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Classical Scattering theory on the half line.

Consider the following differential equation with the spectral
parameter λ, defined on an interval I, where q(x) is called
potential

− d2

dx2
y(x) + q(x)y(x) = −iλy(x), −iλ = s2 (1)

It was studied by C. Sturm [Stu36], R. Liouville [Lio95] in
connection to dynamics, heat equation. Using monodromy
preserving deformation problem of Linear Differential Equations
(LDE) by L. Schlezinger [Sch08], R. Fuchs [Fuc07] and Garnier
[Fuc12]. Using Riemann transformations by Marchenko [Mar] and
using the scattering theory by Lax–Phillips [LxPh], Gelfand-Levitan
[GL]. We focus on the last technique.
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Under condition
∫∞

0 x |q(x)|dx <∞ [F] introduce Jost solutions

φ(x , s) : φ(0, s) = 0, φ′(0, s) = 1, (2)

f (x , s) : lim
x→∞

e−isx f (x , s) = 1. (3)

Define M(s) = φ′(x , s)f (x , s)− f ′(x , s)φ(x , s) and

Ω(x , y) = 2/π

∫ ∞
0

sin(kx)

k
[

1

M(k)M(−k)
− 1]

sin(ky)

k
k2dk.

Solve the Gelfand-Levitan equation [F, (8.5)]

K (x , y) + Ω(x , y) +

x∫
0

K (x , t)Ω(t, y)dt = 0, x > y . (4)

from where q(x) = 2
d

dx
K (x , x).
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Airy equation.

For the solution of uxx = xu, Consider the collection

Γk = {λ | arg λ =
2k − 1

6
π, }

oriented towards infinity.

Figure: Fuchsian Riemann-Hilbert problem
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Let Γ = Γ2 ∪ Γ4 ∪ Γ6. The classical solution of the Airy equation is

u(x) =
i

π
{s2

∫
Γ2

+s4

∫
Γ4

+s6

∫
Γ6

}e−
8i
3
λ3−2ixλdλ,

where s2 + s4 + s6 = 0.

On the other hand,
u(x) = 2 lim

λ→∞
λY12(λ), where Y (λ, x) is the solution of the

abelian RH problem with contour Γ and G (λ) given by

G (λ) = G (λ, x) =

[
1 ske−

8i
3
λ3−2ixλ

0 1

]
, λ ∈ Γk .
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Second Painlevé equation

Augment the contour Γ by Γ1, Γ3, Γ5 and jump matrix there:

G (λ) = G (λ, x) =

[
1 0

ske
8i
3
λ3+2ixλ 1

]
, λ ∈ Γk

Add the following cyclic relations

sk+3 = −sk , k = 1, 2, 3; s1 − s2 + s3 + s1s2s3 = 0. (5)

If Y (λ, x) is the solution of this non-abelian RH problem, then

u(x) = 2 lim
λ→∞

λY12(λ)

will satisfy nonlinear second-order differential equation

uxx = xu + 2u3. (6)

Proof of this fact is implicit: Bolibruch, Its, Kapaev [BIK].
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Correspondence between differential equations and
functions on curves.

In all three cases there is created a correspondence between a
differential equation and a (matrix) function on a curve:

1. SL equation −y ′′ + q(x)y = λy corresponds to exactly one
function M(s), defined on the positive real line.

2. uxx = xu corresponds to the curve Γ2 ∪ Γ4 ∪ Γ6 and matrix
function (=jumps) on it Gi (λ, x),

3. uxx = xu + 2u3 corresponds to a curve ∪6
i=1Γi and jumps

Gi (λ, x) on it.

Correspondence is implemented through Gelfand-Levitan equation
(1.) or Riemann Hilbert problem (2.,3.). Proof of (3.) involves
completely integrable systems (Lax Pair).
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Plan of the lecture:

1. Completely integrable 2D Systems and their decoding using
vessels

2. An example: Sturm Liouville (SL) vessels

3. Vessels with prescribed singularities (on curves)
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Frequency domain analysis
Simplified form of a vessel
Construction of a vessel

Overdetermined 2D systems and their transfer functions
2D systems, invariant in one direction (Phd thesis of A. M., V. Vinnikov, 2009 [M])

Overdetermined t1-invariant 2D system is a linear
input-state-output (i/s/o) system of the form

Σ :


∂
∂t1

x(t1, t2) = A1(t2)x(t1, t2) + B(t2)σ1(t2)u(t1, t2)

∂
∂t2

x(t1, t2) = A2(t2)x(t1, t2) + B(t2)σ2(t2)u(t1, t2)

y(t1, t2) = u(t1, t2)− B∗(t2)x(t1, t2)

