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Background: Non commutative disc algebras

Write E for Cn and consider the (full) Fock space of E :

F(E ) = C⊕ E ⊕ E⊗2 ⊕ E⊗3 ⊕ · · · .

For e ∈ E , write Le for the operator on F(E ) defined by

Le(ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξk) = e ⊗ ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξk

and Lec = ce for c ∈ C.
Write An for the norm-closed algebra generated by all these
operators. Equivalently, it is generated by the n shifts
Le1 , Le2 , . . . , Len where {e1, . . . , en} is the standard basis for E .
This is Popescu’s non commutative disc algebra.



The representations of An

Note that (Le1 , . . . , Len) is a row contraction (a contraction from
F(E )(n) to F(E ); equivalently

∑
Lei L

∗
ei
≤ I ). Thus An is

generated by a row contraction.
Given a completely contractive representation π of An on H, if we
write Ti = π(Lei ) then (T1, . . . ,Tn) is a row contraction.
Conversely, given a row contraction in B(H), there is a completely
contractive representation π of An such that Ti = π(Lei ) for all i .
These there facts above mean: An is the (unique) operator algebra
universal for row contractions.

Classification
Theorem: An and Am are (isometrically) isomorphic if and only
if m = n.
Reason: The character space ( one-dimensional representations)
of An is Bn. If Φ : An → Am is an isomorphism α 7→ α ◦ Φ
induces an homeomorphism from Bm onto Bn. Thus m = n.



The Current Setup

A product system (of finite dimensional Hilbert spaces) over a
semigroup S is a collection {H(s) : s ∈ S} of f.d. Hilbert spaces
together with isomorphisms {Us,t : H(s)⊗ H(t)→ H(s + t)} and
these isomorphisms behave “associatively”.
If S = N and we write E for H(1), we get H(m) = E⊗m

Now: S = N2 and we write H(1, 0) = E and H(0, 1) = F . Then
H(1, 1) = U(0,1),(1,0)(E ⊗ F ) = U(1,0),(0,1)(F ⊗ E ) and
U := U∗(1,0),(0,1)U(0,1),(1,0) is an isomorphism of E ⊗ F and F ⊗ E .
It is not hard to check that, from U we can reconstruct the
product system (with H(k , l) = E⊗k ⊗ F⊗l .)
Fixing the basis {ei} for E and {fj} for F , U is represented by an
nm × nm unitary matrix u. We write

ei ⊗ fj =
∑

u(i ,j),(k,l)fl ⊗ ek .

The product system is defined by (n,m, u).



Write
F(n,m, u) =

∑
k,l

H(k , l)

or, concretely,

F(n,m, u) =
∑
k,l

E⊗k ⊗ F⊗l .

On this Fock space define “shifts”:

Rightwards : Leiη = ei ⊗ η, 1 ≤ i ≤ n.
Upwards : Lfjη = fj ⊗ η, 1 ≤ j ≤ m.

We get

Lei Lfj =
∑
k,l

u(i ,j),(k,l)Lfl Lek
. (1)

The unital semigroup generated by {I , Le , Lf : e ∈ E , f ∈ F} will
be denoted F+

u and the algebra it generates denoted C[F+
u ]. The

norm closure of C[F+
u ] will be written Au and its closure in the

weak* operator topology will be written Lu.



The algebras

Remark: If u is a permutation matrix, the algebra Au is the (non
selfadjoint) algebra associated with a finite graph of rank 2 and a
single vertex.

Representations
Every c.c. representation π of Au gives rise to two row
contractions T̃ = (T1, . . . ,Tn) and S̃ = (S1, . . . ,Sn)
(Ti = π(Lei ), Sj = π(Lfj )) satisfying

TiSj =
∑
k,l

u(i ,j),(k,l)SlTk .

But this is not sufficient. (Davidson et al.).

Define, for two u-commuting row contractions T̃ , S̃ and
0 < s < 1,

∆s(T , S) = I − s2(T̃ T̃ ∗ + S̃ S̃∗) + s4T̃ (ICn ⊗ S̃ S̃∗)T̃ ∗

(viewing T̃ and S̃ as maps from Cn ⊗ H to H).



Theorem

(Popescu, Skalski) Let T̃ , S̃ be two u-commuting row
contractions. If there is some ρ ∈ (0, 1) such that for all s ∈ (ρ, 1),
∆s(T ,S) ≥ 0 then there is a (unique) c.c. representation π of Au

such that π(Lei ) = Ti and π(Lfj ) = Sj . In fact, Au is “universal”
for such pairs of row contractions (i.e.: It is generated by such a
pair and every such pair defines a c.c. representation).

