Hilbert subspaces meet Chu spaces

Xavier MARY MODAL'X Université Paris-Ouest Nanterre-La Défense, France

FUNCTION THEORY AND OPERATOR THEORY: INFINITE DIMENSIONAL AND FREE SETTING, BEER-Sheva, June 27-30, 2011.

Introduction

From the 50's: generalizations of Hilbert spaces

- Quadratic spaces (Gross '64);
- Orthomodular spaces/Form Hilbert spaces (Piron '64, Araki '66, Keller '80, Soler '95);
- Bilinear modules over commutative rings (Knebusch '69);
- Hilbert C*-modules (Kaplansly '53, Paschke '73, Rieffel '74);
- Hilbertian Operator spaces (Pisier '96).

Questions:

- Global common theory ?
- Item to generalize Hilbert subspaces ?

E locally convex vector space (l.c.s.) on \mathbb{R} or \mathbb{C} .

Hilbert subspaces (Aronszajn, Schwartz,...) \overline{H} is a Hilbert subspace of $E(H \hookrightarrow E)$ if H is a Hilbert space, continuously embedded in E.

Reproducing Kernel Hilbert Spaces

RKHS are Hilbert subspaces of a product space \mathbb{C}^{X} .

- The Hardy space, the Bergman space are RKHS.
- Hilbert subspaces of the space of holomorphic functions, or distributions.

We need analogs of:

- Locally convex spaces and continuous maps
- Prehilbert spaces
 - symmetry
 - positivity
- Completeness

And also, what about reproducing kernels ?

Possible answer : the Chu category (Barr and Chu '79).

Chu categories (or Chu spaces) are linked with:

- Linear logic (Girard, Seely) / Dialectica (Hyland, de Paiva)
- Theoretical computer science (Pratt)
- Functional analysis: Pairs of TVS, "two-norm" spaces (Barr)
- Topology, algebraic geometry (Giuli, Tholen) / Homotophy (Egger)

I. What are Chu spaces ?

A glimpse of category theory

A category $\ensuremath{\mathbb{C}}$ is a collection

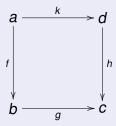
Of <u>objects</u> *a*, *b*, *c*, ... ∈ Obj(C)

• Of <u>arrows</u> (morphisms) between objects $a \xrightarrow{t} b$

Plus a composition law $g \circ f : a \xrightarrow{f} b \xrightarrow{g} c$

Commutative diagrams

 $g \circ f = h \circ k$



Monoidal Category

 $\ensuremath{\mathbb{C}}$ is monoidal if

- It has a "tensor product" ⊗.
- It has an identity object I s.t. $X \otimes I \sim X \sim I \otimes X$.

Closed Monoidal category

- It has an "internal hom": C(X, Y) can be interpreted as an object in C (sometimes denoted by X → Y).
- Adjointness conditions between the tensor product and the internal hom.

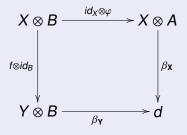
Examples are:

- Sets with product \times of sets. $I = \{1\}$.
- Modules over a commutative ring *R* with classical tensor product ⊗. *I* = *R*.

Chu spaces (Barr and Chu '79)

 $(\mathcal{C}, \otimes) =$ closed monoidal category, d = dualizing object. Category *Chu* $(\mathcal{C}, \otimes, d)$ has

- for objects triples $\mathbf{X} = (X, A, \beta : X \otimes A \rightarrow d) (\mathbf{X} = (X \otimes A \xrightarrow{\beta} d))$
- for <u>arrows</u> $\mathbf{f} : \mathbf{X} \to \mathbf{Y}, \mathbf{f} = (f, \varphi), f : X \to Y, \varphi : B \to A$ such that



Example 1: Boolean Chu spaces

Boolean Chu spaces in Logic, Computer science, Topology...

