Hilbert subspaces meet Chu spaces

Xavier MARY
MODAL’X
Université Paris-Ouest Nanterre-La Défense, France

Function Theory and Operator Theory: Infinite Dimensional and Free Setting, Beer-Sheva, June 27-30, 2011.

Introduction

From the 50's: generalizations of Hilbert spaces

- Quadratic spaces (Gross '64);
- Orthomodular spaces/Form Hilbert spaces (Piron '64, Araki '66, Keller '80, Soler '95);
- Bilinear modules over commutative rings (Knebusch '69);
- Hilbert C^{*}-modules (Kaplansly '53, Paschke '73, Rieffel '74);
- Hilbertian Operator spaces (Pisier '96).

Questions:

© Global common theory?
(2) How to generalize Hilbert subspaces?

E locally convex vector space (I.c.s.) on \mathbb{R} or \mathbb{C}.
Hilbert subspaces (Aronszajn, Schwartz,...)
H is a Hilbert subspace of $E(H \hookrightarrow E)$ if H is a Hilbert space, continuously embedded in E.

Reproducing Kernel Hilbert Spaces

RKHS are Hilbert subspaces of a product space \mathbb{C}^{X}.

- The Hardy space, the Bergman space are RKHS.
- Hilbert subspaces of the space of holomorphic functions, or distributions.

We need analogs of:

- Locally convex spaces and continuous maps
- Prehilbert spaces
- symmetry
- positivity
- Completeness

And also, what about reproducing kernels?

Possible answer : the Chu category (Barr and Chu '79).

Chu categories (or Chu spaces) are linked with:

- Linear logic (Girard, Seely) / Dialectica (Hyland, de Paiva)
- Theoretical computer science (Pratt)
- Functional analysis: Pairs of TVS, "'two-norm"' spaces (Barr)
- Topology, algebraic geometry (Giuli, Tholen) / Homotophy (Egger)

I. What are Chu spaces ?

A glimpse of category theory

A category \mathcal{C} is a collection

- Of objects a, b, c, .. $\in \operatorname{Obj}(\mathcal{C})$
- Of arrows (morphisms) between objects $a \stackrel{f}{\rightarrow} b$

Plus a composition law $g \circ f: a \xrightarrow{f} b \xrightarrow{g} c$

Commutative diagrams

$g \circ f=h \circ k$

Monoidal Category

\mathcal{C} is monoidal if

- It has a "tensor product" \otimes.
- It has an identity object I s.t. $X \otimes I \sim X \sim I \otimes X$.

Closed Monoidal category

- It has an "internal hom": $\mathcal{C}(X, Y)$ can be interpreted as an object in \mathcal{C} (sometimes denoted by $X \multimap Y$).
- Adjointness conditions between the tensor product and the internal hom.

Examples are:

- Sets with product \times of sets. $I=\{1\}$.
- Modules over a commutative ring R with classical tensor product $\otimes I=R$.

Chu spaces (Barr and Chu '79)

$(\mathcal{C}, \otimes)=$ closed monoidal category, $d=$ dualizing object. Category $\operatorname{Chu}(\mathcal{C}, \otimes, d)$ has

- for objects triples $\mathbf{X}=(X, A, \beta: X \otimes A \rightarrow d)(\mathbf{X}=(X \otimes A \xrightarrow{\beta} d))$
- for arrows $\mathbf{f}: \mathbf{X} \rightarrow \mathbf{Y}, \mathbf{f}=(\mathrm{f}, \varphi), f: X \rightarrow Y, \varphi: B \rightarrow A$ such that

Example 1: Boolean Chu spaces

Boolean Chu spaces in Logic, Computer science, Topology...
$\operatorname{Chu}_{2}($ Set $)=\operatorname{Chu}($ Set, $\times,\{0,1\})$
An object $\mathbf{X}=(X \times A \xrightarrow{\beta}\{0,1\})$ is equivalently defined as

- a function $\beta: X \times A \rightarrow\{0,1\}$
- a relation \mathcal{R} on $X \times A, \beta(x, a)=1 \Longleftrightarrow x \mathcal{R a}$
- a 0-1-valued matrix

An arrow $\mathbf{f}=(f, \varphi) \in \mathbf{C h u}(\mathbf{X}, \mathbf{Y})$ is a pair a functions $f: X \rightarrow Y, \varphi: B \rightarrow A$ such that

$$
\forall x \in X, \forall b \in B, f(x) \mathcal{R}_{\mathbf{Y}} b \Longleftrightarrow x \mathcal{R}_{\mathbf{x}} \varphi(b)
$$

