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$. Then there is a automorphism $\tilde{\Theta}_{z}$ of \mathcal{A}_{u} that is unitarily implemented and such that, for every $X \in \mathcal{A}_{u}$,

$$
\alpha_{(0, w)}\left(\tilde{\Theta}_{z}^{-1}(X)\right)=\alpha_{(z, w)}(X)
$$

where $\alpha_{(z, w)}$ is the character associated with (z, w).
To construct $\tilde{\Theta}_{z}$, we first use Voiculescu's analysis.

Following Voiculescu, we have, associated with every $z \in \mathbb{B}_{n}$, an automorphism, denoted Θ_{z} of the Cuntz-Toeplitz algebra \mathcal{E}_{n}. It is defined by

$$
\begin{equation*}
\Theta_{z}\left(L_{\zeta}\right)=\left(x_{0} I-L_{\eta}\right)^{-1}\left(L_{x_{1} \zeta}-\langle\zeta, \eta\rangle I\right) \tag{2}
\end{equation*}
$$

where $L_{\zeta}=\sum \zeta_{i} L_{i}$ (where $\zeta \in \mathbb{C}^{n}$ and $\left\{L_{i}\right\}$ are the generators of \mathcal{E}_{n}) and where X_{1}, x_{0} and η are associated with z as follows:
(i) $x_{0}=\left(1-\|z\|^{2}\right)^{-1 / 2}$,
(ii) $\eta=x_{0} \bar{z}$, and
(iii) $X_{1}=\left(I_{\mathbb{C}^{n}}+\eta \eta^{*}\right)^{1 / 2}$.

In fact, this automorphism is unitarily implemented.

Here, we also have

Lemma

Suppose $(z, w) \in \Omega_{u}^{0} \cap\left(\mathbb{B}_{n} \times \mathbb{B}_{m}\right)$. Let $\Theta:=\Theta_{z}$. Then, for every $1 \leq i \leq n$ and $1 \leq j \leq m$,

$$
\begin{equation*}
\Theta\left(L_{e_{i}}\right) L_{f_{j}}=\sum_{k, l} u_{(i, j),(k, l)} L_{f_{l}} \Theta\left(L_{e_{k}}\right) . \tag{3}
\end{equation*}
$$

Let U be the unitary operator implementing Θ. We can view $\mathcal{F}(n, m, u)$ as the sum

$$
\mathcal{F}(n, m, u)=\sum_{k} F^{\otimes k} \otimes \mathcal{F}(E)
$$

where $\mathcal{F}(E)=\mathbb{C} \oplus E \oplus(E \otimes E) \oplus \cdots$. We now let V be the unitary operator whose restriction to $F^{\otimes k} \otimes \mathcal{F}(E)$ is $I_{k} \otimes U$ (where I_{k} is the identity operator on $F^{\otimes k}$). It is easy to check that, for every f_{j},

$$
V L_{f_{j}} V^{*}=L_{f_{j}}
$$

Now, fix i. We can show, by induction, that, for every k and every $\xi \in F^{\otimes k} \otimes \mathcal{F}(E)$,

$$
\begin{equation*}
\left(I_{k} \otimes U\right) L_{e_{i}} \xi=\Theta\left(L_{e_{i}}\right)\left(I_{k} \otimes U\right) \xi \tag{4}
\end{equation*}
$$

To prove it, we use the lemma above.
It now follows that the map $\tilde{\Theta}_{z}: X \rightarrow V X V^{*}$ defines a unitary endomorphism of \mathcal{A}_{u}. This automorphism satisfies the conditions of the previous proposition.

