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ABSTRACT
The talk will focus on the algebra of polynomial
matrices on the one hand and the geometry of
subspaces on the other. The context is linear
algebra and linear system theory.

We shall use functional models and realization
theory as a bridge between the two.

To limit the scope, we shall concentrate on the
EQUIVALENCE vs. SIMILARITY PARADIGM.

Connecting link: REALIZATION THEORY
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EQUIVALENCE
vs. SIMILARITY

UNIMODULAR EQUIVALENCE

A,B ∈ F
n×n

A ≃ B ⇔ U(z)(zI − A) = (zI − B)V (z)

U(z), V (z) unimodular

INVARIANTS: FINITE INVARIANT FACTORS

STRICT EQUIVALENCE

A,B ∈ F
n×n

A ≃ B ⇔ P (zI − A) = (zI − B)Q

P,Q nonsingular, (P = Q)

In this case: unimodular equivalence
= strict equivalence = similarity
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REMARK
STRICT EQUIVALENCE ⇒ UNIMODULAR
EQUIVALENCE

IN GENERAL, UNIMODULAR EQUIVALENCE
HAS LESS INVARIANTS THAN STRICT
EQUIVALENCE
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A SHORT HISTORY
WEIERSTRASS [1867], Regular pencils

KRONECKER [1890], Singular pencils

BRUNOVSKY [1970], Feedback canonical form

MORSE [1973], Morse group

FUHRMANN [1976], The shift realization

ALING AND SCHUMACHER [1984], Direct sum
decomposition

WILLEMS [1986,1989,1991], Behaviors
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EQUIVALENCE AND
SIMILARITY

1. Strict (Unimodular) equivalence (arithmetic)
of monic pencils vs. similarity (geometry).

2. Weierstrass:
Strict equivalence of regular matrix pencils
(arithmetic) vs. similarity, incl. at ∞,
(geometry).

3. Brunovsky:
Strict equivalence of input pencils vs.
Feedback equivalence (geometric control).

4. Kronecker, Morse:
Strict equivalence of singular matrix pencils
(arithmetic) vs. Morse group equivalence
(geometric control). Kalman’s state space
isomorphism theorem a special case.
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CHANGE OF PARADIGMS
• Rota [1951] proved that every strict

contraction in a Hilbert space is isomorphic to
the restriction of the backward shift to one of
its invariant subspaces, i.e. the backward shift
is a universal operator. This is easily
extendable to an algebraic setting. This
represents a paradigm shift from arithmetic
(operators) to geometry (subspaces).

• Beurling [1948] characterized all invariant
subspaces of the (backward) shift inH2. This
was extended by Lax and Halmos to the vector
case. Parametrizing invariant subspaces
makes Rota’s theorem practical.
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CHANGE OF PARADIGMS
• The algebraic analogs areF[z]-submodules of

the spacesF[z]m and z−1
F[[z−1]]m. Since these

spaces are intrinsically infinite dimensional,
they, the respective shifts and the
corresponding invariant subspaces, did not
make an apppearance in Linear Algebra texts.

Examples of this are: Maclane and Birkhoff,
Lang, Hoffmann and Kunze as well as
Halmos, Dym.
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CHANGE OF PARADIGMS
• Influenced by operator theory, polynomial and

rational models were introduced in Fuhrmann
[1976] and applied to the realization problem.
This provided a bridge between abstract
module theory (Kalman), polynomial algebra
(Rosenbrock [1970]) and state space methods.

• Willems [1986,1989,1991] introduced
behaviors, (a class of backward shift invariant
subspaces) into linear systems theory. This
represents a paradigm shift from I/O maps,
transfer functions or state representations
(arithmetic), to geometry (behaviors). For
behaviors, the arithmetic counterpart is given
by kernel representations.
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FROM POLYNOMIALS
TO MODEL SPACES
Polynomial Arithmetic:
D(z) ∈ F[z]m×m, detD(z) 6= 0

Geometry:
Polynomial Model:



πD : F[z]m −→ F[z]m

πDf = Dπ−D
−1f

XD = Im πD ≃ F[z]m/D(z)F[z]m

Rational Model:



D(σ) : z−1
F[[z−1]]m −→ z−1

F[[z−1]]m

D(σ)h = π−Dh, πDh = π−D
−1π+Dh

KerD(σ) = Im πD = XD ≃ XD
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FACTORIZATIONS AND
INVARIANT SUBSPACES
D(z) ∈ F[z]m×m nonsingular.

