Operator Algebras Associated with Unitary
Commutation Relations

Baruch Solel (jointly with S.C. Power)
Technion - Israel Institute of Technology

Function theory and operator theory: Infinite dimensional and
free settings
BGU June 2011



Background: Non commutative disc algebras

Write E for C" and consider the (full) Fock space of E:
FEY=COEQE*®0E®®qg...
For e € E, write L, for the operator on F(E) defined by
L(&1®@6® - R&G) =e®@E R ® - @&k

and L.c = ce for c € C.

Write A, for the norm-closed algebra generated by all these
operators. Equivalently, it is generated by the n shifts

LeyyLeyy ..., Le, where {e1,...,ep} is the standard basis for E.
This is Popescu’s non commutative disc algebra.



The representations of A,

Note that (Le,, ..., Le,) is a row contraction (a contraction from
F(E)™ to F(E); equivalently 3" L, L% < ). Thus A, is
generated by a row contraction.

Given a completely contractive representation m of A, on H, if we
write T; = 7(Le;) then (T1,..., T,) is a row contraction.
Conversely, given a row contraction in B(H), there is a completely
contractive representation 7 of A, such that T; = (L) for all /.
These there facts above mean: A, is the (unique) operator algebra
universal for row contractions.

Classification

Theorem: A, and A, are (isometrically) isomorphic if and only
if m=n.

Reason: The character space ( one-dimensional representations)
of A, is B,. If ®: A, — A, is an isomorphism a — a0 ®
induces an homeomorphism from B,, onto B,,. Thus m = n.



The Current Setup

A product system (of finite dimensional Hilbert spaces) over a
semigroup S is a collection {H(s) : s € S} of f.d. Hilbert spaces
together with isomorphisms {Us ¢ : H(s) ® H(t) — H(s + t)} and
these isomorphisms behave “associatively”.

If S =N and we write E for H(1), we get H(m) = E®™

Now: S = N? and we write H(1,0) = E and H(0,1) = F. Then
H(1,1) = U0,1),1.0)(E ® F) = Uq,0),0,1)(F ® E) and

U= U{170)7(071)U(071)’(1,0) is an isomorphism of E® F and F ® E.
It is not hard to check that, from U we can reconstruct the
product system (with H(k, /) = E®k @ F®/)

Fixing the basis {e;} for E and {f;} for F, U is represented by an
nm X nm unitary matrix u. We write

& ® fi = uij)mnfi @ ex.

The product system is defined by (n, m, u).



Write
nmu ZHkI
k,l

or, concretely,
F(n,m,u) = ZE®k ® F®.
k!

On this Fock space define “shifts”:

Rightwards : [,n=¢e®n, 1<i<n.
Upwards : L,j.n: fion 1<;<m.

We get

Le,er;- = Z U(i,j),(k,l)Lf,Lek' (1)
k,l
The unital semigroup generated by {/,L.,Ls : e € E, f € F} will
be denoted F/ and the algebra it generates denoted C[F/]. The
norm closure of C[F ] will be written A, and its closure in the
weak* operator topology will be written L.



The algebras

Remark: If uis a permutation matrix, the algebra A, is the (non
selfadjoint) algebra associated with a finite graph of rank 2 and a
single vertex.

Representations

Every c.c. representation 7 of A, gives rise to two row
contractions T = (Ty,..., T,) and S =(S1,...,S,)
(Ti = m(Le;), Sj = m(L¢)) satisfying

TiS = ) u(ij) (ki) S Tk
k.l

But this is not sufficient. (Davidson et al.).

Define, for two u-commuting row contractions T, S and
0<s<1,

A(T,S)=1—s*(TT*+55) + 5" T(ler ® 55%) T~
(viewing T and S as maps from C" @ H to H).



Theorem

(Popescu, Skalski) Let T, S be two u-commuting row
contractions. If there is some p € (0, 1) such that for all s € (p,1),
A(T,S) > 0 then there is a (unique) c.c. representation m of A,
such that w(Le;) = T; and w(Lg) = S;. In fact, A, is “universal”
for such pairs of row contractions (i.e.: It is generated by such a
pair and every such pair defines a c.c. representation).

Corollary: The character space of A, can be identified with

Q,:={(z,w) €B, x B : zjw; = Z U(i j), (k1) 21 Wk } -
k.l
(As(za2W) > I — 522(HZH22+ Iw([?) + s*[|2]12[|w]]* =
(1 —s%[[z[]*)(1 = s7[[w]%).)
Also: The character space of £, can be identified with

{(z,w) € By x By, : zjwj = Z U(i ), (k)21 Wk } -
Py



Classification

Notation:

Vi ={(z,w) € C" x C™: zjw; = Z U(i j), (k1) ZI Wk } -
kI

So that Q, = V,N B, x B,,.