Corollary: The character space of Au can be identified with

Ωu := {(z ,w) ∈ Bn × Bm : ziwj =
∑
k,l

u(i ,j),(k,l)zlwk}.

(∆s(z ,w) = I − s2(‖z‖2 + ‖w‖2) + s4‖z‖2‖w‖2 =
(1− s2‖z‖2)(1− s2‖w‖2).)
Also: The character space of Lu can be identified with

{(z ,w) ∈ Bn × Bm : ziwj =
∑
k,l

u(i ,j),(k,l)zlwk}.



Classification

Notation:

Vu := {(z ,w) ∈ Cn × Cm : ziwj =
∑
k,l

u(i ,j),(k,l)zlwk}.

So that Ωu = Vu ∩ Bn × Bm.

The classification problem :

Let u be an nm × nm unitary matrix and v be an n′m′ × n′m′

unitary matrix. They give rise to Au and Av .

The Aim: When are Au and Av isomorphic and what the
isomorphisms Φ : Au → Av look like?



The homeomorphism induced on the character space
Given an isomorphism Ψ of Au onto Av , it defines a map from the
character space of Au to the character space of Av (by
φ 7→ φ ◦Ψ−1) and we get a map θΨ : Ωu → Ωv . Clearly, θΨ is a
homeomorphism and, since Ωu ∩ (Bn × Bm) is the interior of Ωu,
θΨ maps Ωu ∩ (Bn × Bm) onto Ωv ∩ (Bn × Bm).
If Ψ is an isomorphism of Lu into Lv which is a homeomorphism
with respect to the w∗-topologies, θΨ is a homeomorphism of
Ωu ∩ (Bn × Bm) onto Ωu ∩ (Bn × Bm).



An important role will be played by the core.
The core

For every (i , j), write u(i ,j) for the n ×m matrix whose k , l-entry is
u(i ,j),(k,l). Thus, the (i , j) row of u provides the n rows of u(i ,j).
Also write Ei ,j for the n ×m matrix whose i , j-entry is 1 and all
other entries are 0 and C(i ,j) for the matrix u(i ,j) − Ei ,j .

Lemma

With C(i ,j) defined as above, we have

Vu = {(z ,w) ∈ Cn × Cm : ∀i , j , 〈C(i ,j)w , z̄〉 = 0 }.

Definition

We define the core of Ωu to be the set

Ω0
u := {(z ,w) ∈ B̄n × B̄m : ∀i , j , C(i ,j)w = 0, C t

(i ,j)z = 0 }.



Characterization of the core :

Theorem

For (z ,w) ∈ Bn × Bm the following conditions are equivalent.

(1) (z ,w) ∈ Ω0
u.

(2) There exists a completely isometric automorphism Θz,w of Lu

that is a homeomorphism with respect to the w∗-topologies
and restricts to an automorphism of Au, such that
θΘz,w (0, 0) = (z ,w).

(3) There exists an algebraic automorphism Ψ of Au such that
θΨ(0, 0) = (z ,w).

The automorphism Θz,w can be written explicitly using
Voiculescu’s analysis of the automorphisms of En.



About the proof of (3) ⇒ (1)
It uses:

Lemma

A point (z ,w) ∈ Ωu lies in the core Ω0
u if and only if every

(λ, µ) ∈ Cn × Cm defines a homomorphism ρ : C[F+
u ]→ T2 such

that

ρ(Lei ) =

(
zi λi

0 zi

)
and

ρ(Lfj ) =

(
wj µj

0 wj

)
for all i , j .

Write ρz,w ,λ,µ for it.



Given Ψ and (z ,w) as in (3), for every (λ, µ) ∈ Cn × Cm,
ρ0,0,λ,µ ◦Ψ−1 is a homomorphism on C[F+

u ] and, thus, it is of the
form ρz,w ,λ′,µ′ for some (unique) (λ′, µ′) = ψ(λ, µ).

If (z ,w) is not in Ω0
u, then the set of all (λ, µ) for which there is

ρz,w ,λ,µ is a subspace of Cn × Cm of dimension strictly smaller
than n + m and, as is shown above, it contains the continuous
image (under the injective map ψ) of Cn ×Cm. This is impossible.



About the proof of (1) ⇒ (2)
We need to construct Θz,w s.t. θΘz,w (0, 0) = (z ,w); that is

α(0,0)(Θ−1
z,w (X )) = α(z,w)(X ).