 $Chu_2(Set) = Chu(Set, \times, \{0, 1\})$

An object $\mathbf{X} = (X \times A \xrightarrow{\beta} \{0, 1\})$ is equivalently defined as

- a function $\beta : X \times A \rightarrow \{0, 1\}$
- a relation $\mathcal R$ on X imes A, $\beta(x, a) = 1 \iff x \mathcal R a$
- a 0 1-valued matrix

An <u>arrow</u> $\mathbf{f} = (f, \varphi) \in \mathbf{Chu}(\mathbf{X}, \mathbf{Y})$ is a pair a functions $f : \mathbf{X} \to \mathbf{Y}, \varphi : B \to A$ such that

$$\forall x \in X, \forall b \in B, f(x) \mathcal{R}_{\mathbf{Y}} b \iff x \mathcal{R}_{\mathbf{X}} \varphi(b)$$

Example 1: Boolean Chu spaces

Let $X = \{x, y, z\}, A = \{a, b\}$. Then

$$\mathbf{X} = (X, A, \beta = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 and $\mathbf{X}' = (X, A, \beta' = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$

are Chu spaces.

 $\mathbf{f} = (f, arphi): \mathbf{X}'
ightarrow \mathbf{X}$ defined by

$$f(x) = f(z) = z, f(y) = x, \ \varphi(a) = \varphi(b) = b$$

is a morphism of Chu spaces, but there is no morphism from ${\bf X}$ to ${\bf X}'.$

Dualizing object $d = \mathbb{C}$ instead of $\{0, 1\}$ of the previous slide.

 $Chu_{\mathbb{C}}(Set) = Chu(Set, \times, \mathbb{C})$ An object $\mathbf{X} = (X \times A \xrightarrow{\kappa} \mathbb{C})$ is a two-variable complex function K(x, a) on $X \times A$. An arrow $\mathbf{f} = (f, \varphi) \in Chu(\mathbf{X}, \mathbf{Y})$ is a pair a functions $f: X \to Y, \varphi: B \to A$ such that

 $\forall x \in X, \forall b \in B, K_{\mathbf{Y}}(f(x), b) = K_{\mathbf{X}}(x, \varphi(a))$

Example: $\mathbf{X} = (\mathbb{R}, \mathbb{R}, \mathcal{K}(x, y) = x^2 + iy).$

R =commutative ring, d fixed R-module.

 $Chu_d(R - mod) = Chu(R - mod, \otimes, d)$

An object $\mathbf{X} = (X \otimes A \xrightarrow{\beta} d)$ is a *R*-bilinear map $\beta : X \times A \to d$. An arrow $\mathbf{f} = (f, \varphi) \in Chu(\mathbf{X}, \mathbf{Y})$ is a pair of "adjoint" maps $f : X \to Y, \varphi : B \to A$ such that

$$\forall x \in X, \forall b \in B, \ \beta_{\mathbf{Y}}(f(x), b) = \beta_{\mathbf{X}}(x, \varphi(b))$$

Remark: works also for non-commutative rings with involution / needs either bimodules or a generalized notion of Chu spaces.

Abelian Groups ($\leftrightarrow \mathbb{Z}$ -modules)

$$\bigcirc \ \underline{R} = d = \mathbb{Z}.$$

$Chu_{\mathbb{Z}}(Ab) = Chu(Ab, \otimes, \mathbb{Z})$

An object $\mathbf{X} = (X \otimes A \xrightarrow{\beta} \mathbb{Z})$ is a pair of of Abelian groups X and A together with a bi-additive form $\beta : X \times A \to \mathbb{Z}$, *i.e.* an integral bilinear form. Such pairings occur for instance in the theory of Unimodular Lattices.

$Chu_{\mathbb{R}/\mathbb{Z}}(Ab) = Chu(Ab, \otimes, \mathbb{R}/\mathbb{Z})$

An object $\mathbf{X} = (X \otimes A \xrightarrow{\beta} \mathbb{R}/\mathbb{Z})$ is a pair of Abelian groups X and A together with a bi-additive map $\beta : X \times A \to \mathbb{R}/\mathbb{Z}$. Such pairings occur for instance in the theory of Elliptic Curves.

$R = d = \mathbb{K}$ is a field.