The classification problem :

Let u be an nm x nm unitary matrix and v be an n’'m’ x n’m’

unitary matrix. They give rise to A, and A,.

The Aim: When are A, and A, isomorphic and what the
isomorphisms ¢ : A4, — A, look like?



The homeomorphism induced on the character space

Given an isomorphism WV of A4, onto A,, it defines a map from the
character space of A, to the character space of A, (by

¢ ¢oW 1) and we get a map Oy : Q, — Q,. Clearly, Oy is a
homeomorphism and, since Q, N (B, x B,,) is the interior of Q,,
Oy maps Q, N (B, x B,,) onto Q, N (B, x By,).

If W is an isomorphism of £, into £, which is a homeomorphism
with respect to the w*-topologies, 6y is a homeomorphism of
Q,N (B, x B,,) onto Q, N (B, x By,).



An important role will be played by the core.
The core

For every (i,j), write u(; ;) for the n x m matrix whose k, /-entry is
Ui j),(k,ny- Thus, the (i,j) row of u provides the n rows of u(; j.
Also write E; ; for the n x m matrix whose i, j-entry is 1 and all
other entries are 0 and ((; ;) for the matrix u(; ;) — E; .

Lemma

With C; j) defined as above, we have

Vu={(z,w) e C"xC" : Vi,j, (Cijw,2z)=0}.

We define the core of €2, to be the set

Q= {(z,w) €B, xB,, : Vi,j, Cijpw =0, C(t,-’J-)Z:O }.




Characterization of the core :

Theorem

For (z,w) € B, x By, the following conditions are equivalent.
(1) (z,w) € Q0.

(2) There exists a completely isometric automorphism © ,, of L,
that is a homeomorphism with respect to the w*-topologies
and restricts to an automorphism of A,, such that
9@Z,W(0,0) = (z,w).

(3) There exists an algebraic automorphism V of A, such that
0y (0,0) = (z, w).

The automorphism ©, ,, can be written explicitly using
Voiculescu's analysis of the automorphisms of &,,.



About the proof of (3) = (1)
It uses:

Lemma

A point (z,w) € Q,, lies in the core QO if and only if every
(X, 1) € C" x C™ defines a homomorphism p : C[F}] — Ta such

that
Zi A
)= (5 )

for all i,j.

Write p; w . for it.



Given V and (z,w) as in (3), for every (A, ) € C" x C™,
oo © WL is a homomorphism on C[F] and, thus, it is of the
form p, w x  for some (unique) (X, 1) = (A, p).

If (z,w) is not in Q9 then the set of all (\, i) for which there is
Pzwp 1S @ subspace of C" x C™ of dimension strictly smaller
than n+ m and, as is shown above, it contains the continuous
image (under the injective map 1) of C" x C™. This is impossible.



About the proof of (1) = (2)
We need to construct ©,,,, s.t. fg,,(0,0) = (z, w); that is

Q(0,0) (ez_ﬁv(X)) = ¥(z,w) (X)

It follows from:

Proposition Suppose (z, w) € Q% N (B, x B,,). Then there is a
automorphism éz of A, that is unitarily implemented and such
that, for every X € A,,

a(O,W)(ez_l(X)) = Q(z,w) (X)

where «; ) is the character associated with (z, w).

To construct ©,, we first use Voiculescu's analysis.



Following Voiculescu, we have, associated with every z € B, an
automorphism, denoted ©, of the Cuntz-Toeplitz algebra &,. It is
defined by

©:(Le) = (xof — Ly) M (Lxwe — (¢ 1) (2)
where Lo =3 (;L; (where ¢ € C" and {L;} are the generators of
&n) and where Xj, xo and 7 are associated with z as follows:

(i) 0 = (1= z]*)7*2,
(i) » = xoz, and
(i) Xa = (en + mn*)M/2.

In fact, this automorphism is unitarily implemented.



Here, we also have

Lemma
Suppose (z,w) € Q0N (B, x B,,). Let © := ©,. Then, for every
1<i<nandl1<j<m,

O(Le,)Lr =Y u(igy ki LaO(Le,). (3)
k.l

Let U be the unitary operator implementing ©. We can view
F(n, m,u) as the sum

F(n,m,u) ZF®k®.7:

where F(E)=CHE®(E®E) & ---. We now let V be the
unitary operator whose restriction to F®* @ F(E) is Iy ® U (where
I is the identity operator on F®K). It is easy to check that, for
every f;,

VLE V™ = Lg.



Now, fix i. We can show, by induction, that, for every k and every
¢ € Fok @ F(E),

(Ik @ U)Le,€ = O(Le, ) (I ® V)E. (4)

To prove it, we use the lemma above.

It now follows that the map ©, : X — VXV* defines a unitary
endomorphism of A,. This automorphism satisfies the conditions
of the previous proposition.