(7)

where for some Hilbert spaces H, E
A1(t2),A2(t2) : H → H, B(t2) : E → H,
σ1(t2), σ2(t2) : E → E

are (bounded or not) operators. u(t1, t2) ∈ E and y(t1, t2) ∈ E are
called the input and the output, x(t1, t2) ∈ H is called the state.
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Demanding 1. complete integrability:

∂

∂t1

( ∂
∂t2

x(t1, t2)
)

=
∂

∂t2

( ∂
∂t1

x(t1, t2)
)
. (8)

2. Mapping of the input u(t1, t2)

σ2(t2)
∂

∂t1
u − σ1(t2)

∂

∂t2
u + γ(t2)u = 0. (9)

to the output y(t1, t2)

σ2(t2)
∂

∂t1
y − σ1(t2)

∂

∂t2
y + γ∗(t2)y = 0 (10)

for some γ(t2), γ∗(t2) : E → E .
3. Energy balances

∂

∂t1
< x , x > + < σ1y , y >=< σ1u, u >,

∂

∂t2
< x , x > + < σ2y , y >=< σ2u, u >
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Overdetermined 2D systems and their transfer functions
t1-invariant vessel, A.M.-V. Vinnikov [MV1, MVc]

A t1-invariant conservative vessel as a collection of operators
and spaces:

V = (A1,A2,B;σ1, σ2, γ, γ∗;H, E)

which are all operator-functions of t2 and satisfy certain regularity
assumptions and the following axioms:

d
dt2

A1 = A2A1 − A1A2,

A1 + A∗1 + Bσ1B∗ = 0,
A2 + A∗2 + Bσ2B∗ = 0,
d
dt2

(
Bσ1

)
− A2Bσ1 + A1Bσ2 + Bγ = 0,

d
dt2

(
σ1B∗

)
+ σ1B∗A2 − σ2B∗A1 − (γ∗ + d

dt2
σ1)B∗ = 0,

γ = σ2B∗B̃σ1 − σ1B∗B̃σ2 + γ∗.
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Remarks: 1. The first equation is the Lax equation, which plays
an important role in completely integrable non-linear PDEs. It
follows from the Lax equation that the spectrum of A1(t2) is
independent of t2. Defining the fundamental solution

d

dt2
F (t2, t

0
2 ) = A2(t2)F (t2, t

0
2 ), F (t0

2 , t
0
2 ) = I ,

we obtain
A1(t2) = F (t2, t

0
2 )A1(t0

2 )F (t2, t
0
2 )−1. (11)

2. This object is interesting, because it is time varying on the one
hand, but has all the advantages of the time-invariant case on the
other hand: transfer function, functional model.
3. We shall always assume that σ1(t2) is invertible for all t2.
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Overdetermined 2D systems and their transfer functions
Frequency domain analysis

Performing a partial separation of variables for the system (7),

u(t1, t2) = uλ(t2)eλt1 ,
x(t1, t2) = xλ(t2)eλt1 ,
y(t1, t2) = yλ(t2)eλt1 ,

we arrive at the notion of the transfer function.

Compatibility PDEs for u(t1, t2), y(t1, t2) become ODEs for
uλ(t2), yλ(t2) with the spectral parameter λ,

λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2

uλ(t2) + γ(t2)uλ(t2) = 0,

λσ2(t2)yλ(t2)− σ1(t2) ∂
∂t2

yλ(t2) + γ∗(t2)yλ(t2) = 0.
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The corresponding i/s/o system becomes{
λxλ(t2) = A1(t2)xλ(t2) + B(t2)σ1(t2)uλ(t2)
d
dt2

xλ(t2) = A2(t2)xλ(t2) + B(t2)σ2(t2)uλ(t2).

The output yλ(t2) = uλ(t2)− B∗(t2)xλ(t2) may be found from the
first i/s/o equation:

yλ(t2) = S(λ, t2)uλ(t2),

using the transfer function

S(λ, t2) = I − B∗(t2)(λI − A1(t2))−1B(t2)σ1(t2). (12)
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It turns out (A. M. 2011 [MSL]) that under certain conditions, one
can obtain a simplified form. Defining
X2(t2) = F (t2, t

0
2 )F ∗(t2, t

0
2 ), and using transformation of the inner

space, one can obtain that A1 is constant and A2 = 0. As a result
there is obtained a simplified form of a vessel

V = (A,X(t2) = X∗(t2),B(t2);σ1, σ2, γ, γ∗;H, E)

where operators satisfy

0 =
d

dt2
(B(t2)σ1(t2)) + AB(t2)σ2(t2) + B(t2)γ(t2), (13)