It follows from:
Proposition Suppose (z ,w) ∈ Ω0

u ∩ (Bn × Bm). Then there is a
automorphism Θ̃z of Au that is unitarily implemented and such
that, for every X ∈ Au,

α(0,w)(Θ̃−1
z (X )) = α(z,w)(X )

where α(z,w) is the character associated with (z ,w).

To construct Θ̃z , we first use Voiculescu’s analysis.



Following Voiculescu, we have, associated with every z ∈ Bn, an
automorphism, denoted Θz of the Cuntz-Toeplitz algebra En. It is
defined by

Θz(Lζ) = (x0I − Lη)−1(LX1ζ − 〈ζ, η〉I ) (2)

where Lζ =
∑
ζiLi (where ζ ∈ Cn and {Li} are the generators of

En) and where X1, x0 and η are associated with z as follows:

(i) x0 = (1− ‖z‖2)−1/2,

(ii) η = x0z̄ , and

(iii) X1 = (ICn + ηη∗)1/2.

In fact, this automorphism is unitarily implemented.



Here, we also have

Lemma

Suppose (z ,w) ∈ Ω0
u ∩ (Bn × Bm). Let Θ := Θz . Then, for every

1 ≤ i ≤ n and 1 ≤ j ≤ m,

Θ(Lei )Lfj =
∑
k,l

u(i ,j),(k,l)Lfl Θ(Lek
). (3)

Let U be the unitary operator implementing Θ. We can view
F(n,m, u) as the sum

F(n,m, u) =
∑
k

F⊗k ⊗F(E )

where F(E ) = C⊕ E ⊕ (E ⊗ E )⊕ · · · . We now let V be the
unitary operator whose restriction to F⊗k ⊗F(E ) is Ik ⊗ U (where
Ik is the identity operator on F⊗k). It is easy to check that, for
every fj ,

VLfj V
∗ = Lfj .



Now, fix i . We can show, by induction, that, for every k and every
ξ ∈ F⊗k ⊗F(E ),

(Ik ⊗ U)Lei ξ = Θ(Lei )(Ik ⊗ U)ξ. (4)

To prove it, we use the lemma above.
It now follows that the map Θ̃z : X → VXV ∗ defines a unitary
endomorphism of Au. This automorphism satisfies the conditions
of the previous proposition.



Definition

(i) An isomorphism Ψ : Au → Av is graded if it maps
span{Lei , Lfj} into itself.

(ii) An isomorphism Ψ : Au → Av is said to be bigraded
isomorphism if there are unitary matrices A (n × n) and B
(m ×m) such that

Ψ(Lei ) =
∑

j

ai ,jLej , Ψ(Lfk ) =
∑

l

bk,lLfl .

(iii) If m = n and Ψ is a graded isomorphism such that

Ψ(Lei ) =
∑

j

ai ,jLfj , Ψ(Lfk ) =
∑

l

bk,lLel

for n × n unitary matrices A and B then we say that Ψ is a
graded generator exchange isomorphism.



Notation:
We shall write ΨA,B for the bigraded isomorphism (as in (ii)) and
Ψ̃A,B for the graded generator exchange isomorphism.
* Both ΨA,B and Ψ̃A,B are unitarily implemented.

Lemma

(i) If ΨA,B is a bigraded isomorphism then

(A⊗ B)v = u(A⊗ B) (5)

where A⊗B is the mn×mn matrix whose (i , j), (k , l) entry is
ai ,kbj ,l .

(ii) If m = n and Ψ̃A,B is a graded generator exchange
isomorphism then

(A⊗ B)ṽ = u(A⊗ B) (6)

where ṽ(i ,j),(k,l) = v̄(l ,k),(j ,i).

Definition

If u, v are mn ×mn unitary matrices and there exist unitary
matrices A and B satisfying (A⊗ B)v = u(A⊗ B), we say that u
and v are product unitary equivalent.



Given an isomorphism Ψ : Au → Av (where v may be n′m′× n′m′)
we get a homeomorphism θΨ : Ωu → Ωv and θΨ(0, 0) ∈ Ω0

v .

Theorem

Let Ψ : Au → Av be an (algebraic) isomorphism. Then

θΨ(Ω0
u) = Ω0

v .



Theorem

Let Ψ be an algebraic isomorphism and let θΨ be the associated
map on Ωu. Suppose θΨ(0, 0) = (0, 0). Then we have the
following.

(1) {n,m} = {n′,m′} and we shall assume that n = n′ and
m = m′ (interchanging E and F and changing u to u∗ if
necessary).