(i) An isomorphism ¥ : A, — A, is graded if it maps
span{Le;, L} into itself.

(i) An isomorphism W : A, — A, is said to be bigraded
isomorphism if there are unitary matrices A (n x n) and B
(m x m) such that

Le) =) aijle, V(L) Z biLs-
J
(iii) If m = n and V is a graded isomorphism such that

V(L) = Z aijle, W(Lg) Z by iLe,
J

for n x n unitary matrices A and B then we say that W is a
graded generator exchange isomorphism.




Notation:

We shall write W4 g for the bigraded isomorphism (as in (ii)) and
‘J’A,B for the graded generator exchange isomorphism.

* Both W4 g and ITJAJB are unitarily implemented.

Lemma

(i) If Wap is a bigraded isomorphism then
(A® B)v = u(A® B) (5)

where A® B is the mn X mn matrix whose (i,j), (k, ) entry is
aj kbj. .

(i) If m=n and \TJAB is a graded generator exchange
isomorphism then

(A® B)V = u(A® B) (6)

where V(; jy (k1) = V(1,k),(i,i)-




Given an isomorphism W : A, — A, (where v may be n'm’ x n’m’)
we get a homeomorphism Oy : Q, — Q, and 6y(0,0) € QC.

Let W : A, — A, be an (algebraic) isomorphism. Then

0w (Q3) = Q.




Theorem

Let W be an algebraic isomorphism and let 6y be the associated
map on Q. Suppose 0y(0,0) = (0,0). Then we have the
following.

(1) {n,m} = {n’,m'} and we shall assume that n = n’ and
m = m’ (interchanging E and F and changing u to u* if
necessary).

(2) There are unitary matrices U (n x n) and V' (m x m) such
that Oy(z,w) = (Uz, Vw) for (z,w) € Q,. (Ifn=m it is
also possible that 6y (z, w) = (Vw, Uz).)

(3) If VW is an isometric isomorphism, then V is a bigraded
isomorphism. (Or, if m = n, it may be a graded exchange
isomorphism).




The proof of (1) and (2) uses arguments similar to the ones used
by S. Power in a previous work (based essentially on applying
Schwarz's lemma for holomorphic maps on the unit disc).

For (3) one shows first that W(Le,) = Lye, + X where X is a sum
of higher order terms. Then we apply it to £, (a wandering vector)
to get

1> W7 (Le)oll* = [ILueoll* + [ XolI? = 1+ [[X&ol .

Thus X& = 0 implying X = 0.



Since every graded isomorphism W satisfies 6y(0,0) = (0, 0), we
conclude the following.

Every graded isometric isomorphism is either bigraded or, if m = n,
it may be a graded generator exchange isomorphism.

Theorem

The following statements are equivalent for unitary matrices u, v in
M,(C) @ Mp,(C).

(i) There is an isometric isomorphism W : A, — A,.

(ii) There is a graded isometric isomorphism from V : A, — A,.
(iii) The matrices u, v are product unitary equivalent or (in case

n = m) the matrices u,V are product unitary equivalent.




Proof.

Given W in (i), let (z,w) = 0y(0,0). Then (z,w) € Q0. By the
characterization of the core, there is a completely isometric
automorphism ® of A, such that 0¢(0,0) = (z, w) and, therefore,
Op-10(0,0) = (0,0). By the proposition above, @1 o W is a
graded isometric isomorphism and (ii) holds.

It follows from previous results that (ii) implies (iii) and that (iii)
implies (i). O




Remark:

(i) Whenever A, and A, are isomorphic, we have
{n,m} ={n", m'}.

(ii) If A, and A, are isometrically isomorphic, then so are £, and
L. In fact, we can then find an isometric isomorphism of A,
and A, that extends to an isometric isomorphism of £, and
L, that is also a w*-homeomorphism.

For n # m the isometric automorphisms of A, are of the form
V4 O, where (z,w) € Q% and (A® B)u = u(A® B). In case
n = m the isometric automorphisms include, in addition, those of
the form W4 g®©, ,, where (A® B)ii = u(A® B).




In order to work out examples, first note the following.

Lemma

(i) If the core contains a vector (z,w) with z # 0, then
dim(Ker(u—1)) > m.

(ii) If the core contains a vector (z, w) with w # 0 then
dim(Ker(u—1)) > n.

(i) If the core contains a vector (z,w) with z # 0 and w # 0,
then dim(Ker(u—1)) > m+n—1.




Examples

Example: n=m =2

Consider the different possibilities for d = dim(Ker(u — 1)).

Case I: d =0

For every (z,w) € By x By, (z,w) € Q, if and only if the vector
(ziw1, z1wo, Zowy, Zowp)? lies in Ker(u — ). Thus, in case |, Q, is
the minimal possible and is equal to

Qin 1= (]E2 X {0}) U ({O} X PBQ)
It follows from the lemma that, in this case,
Q7 = {(0,0)}.