 $\mathit{Chu}_{\mathbb{K}}(\mathcal{V}) = \mathit{Chu}(\mathcal{V}, \otimes, \mathbb{K})$

An object $\mathbf{X} = (X \otimes A \xrightarrow{\beta} R)$ is a pair of vector spaces together with a bilinear form β on $X \times A$.

IT IS NOT a dual pair of vector spaces, for the latter verify a separation (non-degeneracy) property!

Fortunately... There exists a notion of nondegeneracy for Chu spaces!

Idea

Use the arrow β to identify A with arrows from X to d (the "internal hom").

Precisely, exists $(X \multimap d) \in Obj(\mathcal{C})$, a special class of maps from *X* to *d* and $(d \multimap A)$ (maps from *A* to *d*) such that the morphism $\beta : X \otimes A \rightarrow d$ defines:

- An arrow $\beta_r : A \longrightarrow (X \multimap d);$
- An arrow $_{l}\beta: X \longrightarrow (d \sim A)$.

Remark:

- These maps exists \iff the category is <u>closed</u>.
- For symmetric (or braided) tensor products,
 (X → d) ~ (d → X);

Extensional Chu spaces

- $\mathbf{X} = (X \otimes A \xrightarrow{\beta} d)$ is extensional if $\beta_r : A \to (X \multimap d)$ is monic ("injective");
- $\mathbf{X} = (X \otimes A \xrightarrow{\beta} d)$ is coextensional if $_{l}\beta : X \to (d \multimap A)$ is monic.

Extensional-coextensional (biextensional) Chu spaces are denoted by

chu_d(୯)

(instead of $Chu_d(\mathcal{C})$).

 $Chu_2(Set) = Chu(Set, \times, \{0, 1\})$

We interpret $X \multimap \{0, 1\}$ as <u>column vectors</u> (of length X) and $\{0, 1\} \multimap A$ as <u>row vectors</u>.

Let $\mathbf{X} = (X \times A \xrightarrow{\beta} \{0, 1\})$ with β interpreted as a boolean matrix. The map β defines

- a map β_r : A → (X → {0, 1}) that associates to a the column with LABEL a;
- a map $_{l}\beta: X \to (\{0, 1\} \multimap A)$ that associates to *x* the ROW WITH LABEL *X*.

X is extensional \iff columns are disctinct.

Example 1: Boolean Chu spaces

Let
$$X = \{x, y, z\}, A = \{a, b\}, Z = \{z\}$$
. Then

$$\mathbf{X} = (X, A, \beta = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix})$$

is both extensional and coextensional, whereas

$$\mathbf{X}' = (X, A, \beta = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix})$$

is extensional but **not** coextensional $(R_x = R_z)$.

Example 2: kernel functions

$Chu_{\mathbb{C}}(Set) = Chu(Set, \times, \mathbb{C})$

Let $\mathbf{X} = (X \times A \xrightarrow{K} \mathbb{C})$. The two-variable function *K* defines

- a map $K_r : A \to (X \multimap \mathbb{C}) = \mathbb{C}^X$ defined by $K_r(a) = K(., a);$
- a map $_{I}K : X \to (\mathbb{C} \multimap A) = \mathbb{C}^{A}$ defined by $_{I}K(x) = K(x, .)$.

X is extensional if K_r is injective:

$$K(.,a) = K(.,b) \iff a = b$$

or equivalently (separation property):

$$a \neq b, \Rightarrow \exists x \in X, K(x, a) \neq K(x, b)$$

 $(\mathbb{R}, \mathbb{R}, K(x, y) = x^2 + iy)$ is coextensional, but not extensional (K(1, .) = K(-1, .)).