Example 1: Boolean Chu spaces

Let $X=\{x, y, z\}, A=\{a, b\}$. Then

$$
\mathbf{X}=\left(X, A, \beta=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)\right) \text { and } \mathbf{X}^{\prime}=\left(X, A, \beta^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)\right.
$$

are Chu spaces.
$\mathbf{f}=(f, \varphi): \mathbf{X}^{\prime} \rightarrow \mathbf{X}$ defined by

$$
f(x)=f(z)=z, f(y)=x, \varphi(a)=\varphi(b)=b
$$

is a morphism of Chu spaces, but there is no morphism from \mathbf{X} to \mathbf{X}^{\prime}.

Example 2: kernel functions

Dualizing object $d=\mathbb{C}$ instead of $\{0,1\}$ of the previous slide.
Chu $_{\mathbb{C}}($ Set $)=\operatorname{Chu}($ Set,$\times \mathbb{C})$
An object $\mathbf{X}=(X \times A \xrightarrow{K} \mathbb{C})$ is a two-variable complex function $K(x, a)$ on $X \times A$.
An arrow $\mathbf{f}=(f, \varphi) \in \mathbf{C h u}(\mathbf{X}, \mathbf{Y})$ is a pair a functions
$f: X \rightarrow Y, \varphi: B \rightarrow A$ such that

$$
\forall x \in X, \forall b \in B, K_{Y}(f(x), b)=K_{\mathbf{X}}(x, \varphi(a))
$$

Example: $\mathbf{X}=\left(\mathbb{R}, \mathbb{R}, K(x, y)=x^{2}+i y\right)$.

Example 3: R-modules

$R=$ commutative ring, d fixed R-module.
$\operatorname{Chu}_{d}(R-\bmod)=\operatorname{Chu}(R-\bmod , \otimes, d)$
An object $\mathbf{X}=(X \otimes A \xrightarrow{\beta} d)$ is a R-bilinear map $\beta: X \times A \rightarrow d$. An arrow $\mathbf{f}=(f, \varphi) \in \operatorname{Chu}(\mathbf{X}, \mathbf{Y})$ is a pair of "adjoint" maps $f: X \rightarrow Y, \varphi: B \rightarrow A$ such that

$$
\forall x \in X, \forall b \in B, \beta_{\mathbf{Y}}(f(x), b)=\beta_{\mathbf{X}}(x, \varphi(b))
$$

Remark: works also for non-commutative rings with involution / needs either bimodules or a generalized notion of Chu spaces.

Abelian Groups ($\longleftrightarrow \mathbb{Z}$-modules)

(1) $\underline{R=d=\mathbb{Z}}$.
$\operatorname{Chu}_{\mathbb{Z}}(A b)=\operatorname{Chu}(A b, \otimes, \mathbb{Z})$
An object $\mathbf{X}=(X \otimes A \xrightarrow{\beta} \mathbb{Z})$ is a pair of of Abelian groups X and A together with a bi-additive form $\beta: X \times A \rightarrow \mathbb{Z}$, i.e. an integral bilinear form. Such pairings occur for instance in the theory of Unimodular Lattices.
(2) $R=\mathbb{Z}, d=\mathbb{R} / \mathbb{Z}$
$\operatorname{Chu}_{\mathbb{R} / \mathbb{Z}}(A b)=\operatorname{Chu}(A b, \otimes, \mathbb{R} / \mathbb{Z})$
An object $\mathbf{X}=(X \otimes A \xrightarrow{\beta} \mathbb{R} / \mathbb{Z})$ is a pair of Abelian groups X and A together with a bi-additive map $\beta: X \times A \rightarrow \mathbb{R} / \mathbb{Z}$.
Such pairings occur for instance in the theory of Elliptic Curves.

Example 4: real or complex vector spaces

$R=d=\mathbb{K}$ is a field.
$\operatorname{Chu}_{\mathbb{K}}(\mathcal{V})=\operatorname{Chu}(\mathcal{V}, \otimes, \mathbb{K})$
An object $\mathbf{X}=(X \otimes A \xrightarrow{\beta} R)$ is a pair of vector spaces together with a bilinear form β on $X \times A$.

IT IS NOT a dual pair of vector spaces, for the latter verify a separation (non-degeneracy) property!