Definition

(i) An isomorphism $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$ is graded if it maps $\operatorname{span}\left\{L_{e_{i}}, L_{f_{j}}\right\}$ into itself.
(ii) An isomorphism $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$ is said to be bigraded isomorphism if there are unitary matrices $A(n \times n)$ and B $(m \times m)$ such that

$$
\Psi\left(L_{e_{i}}\right)=\sum_{j} a_{i, j} L_{e_{j}}, \quad \Psi\left(L_{f_{k}}\right)=\sum_{l} b_{k, l} L_{f_{l}}
$$

(iii) If $m=n$ and Ψ is a graded isomorphism such that

$$
\Psi\left(L_{e_{i}}\right)=\sum_{j} a_{i, j} L_{f_{j}}, \quad \Psi\left(L_{f_{k}}\right)=\sum_{l} b_{k, l} L_{e_{l}}
$$

for $n \times n$ unitary matrices A and B then we say that ψ is a graded generator exchange isomorphism.

Notation:

We shall write $\Psi_{A, B}$ for the bigraded isomorphism (as in (ii)) and $\tilde{\Psi}_{A, B}$ for the graded generator exchange isomorphism.

* Both $\Psi_{A, B}$ and $\tilde{\Psi}_{A, B}$ are unitarily implemented.

Lemma

(i) If $\Psi_{A, B}$ is a bigraded isomorphism then

$$
\begin{equation*}
(A \otimes B) v=u(A \otimes B) \tag{5}
\end{equation*}
$$

where $A \otimes B$ is the $m n \times m n$ matrix whose $(i, j),(k, l)$ entry is $a_{i, k} b_{j, l}$.
(ii) If $m=n$ and $\tilde{\Psi}_{A, B}$ is a graded generator exchange isomorphism then

$$
\begin{equation*}
(A \otimes B) \tilde{v}=u(A \otimes B) \tag{6}
\end{equation*}
$$

where $\tilde{v}_{(i, j),(k, l)}=\bar{v}_{(l, k),(j, i)}$.

Given an isomorphism $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$ (where v may be $n^{\prime} m^{\prime} \times n^{\prime} m^{\prime}$) we get a homeomorphism $\theta_{\psi}: \Omega_{u} \rightarrow \Omega_{v}$ and $\theta_{\Psi}(0,0) \in \Omega_{v}^{0}$.

Theorem

Let $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$ be an (algebraic) isomorphism. Then

$$
\theta_{\Psi}\left(\Omega_{u}^{0}\right)=\Omega_{v}^{0} .
$$

Theorem

Let ψ be an algebraic isomorphism and let θ_{ψ} be the associated map on Ω_{u}. Suppose $\theta_{\Psi}(0,0)=(0,0)$. Then we have the following.
(1) $\{n, m\}=\left\{n^{\prime}, m^{\prime}\right\}$ and we shall assume that $n=n^{\prime}$ and $m=m^{\prime}$ (interchanging E and F and changing u to u^{*} if necessary).
(2) There are unitary matrices $U(n \times n)$ and $V(m \times m)$ such that $\theta_{\Psi}(z, w)=(U z, V w)$ for $(z, w) \in \Omega_{u}$. (If $n=m$ it is also possible that $\theta_{\Psi}(z, w)=(V w, U z)$.)
(3) If Ψ is an isometric isomorphism, then Ψ is a bigraded isomorphism. (Or, if $m=n$, it may be a graded exchange isomorphism).

The proof of (1) and (2) uses arguments similar to the ones used by S. Power in a previous work (based essentially on applying Schwarz's lemma for holomorphic maps on the unit disc).

For (3) one shows first that $\Psi\left(L_{e_{i}}\right)=L_{U e_{i}}+X$ where X is a sum of higher order terms. Then we apply it to ξ_{0} (a wandering vector) to get

$$
1 \geq\left\|\Psi^{-1}\left(L_{e_{i}}\right) \xi_{0}\right\|^{2}=\left\|L_{U e_{i}} \xi_{0}\right\|^{2}+\left\|X \xi_{0}\right\|^{2}=1+\left\|X \xi_{0}\right\|^{2}
$$

Thus $X \xi_{0}=0$ implying $X=0$.

Since every graded isomorphism Ψ satisfies $\theta_{\Psi}(0,0)=(0,0)$, we conclude the following.

Corollary

Every graded isometric isomorphism is either bigraded or, if $m=n$, it may be a graded generator exchange isomorphism.