Example 3: R-modules, d = R

 $Chu_{R}(R - mod) = Chu(R - mod, \otimes, R)$ Let $\mathbf{X} = (X \otimes A \xrightarrow{\beta} R)$. The maps are • $\beta_{r} : A \to (X \multimap R) = L(X, R)$ defined by $\beta_{r}(a) = \beta(. \otimes a)$; • $_{l}\beta : X \to (R \multimap A) = L(A, R)$ defined by $_{l}\beta(x) = \beta(x \otimes .)$. \mathbf{X} is extensive if for all $a \in A$

$$(\forall x \in X, \beta(x \otimes a) = 0) \Rightarrow a = 0$$

It is coextensive if for all $x \in X$

$$(\forall a \in A, \beta(x \otimes a) = 0) \Rightarrow x = 0$$

- Let *E* be a l.c.s, *E'* its continuous dual. Then $\mathbf{E} = (E, E', \langle ., . \rangle)$ with evaluation pairing is extensional by the Hahn-Banach theorem, and coextensional by construction.
- Hilbert spaces are extensional and coextensional (biextensional).
- Let 𝒫 be the space of polynomials, then $\mathbf{X} = (𝔅 𝔅 𝔅 → 𝔅)$ with bilinear map $β(P, Q) = \int_{[0,1]} P'(x)Q(x)dx$ is extensional but **not** coextensional (β(1,.) = 0).

$R = d = \mathbb{Z}$

Let $X = p\mathbb{Z}$, $A = \mathbb{Z}$, with biaddive map $\beta(x, a) = \frac{xa}{p}$). Then $\mathbf{X} = (X, A, \beta)$ is extensional, ($\beta(., a) = 0 \iff a = 0$) and coextensional.

$R = \mathbb{Z}, d = \mathbb{R}/\mathbb{Z}$

• Let $X = A = \mathbb{Z}/n\mathbb{Z}$, with biaddive map $\beta(x, a) = \frac{xa}{n}$). Then $\mathbf{X} = (X, A, \beta)$ is biextensional.

• Let $Y = \mathbb{R}$, $B = \mathbb{Z}$ with biaddive map $\gamma(y, b) = yb$). $\mathbf{Y} = (Y, b, \gamma)$ is extensional but not coextensional $(\gamma(y, .) = \gamma(y + 1, .))$.

Definition (Weak and Mackey topologies (Mackey, Grothendieck, Treves))

Let E be a l.c.s., with (continuous) dual E'. A topology τ on E is **polar** if $(E, \tau)' = E'$.

The weak (initial) topology is the coarsest polar topology.

The Mackey topology is the finest polar topology.

 E_w (resp. E_m) = E with the weak (resp. Mackey) topology.

Theorem (L. Schwartz)

$$H \hookrightarrow E \iff H \hookrightarrow E_w \iff H \hookrightarrow E_m$$

Let $\textit{chu}_{\mathbb{C}}(\mathcal{V})$ be the category of extensional-coextensional Chu vector spaces. Then

Theorem (Barr 2000)

 $chu_{\mathbb{C}}(\mathcal{V}) \sim Weak \text{ spaces} \sim Mackey \text{ spaces}$

III. Symmetry ?

Symmetry

In classical cases, obvious natural bijection *s* between maps $X \otimes A \rightarrow d$ and maps $A \otimes \overline{X \rightarrow d}$.

Define an involution (-)*

$$(X, A, X \otimes A \xrightarrow{\beta} d)^* = (A, X, A \otimes X \xrightarrow{s(\beta)} d)$$

2 Define symmetric objects as $\mathbf{X} = (X \otimes X \xrightarrow{\beta} d)$ such that $s(\beta) = \beta$, that is as **Fixed Points** of the involution (.)*.

- Boolean Chu spaces with β interpreted as a boolean matrix. Then *s* associates to the matrix β is transpose β^{T} .
- Omplex kernel functions.
 - [s(K)](a, x) = K(x, a) (classical symmetry)
 - $[s(K)](a, x) = \overline{K(x, a)}$ (hermitian symmetry)
- Chu R-modules.
 - $[s(\beta)](a \otimes x) = \beta(x \otimes a)$ (classical symmetry)
 - ▶ If *R* is involutive, $[s(\beta)](a \otimes x) = \overline{\beta(x \otimes a)}$ (hermitian symmetry)

Consider Boolean Chu spaces. Then the involution $(-)^*$ works as follows:

$$(X, A, \beta)^* = (A, X, \beta^T)$$

Symmetric objects are of the form $\mathbf{X} = (X \times X \xrightarrow{\beta} \{0, 1\})$ with $\beta = \beta^T$.