Fortunately... There exists a notion of nondegeneracy for Chu spaces!

Idea

Use the arrow β to identify A with arrows from X to d (the "internal hom").

Precisely, exists $(X \multimap d) \in \operatorname{Obj}(\mathcal{C})$, a special class of maps from X to d and $(d \circ-A)$ (maps from A to d) such that the morphism $\beta: X \otimes A \rightarrow d$ defines:

- An arrow $\beta_{r}: A \longrightarrow(X \multimap d)$;
- An arrow $\beta: X \longrightarrow(d \circ-A)$.

Remark:

- These maps exists \Longleftrightarrow the category is closed.
- For symmetric (or braided) tensor products, $(X \multimap d) \sim(d \circ-X)$;

Extensional Chu spaces

- $\mathbf{X}=(X \otimes A \xrightarrow{\beta} d)$ is extensional if $\beta_{r}: A \rightarrow(X \multimap d)$ is monic ("injective");
- $\mathbf{X}=(X \otimes A \xrightarrow{\beta} d)$ is coextensional if $, \beta: X \rightarrow(d \circ A)$ is monic.

Extensional-coextensional (biextensional) Chu spaces are denoted by

$$
\operatorname{chu}_{d}(\mathcal{C})
$$

(instead of $\mathrm{Chu}_{d}(\mathcal{C})$).

Example 1: Boolean Chu spaces

$\operatorname{Chu}_{2}($ Set $)=\operatorname{Chu}($ Set, $\times,\{0,1\})$
We interpret $X \multimap\{0,1\}$ as column vectors (of length X) and $\{0,1\} \circ-A$ as row vectors.
Let $\mathbf{X}=(X \times A \xrightarrow{\beta}\{0,1\})$ with β interpreted as a boolean matrix. The map β defines

- a map $\beta_{r}: A \rightarrow(X \multimap\{0,1\})$ that associates to a the column with label a;
- a map $\beta: X \rightarrow(\{0,1\} \circ-A)$ that associates to x the Row with label x.
\mathbf{X} is extensional \Longleftrightarrow columns are disctinct.

Example 1: Boolean Chu spaces

Let $X=\{x, y, z\}, A=\{a, b\}, Z=\{z\}$. Then

$$
\mathbf{X}=\left(X, A, \beta=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)\right)
$$

is both extensional and coextensional, whereas

$$
\mathbf{X}^{\prime}=\left(X, A, \beta=\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)\right.
$$

is extensional but not coextensional ($R_{x}=R_{z}$).

Example 2: kernel functions

$\operatorname{Chu}_{\mathbb{C}}($ Set $)=\operatorname{Chu}($ Set,$\times, \mathbb{C})$

Let $\mathbf{X}=(X \times A \xrightarrow{K} \mathbb{C})$. The two-variable function K defines

- a map $K_{r}: A \rightarrow(X \multimap \mathbb{C})=\mathbb{C}^{X}$ defined by $K_{r}(a)=K(., a)$;
- a map $, K: X \rightarrow(\mathbb{C} \circ-A)=\mathbb{C}^{A}$ defined by,$K(x)=K(x,$.$) .$
\mathbf{X} is extensional if K_{r} is injective:

$$
K(., a)=K(., b) \Longleftrightarrow a=b
$$

or equivalently (separation property):

$$
a \neq b, \Rightarrow \exists x \in X, K(x, a) \neq K(x, b)
$$

$\left(\mathbb{R}, \mathbb{R}, K(x, y)=x^{2}+i y\right)$ is coextensional, but not extensional $(K(1,)=.K(-1,)$.$) .$

Example 3: R-modules, $d=R$

$\operatorname{Chu}_{R}(R-\bmod)=\operatorname{Chu}(R-\bmod , \otimes, R)$
Let $\mathbf{X}=(X \otimes A \xrightarrow{\beta} R)$. The maps are