It then follows that every isometric automorphism of A, is graded
and the isometric automorphisms of A,, are given by pairs (A, B)
of unitary matrices such that A ® B either commutes with u or
intertwines u and .



Casell: d =1
When d = 1 it still follows from the lemma above that

Q) ={(0,0)}
but now it is possible for 2, to be larger than Qs In fact, if the
non zero vector (a, b, ¢, d)! spanning Ker(u — I) satisfies ad # bc
then Q, = Qi but if ad = bc then the matrix < j 3 ) is of

rank one and can be written as (z1, z2)" (w1, wz). Thus,

(z,w) € V,, and Q, contains some (z, w) with non zero z and w.
Since Q% = {(0,0)}, it is still true that isometric isomorphisms and
automorphisms of these algebras are all graded.



Case lll: d =2

When d = 2 it is possible that Q2 will contain non zero vectors
(z, w) but, as the lemma shows, it does not contain a vector with
both z £ 0 and w # 0. All other possibilities may occur. For
example write uy, up and us for the three diagonal matrices:

u = diag(1l,-1,-1,1)

up = diag(1,-1,1,-1)
and
uz = diag(1,1,—-1,-1).
Using the definition of the core, we easily see that
0
Q,, ={(0,0)}

Q(LJ;Z = {(0)0, Wl,O) . |W1| S ]_}
and
Q(L)’3 = {(21707070) . ‘Z]_‘ S ]_}



Thus, the only isometric automorphisms of A,, are graded, the
isometric automorphisms of A,, are formed by composing graded
automorphisms with automorphisms of the type ©, ,, (with
z=(0,0) and w = (w1, 0)). Similarly, for the automorphisms of
Auys.



Case IV: d =3

Corollary

Every matrix u with dim(Ker(u — 1)) = 3 is product unitary
equivalent to a unique matrix of the form u(a, \)

(A-1)a*+1 0 0 (A—1)a(l —a*>)?
0 10 0
o) = 0 0 1 0
A=1a1-a)Y2 0 0 A+(1-N&

(with 0 < a < 1//2,

A =1and A #1).




Ifa=0,\=1,A#1, then Q,(0,x) is the union
{(z1,22,w1,0) : z € By; [wq| < 1}U

{(21707 Wi, W2) W e Bz; ’Z]_’ < 1}’

and
Q(L)J(O,)\) = {(21707 W170) : |Zl| < 1, ‘W]_| < 1}

If a#£ 0 then
Qu(a,)\) = {(Z, W) € E2 X E2 razpwy + (1 — 32)1/222W2 = 0}

and

Doy = {(0,0)}.




Let0<a,b<1/v2, |N=|ul=1, Mwu##1l Then

(1) Ayan) and Ay ) are isometrically isomorphic if and only if
a = b and X equals either p or i.

(2) When a # 0 the isometric automorphisms of A, x) are all
bigraded

(3) If a= 0 then there are isometric isomorphisms that are not
graded




Case V: d =14

This is the case where u = [. We have Q, = Q% =B, x B,, and
the isometric automorphisms are obtained by composing graded
automorphisms and the automorphisms © ,,.



Subproduct systems over N? (M. Gurevich)

Subproduct Systems {X(n,m) = E®" @ F®™} is a product
system (X(s + t) = X(s) ® X(t) for s, t € N2). Consider
{Y(n,m) C E®" @ F®™} It is a subpruduct system if we assume
only Y(s+1t) C Y(s)® Y(t). As we shall see, this introduces new
polynomial relations.

The algebra Ay is now the norm-closed algebra generated by

Se; := PL¢; P where P is the projection of F(n, m, u) onto
F(Y):=> Y(k,I). In fact

Ay = PA,P.



Question: (open) Is Ay a quotient (as an operator algebra) of

A7

Sample results:
To describe the character space of Ay, define

pij(z, W) = ziw; — > Ui ) (k1) WiZk.
K,

Also, for x € E®" @ F®/ & Y(i,}), we can define an associated
polynomial ¢*. f x =1 ® B — e ® f, ¢*(z,w) = z1w3 — 25wy
such that, if J is the ideal generated by all these polynomials,

The character space of Ay can be identified with

{(z,w) € B, xBp, : p(z,w) =0,VYp € J}.




Theorem

If'Y and Z are subproduct systems with the same (n, m) and

¢ : Ay — Az is an isometric isomorphism that preserves the
character associated to 0. Then (under some condition ) there is a
unitary operator V : Fy — Fz such that ¢(T) = V*TV for all

T € Ay.

Theorem

Suppose Y and Z are subproduct systems and there is a bounded
isomorphism ¢ : Ay — Az. Then ny + my = nz + mz.