Theorem

The following statements are equivalent for unitary matrices u, v in $M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$.
(i) There is an isometric isomorphism $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$.
(ii) There is a graded isometric isomorphism from $\Psi: \mathcal{A}_{u} \rightarrow \mathcal{A}_{v}$.
(iii) The matrices u, v are product unitary equivalent or (in case $n=m$) the matrices u, \tilde{v} are product unitary equivalent.

Proof.

Given ψ in (i), let $(z, w)=\theta_{\psi}(0,0)$. Then $(z, w) \in \Omega_{v}^{0}$. By the characterization of the core, there is a completely isometric automorphism Φ of \mathcal{A}_{v} such that $\theta_{\Phi}(0,0)=(z, w)$ and, therefore, $\theta_{\Phi^{-1} \circ \Psi}(0,0)=(0,0)$. By the proposition above, $\Phi^{-1} \circ \Psi$ is a graded isometric isomorphism and (ii) holds.
It follows from previous results that (ii) implies (iii) and that (iii) implies (i).

Remark:

(i) Whenever \mathcal{A}_{u} and \mathcal{A}_{v} are isomorphic, we have $\{n, m\}=\left\{n^{\prime}, m^{\prime}\right\}$.
(ii) If \mathcal{A}_{u} and \mathcal{A}_{v} are isometrically isomorphic, then so are \mathcal{L}_{u} and \mathcal{L}_{v}. In fact, we can then find an isometric isomorphism of \mathcal{A}_{u} and \mathcal{A}_{v} that extends to an isometric isomorphism of \mathcal{L}_{u} and \mathcal{L}_{v} that is also a w^{*}-homeomorphism.

Theorem

For $n \neq m$ the isometric automorphisms of \mathcal{A}_{u} are of the form $\Psi_{A, B} \Theta_{z, w}$ where $(z, w) \in \Omega_{u}^{0}$ and $(A \otimes B) u=u(A \otimes B)$. In case $n=m$ the isometric automorphisms include, in addition, those of the form $\tilde{\Psi}_{A, B} \Theta_{z, w}$ where $(A \otimes B) \tilde{u}=u(A \otimes B)$.

In order to work out examples, first note the following.

Lemma

(i) If the core contains a vector (z, w) with $z \neq 0$, then $\operatorname{dim}(\operatorname{Ker}(u-I)) \geq m$.
(ii) If the core contains a vector (z, w) with $w \neq 0$ then $\operatorname{dim}(\operatorname{Ker}(u-I)) \geq n$.
(iii) If the core contains a vector (z, w) with $z \neq 0$ and $w \neq 0$, then $\operatorname{dim}(\operatorname{Ker}(u-I)) \geq m+n-1$.

Examples

Example: $n=m=2$
Consider the different possibilities for $d=\operatorname{dim}(\operatorname{Ker}(u-I))$.
Case I: $d=0$
For every $(z, w) \in \overline{\mathbb{B}}_{2} \times \overline{\mathbb{B}}_{2},(z, w) \in \Omega_{u}$ if and only if the vector $\left(z_{1} w_{1}, z_{1} w_{2}, z_{2} w_{1}, z_{2} w_{2}\right)^{t}$ lies in $\operatorname{Ker}(u-I)$. Thus, in case I, Ω_{u} is the minimal possible and is equal to

$$
\Omega_{\min }:=\left(\overline{\mathbb{B}}_{2} \times\{0\}\right) \cup\left(\{0\} \times \overline{\mathbb{B}}_{2}\right)
$$

It follows from the lemma that, in this case,

$$
\Omega_{u}^{0}=\{(0,0)\}
$$

It then follows that every isometric automorphism of \mathcal{A}_{u} is graded and the isometric automorphisms of \mathcal{A}_{u} are given by pairs (A, B) of unitary matrices such that $A \otimes B$ either commutes with u or intertwines u and \tilde{u}.