V ⊂ XD&SDV ⊂ V

⇔

V = D1XD2

V ⊂ XD&SDV ⊂ V

⇔

V = XD2

D(z) = D1(z)D2(z), D1(z), D2(z) ∈ F[z]m×m

CONNECTION BETWEEN ALGEBRA AND
GEOMETRY
DIRECT LINK TO GEOMETRIC CONTROL
AND BEHAVIORS
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INVARIANT SUBSPACES
A : X −→ X ,V ⊂ X

∃W ;X = W ⊕V

A ≃

(
A11 0

A21 A22

)

zI − A =

(
zI − A11 0

−A21 zI − A22

)

=

(
zI − A11 0

−A21 I

)(
I 0

0 zI − A22

)

FUNCTION THEORY AND OPERATOR THEORY, BGU, June 27-30, 2011 – p. 12/40



MODEL
HOMOMORPHISMS
Let D1(z) ∈ F[z]m×m andD2(z) ∈ F[z]p×p be
nonsingular.

SD = σ|XD

Z : XD1 −→ XD2 is anF[z]-homomorphism, i.e.

ZSD1 = SD2Z

if and only if there exist N1(z), N2(z) ∈ F[z]p×m

such that

N2(z)D1(z) = D2(z)N1(z)

Zh = π−N1h = N1(σ)h.

INVERTIBILITY AND COPRIMENESS
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SHIFT REALIZATION

G(z) = V (z)T (z)−1U(z) +W (z) =

(
A B

C D

)





A = ST

Bξ = πTUξ,

Cf = (V T−1f)−1

D = G(∞).

CAj−1Bξ = (V T−1πT zj−1πTUξ)
−1 = (V π

−
T−1zj−1Uξ)

−1 = (zj−1(V T−1U +W )ξ)
−1

Realization is reachable⇔ T (z) andU(z) left
coprime
Realization is observable⇔ T (z) and V (z) right
coprime.
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SYSTEM EQUIVALENCE
Rosenbrock, Fuhrmann
G(z) = Vi(z)Ti(z)

−1Ui(z) +Wi(z), i = 1, 2 (no
coprimeness assumptions);Σi the associated shift
realizations

Pi =

(
Ti(z) −Ui(z)

Vi(z) Wi(z)

)

P1 ≃ P2 if Σ1 ≃ Σ2 (FSE)

P1 ≃ P2 ⇔ ∃M(z), X(z), N(z), Y (z), such that
M(z) ∧L T2(z) = I, & N(z) ∧R T1(z) = I





M(z) 0

X(z) I









T1(z) −U1(z)

V1(z) W1(z)



 =





T2(z) −U2(z)

V2(z) W2(z)









N(z) Y (z)

0 I
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FROM POLYNOMIALS
TO BEHAVIORS
Polynomial Arithmetic:

R(z) ∈ F[z]p×m

R(σ) : z−1
F[[z−1]]m −→ z−1

F[[z−1]]p

R(σ)h = π−Rh

Geometry: Behaviors:
B a linear, shift invariant and closed subspace of
z−1

F[[z−1]]m ⇔

B = XR = KerR(σ)
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FACTORIZATIONS
and SUBBEHAVIORS
Polynomial Arithmetic:
Factorization:

R(z) = R1(z)R2(z)

Geometry:
Behavior Inclusion:

B = XR = KerR(σ) ⊃ XR2 = KerR2(σ) = B2
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BEHAVIOR
HOMOMORPHISMS
THEOREM: Let M(z) ∈ F[z]p×m and
M(z) ∈ F[z]p×m be of full row rank. Then

Z : KerM(σ) −→ KerM(σ) is a continuous
F[z]-homomorphism, i.e. satisfiesZSM = SMZ

(and ...)⇔ there existU(z) ∈ F[z]p×p andU(z) in
F[z]m×m such that
U(z)M(z) = M(z)U(z)

Zh = U(σ)h h ∈ KerM(σ)
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B HOMOMORPHISM
INVERTIBILITY
1. Z is injective⇔ U(z),M(z) are right coprime.
2. Z is surjective⇔ U(z),M(z) are left coprime

and Ker
(
−Ũ(z) M̃(z)

)
= Im

(
M̃(z)

Ũ(z)

)

3. Z is invertible if and only if there exists a doubly
unimodular embedding
(

X(z) −Y (z)

−U(z) M(z)