- $\beta_{r}: A \rightarrow(X \multimap R)=L(X, R)$ defined by $\beta_{r}(a)=\beta(. \otimes a)$;
- $\beta: X \rightarrow(R \circ A)=L(A, R)$ defined by $\beta(x)=\beta(x \otimes$.$) .$
\mathbf{X} is extensive if for all $a \in A$

$$
(\forall x \in X, \beta(x \otimes a)=0) \Rightarrow a=0
$$

It is coextensive if for all $x \in X$

$$
(\forall a \in A, \beta(x \otimes a)=0) \Rightarrow x=0
$$

Example 4: Vector spaces

(1) Let E be a I.c.s, E^{\prime} its continuous dual. Then $\mathbf{E}=\left(E, E^{\prime},\langle.,\rangle.\right)$ with evaluation pairing is extensional by the Hahn-Banach theorem, and coextensional by construction.
(2) Hilbert spaces are extensional and coextensional (biextensional).
(3) Let \mathcal{P} be the space of polynomials, then $\mathbf{X}=(\mathcal{P} \otimes \mathcal{P} \rightarrow \mathbb{C})$ with bilinear map $\beta(P, Q)=\int_{[0,1]} P^{\prime}(x) Q(x) d x$ is extensional but not coextensional $(\beta(1,)=0$.$) .$

Example 5: Abelian groups

$R=d=\mathbb{Z}$
Let $X=p \mathbb{Z}, \boldsymbol{A}=\mathbb{Z}$, with biaddive $\left.\operatorname{map} \beta(x, a)=\frac{x_{a}}{p}\right)$. Then $\mathbf{X}=(X, A, \beta)$ is extensional, $(\beta(., a)=0 \Longleftrightarrow a=0)$ and coextensional.

$$
R=\mathbb{Z}, d=\mathbb{R} / \mathbb{Z}
$$

- Let $X=A=\mathbb{Z} / n \mathbb{Z}$, with biaddive map $\left.\beta(x, a)=\frac{x a}{n}\right)$. Then $\mathbf{X}=(X, A, \beta)$ is biextensional.
- Let $Y=\mathbb{R}, B=\mathbb{Z}$ with biaddive map $\gamma(y, b)=y b)$. $\mathbf{Y}=(Y, b, \gamma)$ is extensional but not coextensional $(\gamma(y,)=.\gamma(y+1,)$.$) .$

II. Chu spaces as analogs of locally convex spaces ?

Definition (Weak and Mackey topologies (Mackey,
Grothendieck, Treves))
Let E be a l.c.s., with (continuous) dual E^{\prime}. A topology τ on E is polar if $(E, \tau)^{\prime}=E^{\prime}$.

- The weak (initial) topology is the coarsest polar topology.
- The Mackey topology is the finest polar topology.
$E_{w}\left(r e s p . E_{m}\right)=E$ with the weak (resp. Mackey) topology.
Theorem (L. Schwartz)

$$
H \hookrightarrow E \Longleftrightarrow H \hookrightarrow E_{w} \Longleftrightarrow H \hookrightarrow E_{m}
$$

Weak and Mackey spaces are Chu spaces

Let $c h u_{\mathbb{C}}(\mathcal{V})$ be the category of extensional-coextensional Chu vector spaces. Then

Theorem (Barr 2000)
$\operatorname{ch}_{\mathbb{C}}(\mathcal{V}) \sim$ Weak spaces \sim Mackey spaces

III. Symmetry ?

Symmetry

In classical cases, obvious natural bijection s between maps $X \otimes A \rightarrow d$ and maps $A \otimes \bar{X} \rightarrow d$.
© Define an involution $(-)^{*}$

$$
(X, A, X \otimes A \xrightarrow{\beta} d)^{*}=(A, X, A \otimes X \xrightarrow{s(\beta)} d)
$$

(2) Define symmetric objects as $\mathbf{X}=(X \otimes X \xrightarrow{\beta} d)$ such that $s(\beta)=\beta$, that is as Fixed Points of the involution (.)*.

Examples

(1) Boolean Chu spaces with β interpreted as a boolean matrix. Then s associates to the matrix β is transpose β^{T}.
(2) Complex kernel functions.

- $[s(K)](a, x)=K(x, a)$ (classical symmetry)
- $[s(K)](a, x)=K(x, a)$ (hermitian symmetry)
(3) Chu R-modules.
- $[s(\beta)](a \otimes x)=\beta(x \otimes a)$ (classical symmetry)
- If R is involutive, $[\mathrm{s}(\beta)](\mathrm{a} \otimes x)=\overline{\beta(x \otimes a)}$ (hermitian symmetry)

Examples

Consider Boolean Chu spaces. Then the involution (-)* works as follows:

$$
(X, A, \beta)^{*}=\left(A, X, \beta^{T}\right)
$$

Symmetric objects are of the form $\mathbf{X}=(X \times X \xrightarrow{\beta}\{0,1\})$ with $\beta=\beta^{T}$.