AX(t2) + X(t2)A∗ + B(t2)σ1(t2)B∗(t2) = 0, (14)

d

dt2
X(t2) = B(t2)σ2(t2)B∗(t2), (15)

γ∗(t2) = γ(t2) + σ2(t2)B∗(t2)X−1(t2)B(t2)σ1(t2) (16)

−σ1(t2)B∗(t2)X−1(t2)B(t2)σ2(t2)
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Review of a simplified vessel

Definition
A vessel in a simplified form is a collection:

KV = (A,B(t2),X(t2);σ1, σ2, γ, γ∗(t2);H, E , I = [a, b]), (17)

where A,X(t2) = X(t2)∗ : H → H, B(t2) : H → E bounded, X(t2)
invertible on I

and

0 =
d

dx
(B(t2)σ1) + AB(t2)σ2 + B(t2)γ, (18)

AX(t2) + X(t2)A∗ + B(t2)σ1B(t2)∗ = 0, (19)

d

dx
X(t2) = B(t2)σ2B(t2)∗, (20)

γ∗(t2) = γ + σ1B(t2)∗X−1(t2)B(t2)σ2 − σ2B(t2)∗X−1(t2)B(t2)σ1(21)
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Review of a simplified vessel (continued)

The vessel is associated to the completely integrable system

Σ :


λxλ(t2) = A1xλ(t2) + B(t2)σ1(t2)uλ(t2)

∂
∂t2

xλ(t2) = B(t2)σ2(t2)uλ(t2)

yλ(t2) = u(t1, t2)− B∗(t2)X−1(t2)xλ(t2)

(22)

And the transfer function

S(λ, t2) = I − B∗(t2)X−1(t2)(λI − A1)−1B(t2)σ1(t2)

maps solutions uλ(t2) to yλ(t2) (= S(λ, t2)uλ(t2)):

λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2

uλ(t2) + γ(t2)uλ(t2) = 0,

λσ2(t2)yλ(t2)− σ1(t2) ∂
∂t2

yλ(t2) + γ∗(t2)yλ(t2) = 0.

Andrey Melnikov Scattering and Vessels



Problems involving functions on curves
Outline

Overdetermined 2D systems and their transfer functions
SL Vessels

SL Vessels on Curves

2D systems, invariant in one direction
t1-invariant vessel
Frequency domain analysis
Simplified form of a vessel
Construction of a vessel

Review of a simplified vessel (continued)

The vessel is associated to the completely integrable system

Σ :


λxλ(t2) = A1xλ(t2) + B(t2)σ1(t2)uλ(t2)

∂
∂t2

xλ(t2) = B(t2)σ2(t2)uλ(t2)

yλ(t2) = u(t1, t2)− B∗(t2)X−1(t2)xλ(t2)

(22)

And the transfer function

S(λ, t2) = I − B∗(t2)X−1(t2)(λI − A1)−1B(t2)σ1(t2)

maps solutions uλ(t2) to yλ(t2) (= S(λ, t2)uλ(t2)):

λσ2(t2)uλ(t2)− σ1(t2) ∂
∂t2

uλ(t2) + γ(t2)uλ(t2) = 0,

λσ2(t2)yλ(t2)− σ1(t2) ∂
∂t2

yλ(t2) + γ∗(t2)yλ(t2) = 0.

Andrey Melnikov Scattering and Vessels



Problems involving functions on curves
Outline

Overdetermined 2D systems and their transfer functions
SL Vessels

SL Vessels on Curves

2D systems, invariant in one direction
t1-invariant vessel
Frequency domain analysis
Simplified form of a vessel
Construction of a vessel

Construction of a vessel

Starting from a function

S(λ, t0
2 ) = I − B0

∗X0
−1(λI − A)−1B0σ1,

fir which X0
∗ = X0 and Lyapunov equation

AX0 + X0A∗ + B0σ1B0
∗ = 0 holds, we solve first (18)

0 =
d

dx
(B(t2)σ1) + AB(t2)σ2 + B(t2)γ, B(x0) = B0.

Then we solve (20)

d

dx
X(t2) = B(t2)σ2B(t2)∗, X(t2) = X0

and define γ∗(t2) from γ using (21). Thus a vessel is created.
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Sturm Liouville vessel parameters

Since variable t1 disappeared in the equations, we use x from now
on for t2.