)(
M(z) Y (z)

U(z) X(z)

)
=

(
I 0

0 I

)

(
M(z) Y (z)

U(z) X(z)

)(
X(z) −Y (z)

−U(z) M(z)

)
=

(
I 0

0 I

)
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CONT.
4. If Z is invertible, then in terms of the doubly
unimodular embedding, its inverse
Z−1 : KerM(σ) −→ KerM(σ)
is given by

Z−1 = −Y (σ)

Two behaviorsB1,B2 are equivalentif there exists
an invertible B-homomorphismZ : B1 −→ B2.
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PENCIL
CHARACTERIZATION

• The pencil (zI − F ) ∈ F[z]n×n is called monic.
• A square pencil(zE − F ) is called regular if
det(zE − F ) is not the zero polynomial.

• A pencil of the form(
zI − A B

)
∈ F[z]n×(n+m) is called an

input pencil.

• A pencil (zE − F ) ∈ F[z]m×n that is not
regular is called singular.
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EQUIVALENCES
• Two pencils(zE − F ), (zE − F ) in F[z]m×n are

called unimodularly equivalent if there exists

unimodular U(z), U(z) such that

(zE − F )U(z) = U(z)(zE − F )

• Two pencils(zE − F ), (zE − F ) in F[z]m×n are
called strict equivalent if ∃L,R ∈ GL•(F) such
that

(zE − F )R = L(zE − F )

CANONICAL FORMS MAY DIFFER!!
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THE WEIERSTRASS
CANONICAL FORM
Assume(zE − F ) ∈ F[z]n×n is a regular pencil, i.e.
det(zE − F ) is a nonzero polynomial.

There exist, up to similarity transformations,
unique matricesA ∈ F

r×r and a nilpotent
N ∈ F

(n−r)×(n−r) such that

(zE − F ) ≃se

(
zIr − A 0

0 In−r − zN

)

PROOF: Use realization theory and Möbius
transformatons.
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PROOF:

(zE − F )−1 =
adj(zE − F )

det(zE − F )
= H(z) + P (z)

H(z) ∈ z−1
F[[z−1]]n×n, P (z) ∈ F[z]n×n

H(z) = C(zI − A)−1B,
z−1P (z−1) = C∞(zI −N)−1B∞

(zE − F )−1 =
(
C C∞

)( zI − A 0

0 I − zN

)−1(
B

B∞

)

(zE − F ) =

(
B

B∞

)−1(
zI − A 0

0 I − zN

)(
C C∞

)−1

Further reduction to (generalized) Jordan form.
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A REDUCTION
zE − F a singular pencil.

There exist a right prime pencil zE1 − F1 and a
pencil zE2 − F2, with E2 of full row rank for which
we have

zE − F ≃se

(
zE1 − F1 0

0 zE2 − F2

)
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PENCIL
REPRESENTATIONS
(zE − F ) ∈ F[z]n×n is unimodular ⇔

(zE − F ) ≃se (I − zN)

E is of full row rank ⇔

zE − F ≃se

(
zI −M 0 0

0 zI − A −B

)

(zE − F ) is left prime ⇔

(zE − F ) ≃se

(
I − zN 0 0

0 zI − A −B

)

(A,B) reachable.
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DUAL PENCIL
REPRESENTATIONS
E has full column rank ⇔

(zE − F ) ≃se




zI −M 0

0 zI − A

0 C




(zE − F ) is right prime ⇔

(zE − F ) ≃se




I − zN 0

0 zI − A

0 C




(C,A) observable.
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DIRECT SUM
DECOMPOSITION
zE − F ∈ F[z]q×s. ∃ an essentially unique, matrix
M , a nilpotent matrix N , a reachable pair(A,B),
with B of full column rank, and an observable pair
(C,A), with C of full row rank, such that the
following equivalence holds

zE − F ≃se




I − zN

zI − A

C

zI −M

zI − A −B

0
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FACTORIZATIONS




zI −M 0 0

0 zI −A −B





=





zI −M 0

0 I









I 0 0

0 zI −A −B





=





I 0 0

0 zI −A −B













zI −M 0

0 I 0

0 0 I









B = Ker





σI −M 0 0

0 σI −A −B





= Ker





I 0 0

0 σI −A −B



⊕ Ker









σI −M 0 0

0 I 0

0 0 I









= Br ⊕ Ba
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FEEDBACK AND
STRICT EQUIVALENCE