Case II: $d=1$
When $d=1$ it still follows from the lemma above that

$$
\Omega_{u}^{0}=\{(0,0)\}
$$

but now it is possible for Ω_{u} to be larger than $\Omega_{\text {min }}$. In fact, if the non zero vector $(a, b, c, d)^{t}$ spanning $\operatorname{Ker}(u-I)$ satisfies $a d \neq b c$ then $\Omega_{u}=\Omega_{\text {min }}$ but if $a d=b c$ then the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is of rank one and can be written as $\left(z_{1}, z_{2}\right)^{t}\left(w_{1}, w_{2}\right)$. Thus, $(z, w) \in V_{u}$ and Ω_{u} contains some (z, w) with non zero z and w. Since $\Omega_{u}^{0}=\{(0,0)\}$, it is still true that isometric isomorphisms and automorphisms of these algebras are all graded.

Case III: $d=2$
When $d=2$ it is possible that Ω_{u}^{0} will contain non zero vectors
(z, w) but, as the lemma shows, it does not contain a vector with both $z \neq 0$ and $w \neq 0$. All other possibilities may occur. For example write u_{1}, u_{2} and u_{3} for the three diagonal matrices:

$$
\begin{aligned}
& u_{1}=\operatorname{diag}(1,-1,-1,1) \\
& u_{2}=\operatorname{diag}(1,-1,1,-1)
\end{aligned}
$$

and

$$
u_{3}=\operatorname{diag}(1,1,-1,-1)
$$

Using the definition of the core, we easily see that

$$
\begin{gathered}
\Omega_{u_{1}}^{0}=\{(0,0)\} \\
\Omega_{u_{2}}^{0}=\left\{\left(0,0, w_{1}, 0\right):\left|w_{1}\right| \leq 1\right\}
\end{gathered}
$$

and

$$
\Omega_{u_{3}}^{0}=\left\{\left(z_{1}, 0,0,0\right):\left|z_{1}\right| \leq 1\right\} .
$$

Thus, the only isometric automorphisms of $\mathcal{A}_{u_{1}}$ are graded, the isometric automorphisms of $\mathcal{A}_{\mu_{2}}$ are formed by composing graded automorphisms with automorphisms of the type $\Theta_{z, w}$ (with $z=(0,0)$ and $\left.w=\left(w_{1}, 0\right)\right)$. Similarly, for the automorphisms of $\mathcal{A}_{\mu_{3}}$.

Case IV: $d=3$

Corollary

Every matrix u with $\operatorname{dim}(\operatorname{Ker}(u-I))=3$ is product unitary equivalent to a unique matrix of the form $u(a, \lambda)$

$$
u(a, \lambda)=\left(\begin{array}{cccc}
(\lambda-1) a^{2}+1 & 0 & 0 & (\lambda-1) a\left(1-a^{2}\right)^{1 / 2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
(\lambda-1) a\left(1-a^{2}\right)^{1 / 2} & 0 & 0 & \lambda+(1-\lambda) a^{2}
\end{array}\right)
$$

(with $0 \leq a \leq 1 / \sqrt{2},|\lambda|=1$ and $\lambda \neq 1$).

Theorem

If $a=0,|\lambda|=1, \lambda \neq 1$, then $\Omega_{u(0, \lambda)}$ is the union

$$
\begin{aligned}
& \left\{\left(z_{1}, z_{2}, w_{1}, 0\right): z \in \mathbb{B}_{2} ;\left|w_{1}\right| \leq 1\right\} \cup \\
& \left\{\left(z_{1}, 0, w_{1}, w_{2}\right): w \in \mathbb{B}_{2} ;\left|z_{1}\right| \leq 1\right\}
\end{aligned}
$$

and

$$
\Omega_{u(0, \lambda)}^{0}=\left\{\left(z_{1}, 0, w_{1}, 0\right):\left|z_{1}\right| \leq 1 ;\left|w_{1}\right| \leq 1\right\}
$$