IV. Positivity ?

Positivity

No general defintion at this time...
But assume $d=1$. Then exists a "canonical map"

$$
\pi: d \otimes d \rightarrow d
$$

We say that $\mathbf{X}=(X \otimes A \xrightarrow{\beta} d)$ is positive if forall $f: d \rightarrow X$ monic, exists $h: d \rightarrow d$ monic s.t.

Example: R-modules, $d=R$

$\operatorname{Chu}_{R}(R-\bmod)=\operatorname{Chu}(R-\bmod , \otimes, R)$

Let $\mathbf{X}=(X \otimes X \xrightarrow{\beta} R)$. Then \mathbf{X} is positive if and only if

$$
\forall x \in X, \exists r \in R, \beta(x, x)=r^{2}
$$

(or $r \bar{r}$ if we consider involutive rings).

V. Completeness ?

Completeness

- Ideas from algebraic geometry.
- Complete object = object closed in any extension.
- Needs a closure operator that keep symmetric objects symmetric!
- Question 1: is the closure of extensional objects extensional ?
- Question 2: how is this categorical completion related to the metric completion?

One sided Completion (Giuli, Tholen)

- Subobject: $\mathbf{X}=(X \otimes A \xrightarrow{\beta} d) \leq \mathbf{Y}=\left(Y \otimes B \xrightarrow{\beta^{\prime}} d\right)$ if exists $\overline{\mathbf{f}=(f, \varphi):} \mathbf{X} \rightarrow \mathbf{Y}$ with f monic (embedding), φ epi.
- Closure: defined by equalizer of functions $\beta_{Y}(., y)$ that coincide on X.
(1) Equalizer of $f, g=$ "largest subset" on which f and g agree.
(2) clearly does not keep symmetry.

Example: real vector spaces

$\operatorname{Chu}_{\mathbb{R}}(\mathcal{V})$

- The Closure operator \longleftrightarrow double orthogonal.
- $\mathbf{X}=(X \otimes A \xrightarrow{\beta} \mathbb{R})$ is complete iff $X=A^{*}$ algebraic dual iff X is weakly complete.

Two sided completion

- Subobject: f monic (emmbedding)

- Closure: same as previously.

Subobjects of positive ones are positive.

Example: real vector spaces

$\operatorname{Chu}_{\mathbb{R}}(\mathcal{V})$

- Closure operator \longleftrightarrow double orthogonal.
- $\mathbf{X}=\left(X \otimes X \xrightarrow{\beta_{X}} \mathbb{R}\right) \leq \mathbf{Y}=\left(Y \otimes Y \xrightarrow{\beta_{Y}} \mathbb{R}\right)$ if $f(X) \subset Y$, with f unitary.

Closure and biextensionality

Let $Y=I^{2}, X=\operatorname{Span}\left\{e_{0}+e_{1}+\frac{1}{n} e_{n}, n \geq 2\right\} \subset Y=I^{2}$.
Define

$$
\beta_{Y}(u, v)=\sum_{n \in \mathbb{N}}(-1)^{n} u_{n} v_{n}
$$

on $Y \times Y$, and let β_{X} be its restriction to $X \times X$. They both define extensional-coextensional chu spaces.
But $X^{\perp}=\mathbb{R} .\left(e_{0}+e_{1}\right), X^{\perp \perp}=\left\{u \in I^{2}, u_{0}=u_{1}\right\} \supset X^{\perp}$, and $X^{\perp \perp}$ is not extensional.

If positivity implies biextensionality, completion of positive objects will be positive hence biextensional.

Example: real Hilbert spaces

Theorem (Categorical completion / metric completion) Let $\mathbf{X}=(X, X, \beta)$ be a positive Chu space. Then it is complete (in our categorical sense) if and only if (X, β) is a Hilbert space.

Hilbert C*-modules

If a positive Chu space $\mathbf{X}=(X, X, \beta)$ is complete, then it is a Hilbert C^{*}-module, but the converse is not true in general.

Let $\mathcal{A}=C([0,1])$ and $X=C_{0}([0,1])$. Then X is a Hilbert C^{*}-module but \mathbf{X} is not closed in $\mathbf{Y}=(\mathcal{A}, \mathcal{A}, \beta)$ (with β the product).

VI. Kernels ?

Kernels

Any positive chu space \mathbf{X} embedded in a Chu space \mathbf{Y} defines a positive Chu morphism

$$
\varkappa: \mathbf{Y}^{*} \rightarrow \mathbf{Y}
$$

THE END