R
(
A2 B2

)
=
(
A1 B1

)( R 0

K P

)

(A1, B1) ≃fb (A2, B2)

⇔(
zI − A1 −B1

)
≃se

(
zI − A2 −B2

)

(C1, A1) ≃oi (C2, A2)

⇔(
zI − A1

C1

)
≃se

(
zI − A2

C2

)

REACHABILITY AND OBSERVABILITY
INDICES, BRUNOVSKY FORMS
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LEFT WIENER-HOPF
FACTORIZATIONS
D(z) ∈ F[z]m×m NONSINGULAR
U−(z) ∈ F[[z−1]]m×m, U+(z) ∈ F[z]m×m

UMIMODULAR

U−(z)D(z)U+(z) = Dβ(z) = diag(zµ1, . . . , zµm)

REACHABILITY INDICES: µ1 ≥ · · · ≥ µm ≥ 0
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BRUNOVSKY FORM
(A,B) reachable,B full column rank.

(zI − A)−1B = H(z)D(z)−1

(zI − A− BK)−1B = H(z)Dβ(z)
−1

Dβ(z) = U−(z)D(z)U+(z) = diag(zµ1, . . . , zµm)

USE SHIFT REALIZATION:
(A,B) ≃fb (Aβ, Bβ)

(
zI − Aβ −Bβ

)
≃se diag(Lκ1

, . . . , Lκm
)

FUNCTION THEORY AND OPERATOR THEORY, BGU, June 27-30, 2011 – p. 32/40



BRUNOVSKY FORM

Aκ =




0

1 0

0 1 0

. .

. .

. .

1 0




, Bκ =




1

0

.

.

.

0




Lκ =




−1 z

0 −1 .

. . .

. . .

0 −1 z




∈ F[z]κ×(κ+1)
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MORSE GROUP

(T, J, S,K,R)(A,B,C) =

(SAS−1 − JCS−1 − SBR−1KS−1, SBR−1, TCS−1)

(
zI − A1 −B1

C1 0

)
≃se

(
zI − A2 −B2

C2 0

)

⇔(
S J

0 T

)(
zI − A1 −B1

C1 0

)

=

(
zI − A2 −B2

C2 0

)(
S 0

K R

)
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KRONECKER FORM
F algebraically closed.
Given a singular pencilzE − F ∈ F[z]m×p, then the
pencil is strict equivalent to a block diagonal pencil
of the form
diag(J(λ1,n1), . . . , J(λt,nt), Nµ1

, . . . , Nµk
, Lκ1

, . . . , Lκm , L̃ν1 , . . . , L̃νp , 0)

whereJ(λi,ni) are the Jordan blocks corresponding
to the eigenvaluesλi, Nµj

the Jordan blocks
corresponding to the infinite zeros,κi the
reachability indices of the pair (A,B) and νj the
observability indices of the pair (C,A). The
canonical pencil is uniquely determined up to the
reordering of the blocks.
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MODIFIED
KRONECKER FORM

Nµ =




1

−z .

. .

. .

−z 1




≃




z −1 0

. . .

. −1 .

z 1

1 . . 0 0




=

(
zI −N∞ b4

c4 0

)
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MODIFIED
KRONECKER FORM

C =

(
0 0 C3 0

0 0 0 C4

)
,

A =




A1 0 0 0

0 A2 0 0

0 0 A3 0

0 0 0 A4


 ,




0 0

B2 0

0 0

0 B4




A1 is the Jordan form of M , (A2,B2) is the
Brunovsky form of (A,B), (C3,A3) the dual
Brunovsky form of (C,A) andA4 = N∞ the
modified Jordan form of N .
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DIRECT SUM
DECOMPOSITION

X = X1 ⊕X2 ⊕X3 ⊕X4

≃ V∗/R∗ ⊕R∗ ⊕X/O∗ ⊕O∗/V
∗

R∗ = X2

V∗ = X1 ⊕X2

V∗ = X2 ⊕X4

O∗ = X1 ⊕X2 ⊕X4

R∗ = V∗ ∩ V∗

O∗ = V∗ + V∗

O∗/V
∗ ≃ V∗/R

∗

O∗/V∗ ≃ V∗/R∗.
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MORSE DIAGRAM
X

{0}

V∗ V∗

R∗ = V∗ ∩ V∗

O∗ = V∗ + V∗

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

X1

X2

X3

X4
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THANKS

THANKS FOR YOUR ATTENTION
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