(2) There are unitary matrices U (n × n) and V (m ×m) such
that θΨ(z ,w) = (Uz ,Vw) for (z ,w) ∈ Ωu. (If n = m it is
also possible that θΨ(z ,w) = (Vw ,Uz).)

(3) If Ψ is an isometric isomorphism, then Ψ is a bigraded
isomorphism. (Or, if m = n, it may be a graded exchange
isomorphism).



The proof of (1) and (2) uses arguments similar to the ones used
by S. Power in a previous work (based essentially on applying
Schwarz’s lemma for holomorphic maps on the unit disc).

For (3) one shows first that Ψ(Lei ) = LUei
+ X where X is a sum

of higher order terms. Then we apply it to ξ0 (a wandering vector)
to get

1 ≥ ‖Ψ−1(Lei )ξ0‖2 = ‖LUei
ξ0‖2 + ‖X ξ0‖2 = 1 + ‖X ξ0‖2.

Thus X ξ0 = 0 implying X = 0.



Since every graded isomorphism Ψ satisfies θΨ(0, 0) = (0, 0), we
conclude the following.

Corollary

Every graded isometric isomorphism is either bigraded or, if m = n,
it may be a graded generator exchange isomorphism.

Theorem

The following statements are equivalent for unitary matrices u, v in
Mn(C)⊗Mm(C).
(i) There is an isometric isomorphism Ψ : Au → Av .
(ii) There is a graded isometric isomorphism from Ψ : Au → Av .
(iii) The matrices u, v are product unitary equivalent or (in case
n = m) the matrices u, ṽ are product unitary equivalent.



Proof.

Given Ψ in (i), let (z ,w) = θΨ(0, 0). Then (z ,w) ∈ Ω0
v . By the

characterization of the core, there is a completely isometric
automorphism Φ of Av such that θΦ(0, 0) = (z ,w) and, therefore,
θΦ−1◦Ψ(0, 0) = (0, 0). By the proposition above, Φ−1 ◦Ψ is a
graded isometric isomorphism and (ii) holds.
It follows from previous results that (ii) implies (iii) and that (iii)
implies (i).



Remark:

(i) Whenever Au and Av are isomorphic, we have
{n,m} = {n′,m′}.

(ii) If Au and Av are isometrically isomorphic, then so are Lu and
Lv . In fact, we can then find an isometric isomorphism of Au

and Av that extends to an isometric isomorphism of Lu and
Lv that is also a w∗-homeomorphism.

Theorem

For n 6= m the isometric automorphisms of Au are of the form
ΨA,BΘz,w where (z ,w) ∈ Ω0

u and (A⊗ B)u = u(A⊗ B). In case
n = m the isometric automorphisms include, in addition, those of
the form Ψ̃A,BΘz,w where (A⊗ B)ũ = u(A⊗ B).



In order to work out examples, first note the following.

Lemma

(i) If the core contains a vector (z ,w) with z 6= 0, then
dim(Ker(u − I )) ≥ m.

(ii) If the core contains a vector (z ,w) with w 6= 0 then
dim(Ker(u − I )) ≥ n.

(iii) If the core contains a vector (z ,w) with z 6= 0 and w 6= 0,
then dim(Ker(u − I )) ≥ m + n − 1.



Examples

Example: n = m = 2
Consider the different possibilities for d = dim(Ker(u − I )).
Case I: d = 0
For every (z ,w) ∈ B̄2 × B̄2, (z ,w) ∈ Ωu if and only if the vector
(z1w1, z1w2, z2w1, z2w2)t lies in Ker(u − I ). Thus, in case I, Ωu is
the minimal possible and is equal to

Ωmin := (B̄2 × {0}) ∪ ({0} × B̄2).

It follows from the lemma that, in this case,

Ω0
u = {(0, 0)}.

It then follows that every isometric automorphism of Au is graded
and the isometric automorphisms of Au are given by pairs (A,B)
of unitary matrices such that A⊗ B either commutes with u or
intertwines u and ũ.



Case II: d = 1
When d = 1 it still follows from the lemma above that

Ω0
u = {(0, 0)}

but now it is possible for Ωu to be larger than Ωmin. In fact, if the
non zero vector (a, b, c, d)t spanning Ker(u − I ) satisfies ad 6= bc

then Ωu = Ωmin but if ad = bc then the matrix

(
a b
c d

)
is of

rank one and can be written as (z1, z2)t(w1,w2). Thus,
(z ,w) ∈ Vu and Ωu contains some (z ,w) with non zero z and w .
Since Ω0

u = {(0, 0)}, it is still true that isometric isomorphisms and
automorphisms of these algebras are all graded.