If $a \neq 0$ then

$$
\Omega_{u(a, \lambda)}=\left\{(z, w) \in \overline{\mathbb{B}}_{2} \times \overline{\mathbb{B}}_{2}: a z_{1} w_{1}+\left(1-a^{2}\right)^{1 / 2} z_{2} w_{2}=0\right\}
$$

and

$$
\Omega_{u(a, \lambda)}^{0}=\{(0,0)\} .
$$

Theorem

Let $0 \leq a, b \leq 1 / \sqrt{2}, \quad|\lambda|=|\mu|=1, \quad \lambda, \mu \neq 1$. Then
(1) $\mathcal{A}_{u(a, \lambda)}$ and $\mathcal{A}_{u(b, \mu)}$ are isometrically isomorphic if and only if $a=b$ and λ equals either μ or $\bar{\mu}$.
(2) When $a \neq 0$ the isometric automorphisms of $\mathcal{A}_{\mu(0, \lambda)}$ are all bigraded
(3) If $a=0$ then there are isometric isomorphisms that are not graded

Case V: $d=4$
This is the case where $u=I$. We have $\Omega_{u}=\Omega_{u}^{0}=\overline{\mathbb{B}}_{n} \times \overline{\mathbb{B}}_{m}$ and the isometric automorphisms are obtained by composing graded automorphisms and the automorphisms $\Theta_{z, w}$.

Subproduct systems over \mathbb{N}^{2} (M. Gurevich)

Subproduct Systems $\left\{X(n, m)=E^{\otimes n} \otimes F^{\otimes m}\right\}$ is a product system $\left(X(s+t) \cong X(s) \otimes X(t)\right.$ for $\left.s, t \in \mathbb{N}^{2}\right)$. Consider $\left\{Y(n, m) \subseteq E^{\otimes n} \otimes F^{\otimes m}\right\}$. It is a subpruduct system if we assume only $Y(s+t) \subseteq Y(s) \otimes Y(t)$. As we shall see, this introduces new polynomial relations.
The algebra \mathcal{A}_{Y} is now the norm-closed algebra generated by $S_{e_{i}}:=P L_{e_{i}} P$ where P is the projection of $\mathcal{F}(n, m, u)$ onto $\mathcal{F}(Y):=\sum Y(k, l)$. In fact

$$
\mathcal{A}_{Y}=P \mathcal{A}_{u} P
$$

Question: (open) Is \mathcal{A}_{Y} a quotient (as an operator algebra) of \mathcal{A}_{u} ?

Sample results:

To describe the character space of \mathcal{A}_{Y}, define

$$
p_{i, j}(z, w)=z_{i} w_{j}-\sum_{k, l} u_{(i, j),(k, l)} w_{l} z_{k}
$$

Also, for $x \in E^{\otimes i} \otimes F^{\otimes j} \ominus Y(i, j)$, we can define an associated polynomial q^{x}. If $x=e_{1} \otimes f_{3}-e_{2} \otimes f_{1}, q^{x}(z, w)=z_{1} w_{3}-z_{2} w_{1}$ such that, if J is the ideal generated by all these polynomials,

Theorem

The character space of \mathcal{A}_{Y} can be identified with

$$
\left\{(z, w) \in \overline{\mathbb{B}_{n}} \times \overline{\mathbb{B}_{m}}: p(z, w)=0, \forall p \in J\right\} .
$$

Theorem

If Y and Z are subproduct systems with the same (n, m) and $\phi: \mathcal{A}_{Y} \rightarrow \mathcal{A}_{Z}$ is an isometric isomorphism that preserves the character associated to 0 . Then (under some condition) there is a unitary operator $V: \mathcal{F}_{Y} \rightarrow \mathcal{F}_{Z}$ such that $\phi(T)=V^{*} T V$ for all $T \in \mathcal{A}_{Y}$.

Theorem

Suppose Y and Z are subproduct systems and there is a bounded isomorphism $\phi: \mathcal{A}_{Y} \rightarrow \mathcal{A}_{Z}$. Then $n_{Y}+m_{Y}=n_{Z}+m_{Z}$.