IV. Positivity ?

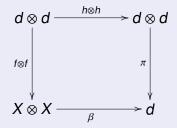
Positivity

No general defintion at this time...

But assume d = l. Then exists a "canonical map"

$$\pi: d \otimes d \to d$$

We say that $\mathbf{X} = (X \otimes A \xrightarrow{\beta} d)$ is positive if forall $f : d \to X$ monic, exists $h : d \to d$ monic s.t.



 $\begin{array}{l} Chu_{R}(R-mod)=Chu(R-mod,\otimes,R)\\ \text{Let } \mathbf{X}=(X\otimes X\xrightarrow{\beta}R). \text{ Then } \mathbf{X} \text{ is positive if and only if}\\ \forall x\in X, \ \exists r\in R, \ \beta(x,x)=r^{2} \end{array}$

(or $r\bar{r}$ if we consider involutive rings).

V. Completeness ?

Completeness

- Ideas from algebraic geometry.
- Complete object = object closed in any extension.
- Needs a closure operator that keep symmetric objects symmetric !
- Question 1: is the closure of extensional objects extensional ?
- Question 2: how is this **categorical completion** related to the **metric completion** ?

One sided Completion (Giuli, Tholen)

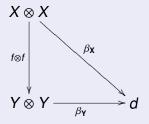
- Subobject: $\mathbf{X} = (X \otimes A \xrightarrow{\beta} d) \leq \mathbf{Y} = (Y \otimes B \xrightarrow{\beta'} d)$ if exists $\mathbf{f} = (f, \varphi) : \mathbf{X} \to \mathbf{Y}$ with *f* monic (embedding), φ epi.
- <u>Closure</u>: defined by equalizer of functions β_Y(., y) that coincide on X.
- **()** Equalizer of f,g = "largest subset" on which f and g agree.
- Clearly does not keep symmetry.

$Chu_{\mathbb{R}}(\mathcal{V})$

- The Closure operator ←→ double orthogonal.
- X = (X ⊗ A → ℝ) is complete iff X = A* algebraic dual iff X is weakly complete.

Two sided completion

• Subobject: f monic (emmbedding)



<u>Closure</u>: same as previously.

Subobjects of positive ones are positive.

$\mathit{Chu}_{\mathbb{R}}(\mathcal{V})$

• Closure operator \leftrightarrow double orthogonal.

•
$$\mathbf{X} = (X \otimes X \xrightarrow{\beta_X} \mathbb{R}) \le \mathbf{Y} = (Y \otimes Y \xrightarrow{\beta_Y} \mathbb{R})$$
 if $f(X) \subset Y$, with f unitary.

Let
$$Y = l^2$$
, $X = Span\{e_0 + e_1 + \frac{1}{n}e_n, n \ge 2\} \subset Y = l^2$.
Define
 $\beta_Y(u, v) = \sum_{n \in \mathbb{N}} (-1)^n u_n v_n$

on $Y \times Y$, and let β_X be its restriction to $X \times X$. They both define extensional-coextensional chu spaces. But $X^{\perp} = \mathbb{R}.(e_0 + e_1), X^{\perp \perp} = \{u \in l^2, u_0 = u_1\} \supset X^{\perp}$, and $X^{\perp \perp}$ is **not** extensional.

If positivity implies biextensionality, completion of positive objects will be positive hence biextensional.

Theorem (Categorical completion / metric completion) Let $\mathbf{X} = (X, X, \beta)$ be a **positive** Chu space. Then it is complete (in our categorical sense) if and only if (X, β) is a Hilbert space.

If a positive Chu space $\mathbf{X} = (X, X, \beta)$ is complete, then it is a Hilbert C^* -module, but the converse is not true in general.

Let $\mathcal{A} = C([0, 1])$ and $X = C_0([0, 1])$. Then X is a Hilbert C^* -module but **X** is not closed in **Y** = ($\mathcal{A}, \mathcal{A}, \beta$) (with β the product).

VI. Kernels ?

Kernels

Any positive chu space **X** embedded in a Chu space **Y** defines a **positive** Chu morphism

$$\varkappa:\mathbf{Y}^*\to\mathbf{Y}$$

THE END