Case III: d = 2
When d = 2 it is possible that Ω0

u will contain non zero vectors
(z ,w) but, as the lemma shows, it does not contain a vector with
both z 6= 0 and w 6= 0. All other possibilities may occur. For
example write u1, u2 and u3 for the three diagonal matrices:

u1 = diag(1,−1,−1, 1)

,
u2 = diag(1,−1, 1,−1)

and
u3 = diag(1, 1,−1,−1).

Using the definition of the core, we easily see that

Ω0
u1

= {(0, 0)}
,

Ω0
u2

= {(0, 0,w1, 0) : |w1| ≤ 1}
and

Ω0
u3

= {(z1, 0, 0, 0) : |z1| ≤ 1}.



Thus, the only isometric automorphisms of Au1 are graded, the
isometric automorphisms of Au2 are formed by composing graded
automorphisms with automorphisms of the type Θz,w (with
z = (0, 0) and w = (w1, 0)). Similarly, for the automorphisms of
Au3 .



Case IV: d = 3

Corollary

Every matrix u with dim(Ker(u − I )) = 3 is product unitary
equivalent to a unique matrix of the form u(a, λ)

u(a, λ) =


(λ− 1)a2 + 1 0 0 (λ− 1)a(1− a2)1/2

0 1 0 0
0 0 1 0

(λ− 1)a(1− a2)1/2 0 0 λ+ (1− λ)a2

 .

(with 0 ≤ a ≤ 1/
√

2, |λ| = 1 and λ 6= 1).



Theorem

If a = 0, |λ| = 1, λ 6= 1, then Ωu(0,λ) is the union

{(z1, z2,w1, 0) : z ∈ B2; |w1| ≤ 1}∪

{(z1, 0,w1,w2) : w ∈ B2; |z1| ≤ 1},

and
Ω0

u(0,λ) = {(z1, 0,w1, 0) : |z1| ≤ 1; |w1| ≤ 1}.

If a 6= 0 then

Ωu(a,λ) = {(z ,w) ∈ B2 × B2 : az1w1 + (1− a2)1/2z2w2 = 0}

and
Ω0

u(a,λ) = {(0, 0)}.



Theorem

Let 0 ≤ a, b ≤ 1/
√

2, |λ| = |µ| = 1, λ, µ 6= 1. Then

(1) Au(a,λ) and Au(b,µ) are isometrically isomorphic if and only if
a = b and λ equals either µ or µ̄.

(2) When a 6= 0 the isometric automorphisms of Au(0,λ) are all
bigraded

(3) If a = 0 then there are isometric isomorphisms that are not
graded



Case V: d = 4
This is the case where u = I . We have Ωu = Ω0

u = B̄n × B̄m and
the isometric automorphisms are obtained by composing graded
automorphisms and the automorphisms Θz,w .



Subproduct systems over N2 (M. Gurevich)

Subproduct Systems {X (n,m) = E⊗n ⊗ F⊗m} is a product
system (X (s + t) ∼= X (s)⊗ X (t) for s, t ∈ N2). Consider
{Y (n,m) ⊆ E⊗n ⊗ F⊗m}. It is a subpruduct system if we assume
only Y (s + t) ⊆ Y (s)⊗ Y (t). As we shall see, this introduces new
polynomial relations.
The algebra AY is now the norm-closed algebra generated by
Sei := PLei P where P is the projection of F(n,m, u) onto
F(Y ) :=

∑
Y (k , l). In fact

AY = PAuP.



Question: (open) Is AY a quotient (as an operator algebra) of
Au?

Sample results:
To describe the character space of AY , define

pi ,j(z ,w) = ziwj −
∑
k,l

u(i ,j),(k,l)wlzk .

Also, for x ∈ E⊗i ⊗ F⊗j 	 Y (i , j), we can define an associated
polynomial qx . If x = e1 ⊗ f3 − e2 ⊗ f1, qx(z ,w) = z1w3 − z2w1

such that, if J is the ideal generated by all these polynomials,

Theorem

The character space of AY can be identified with

{(z ,w) ∈ Bn × Bm : p(z ,w) = 0,∀p ∈ J}.



Theorem

If Y and Z are subproduct systems with the same (n,m) and
φ : AY → AZ is an isometric isomorphism that preserves the
character associated to 0. Then (under some condition ) there is a
unitary operator V : FY → FZ such that φ(T ) = V ∗TV for all
T ∈ AY .

Theorem

Suppose Y and Z are subproduct systems and there is a bounded
isomorphism φ : AY → AZ . Then nY + mY = nZ + mZ .