Definition
Sturm Liouville parameters are

σ1 =

[
0 1
1 0

]
, σ2 =

[
1 0
0 0

]
, γ =

[
0 0
0 i

]
,

γ∗(x) =

[
−i(β′(x)− β2(x)) −β(x)

β(x) i

]
for a real valued differentiable function β(x), defined on an interval
I.
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Transfer function of a SL vessel

S(λ, x) = I − B(x)∗X−1(x)(λI − A)−1B(x)σ1

and multiplication by S(λ, x) maps solutions

[
u1(λ, x)
u2(λ, x)

]
of

{
− ∂2

∂x2 u1(λ, x) = −iλu1(λ, x)

u2(λ, x) = −i ∂∂x u1(λ, x)

to solutions

[
y1(λ, x)
y2(λ, x)

]
= S(λ, x)

[
u1(λ, x)
u2(λ, x)

]
of

{
− ∂2

∂x2 y1(λ, x) + 2β′(x)y1(λ, x) = −iλy1(λ, x)

y2(λ, x) = −i [ ∂∂x y1(λ, x)− β(x)y1(λ, x)].
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Construction of S(λ, x0) for a given potential

Fixing x0, for which the potential q(x) is locally integrable in a
small neighborhood,

Main Theorem
There exists a vessel on x0 ∈ I0 ⊆ I realizing this potential (i.e.
2β′(x) = q(x).
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Gelfand-Levitan equation for vessels

Defining

Ω(x , y) =
[

1 0
]

B(x)B∗(y)

[
1
0

]
,

K (x , y) = −
[

1 0
]

B∗(x)X−1(x)B(y)

[
1
0

]

one finds that Gelfan-Levitan (4) equation holds and

q(x) = 2β′(x) = 2
d

dx
K (x , x).
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tau function

Definition
For a given realization

S(λ, x) = I − B∗(x)X−1(x)(λI − A)−1B(x)σ1

tau function τ(x) is defined as

τ = det(X−1(x0)X(x)) (23)

Theorem
The following formula holds

q(x) = 2β′(x) = −2(ln τ(x))′′
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Construction of a vessel on a curve Γ
Implementation of the classical case

Let us choose a Jordan curve Γ = −Γ∗ = {µ(`) | ` ∈ J} and define

H = L2(Γ) = {f (µ) |
∫
J
|f (µ(`)|2d` <∞}.

Define the operator A as multiplication on µ: Af (µ) = −iµf (µ).
For a bounded interval it is a well defined operator. When Γ is
unbounded, it is unbounded operator, with an obvious domain.
Define B(x) as a solution of (18)

0 =
d

dx
(B(x)σ1) + AB(x)σ2 + B(x)γ,

Then it turns out that (without loss of generality)
B(x) : C2 → L2(Γ) is an operator of multiplication on

B(µ, x) = c(µ)

[
sin(tx)

t
−i cos(tx)

]
, µ = it2.
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Construction of a vessel on a curve Γ
Implementation of the classical case

Finally, we can define

X(x)f (µ) =

∫
J

B(µ, x)σ1B∗(δ, x)

i(µ− δ∗)
f (δ)d`

and γ∗(x) by (21)

γ∗(x) = γ + σ1B(x)∗X−1(x)B(x)σ2 − σ2B(x)∗X−1(x)B(x)σ1

Lemma
The collection

K� = (A,B(µ, x),X(x);σ1, σ2, γ, γ∗(x), L2(Γ),C2, I),

is a vessel.
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Finally, we can define

X(x)f (µ) =

∫
J

B(µ, x)σ1B∗(δ, x)

i(µ− δ∗)
f (δ)d`

and γ∗(x) by (21)

γ∗(x) = γ + σ1B(x)∗X−1(x)B(x)σ2 − σ2B(x)∗X−1(x)B(x)σ1

Lemma
The collection

K� = (A,B(µ, x),X(x);σ1, σ2, γ, γ∗(x), L2(Γ),C2, I),

is a vessel.

Andrey Melnikov Scattering and Vessels



Problems involving functions on curves
Outline

Overdetermined 2D systems and their transfer functions
SL Vessels

SL Vessels on Curves

Construction of a vessel on a curve Γ
Implementation of the classical case

Choosing a vessel of this kind, one finds that∫
q(x) = Tr(X′(x)X−1) = Tr(B(x)σ2B∗(x)X−1 =

=
[

1 0
]

B∗(x)X−1B(x)

[
1
0

]
=

=
∫
J c∗(µ)

sin(tx)

t
X−1(c(µ)

sin(tx)

t
)d`
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Classical inverse scattering and its possible generalizations.

Construction of S(λ, x0) for a given q(x) locally integrable
potential on interval [x0, L] (x0 > 0), uses inverse scattering theory
for the potential

q̃(x) =

{
q(x), x ∈ I,
0, x 6∈ I.

In this case the obtained matrix S(λ, x0) and a corresponding
vessel are defined on the curve iR+ (usually the whole curve). The
generalization of the classical inverse scattering theory will be
created, by studying the properties of the potential, obtained for
other curves.
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Thank you
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