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Pole placement - classical case

Recall that given a linear system{ dx
dt (t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

its tranfer function is given by T(λ) = D + C(λI − A)−1B, so its poles are
(contained in) the spectrum of A.

The pole placement problem asks if by state feedback one can change the
poles of the system arbitrarily.
Algebraically this means: can we find a feedback operator F, acting from the
state space to the input space, such that the spectrum of A + BF will be equal
to a given set.
It is well known that

Theorem 1.1. Arbitrary pole placement is possible if and only if the system
is controllable.

The aim of this talk is to discuss this problem for a particular kind of
overdetermined 2D continuous-time time-invariant systems.
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The definition of operator vessels

The definition of operator vessels

We start with an overdetermined 2D continuous-time time-invariant linear
i/s/o system Σ 

∂x
∂t1

(t1, t2) = A1x(t1, t2) + B1u(t1, t2)

∂x
∂t2

(t1, t2) = A2x(t1, t2) + B2u(t1, t2)

y(t1, t2) = Cx(t1, t2) + Du(t1, t2)

u(t1, t2) ∈ E - input space. x(t1, t2) ∈ H - state space. y(t1, t2) ∈ E∗ - output
space.
All spaces are finite dimensional over the complex numbers.
A1,A2 : H → H. B1,B2 : E → H. C : H → E∗. D : E → E∗.
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The definition of operator vessels

The definition of operator vessels - A1

Assuming x is smooth, we have ∂
∂t1

∂x
t2

= ∂
∂t2

∂x
t1

, so that from Σ, we have:

A1
∂x
∂t2

+ B1
∂u
∂t2

= A2
∂x
∂t1

+ B2
∂u
∂t1

Replacing ∂x
∂ti

with the terms in Σ, we obtain

A1[A2x + B2u] + B1
∂u
∂t2

= A2[A1x + B1u] + B2
∂u
∂t1

(2.1)

Setting u = 0, we see that we must have A1A2 = A2A1. Hence, we require our
systems to satisfy this compatibility condition:

(A1) A1A2 = A2A1
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The definition of operator vessels

The definition of operator vessels - A2

Under the assumption (A1), (2.1) becomes

B2
∂u
∂t1
− B1

∂u
∂t2

+ (A2B1 − A1B2)u = 0 (2.2)

We now take an auxiliary Hilbert space Ẽ and a factorization

B2 = B̃σ2 B1 = B̃σ1 A2B1 − A1B2 = B̃γ (2.3)

where
B̃ : Ẽ → H σ1 : E → Ẽ σ2 : E → Ẽ γ : E → Ẽ

In terms of this factorization, (2.3) becomes our second compatibility
condition:

(A2) A2B̃σ1 − A1B̃σ2 = B̃γ
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The definition of operator vessels

The definition of operator vessels

Using this factorization, our equation (2.2) becomes

B̃[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.4)

A sufficient condition for this to hold is

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.5)

which we shall assume our input signal satisfies.
Such a signal will be called an admissible input signal.

Liran Shaul (BGU) Pole placement 7 / 37



The definition of operator vessels

The definition of operator vessels

Using this factorization, our equation (2.2) becomes

B̃[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.4)

A sufficient condition for this to hold is

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.5)

which we shall assume our input signal satisfies.

Such a signal will be called an admissible input signal.

Liran Shaul (BGU) Pole placement 7 / 37



The definition of operator vessels

The definition of operator vessels

Using this factorization, our equation (2.2) becomes

B̃[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.4)

A sufficient condition for this to hold is

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0 (2.5)

which we shall assume our input signal satisfies.
Such a signal will be called an admissible input signal.

Liran Shaul (BGU) Pole placement 7 / 37



The definition of operator vessels

The definition of operator vessels

To force symmetry (for example, to allow the construction of an inverse
system), we require the output signal y(t1, t2) to satisfy a similar PDE

[σ2∗
∂

∂t1
− σ1∗

∂

∂t2
+ γ∗]y(t1, t2) = 0 (2.6)

where
σ1∗ : E∗ → Ẽ∗ σ2∗ : E∗ → Ẽ∗ γ∗ : E∗ → Ẽ∗

here, Ẽ∗ is another auxiliary Hilbert space.

Assuming this PDE holds, and, again, assuming no input, one may check that

(A3) σ2∗CA1 − σ1∗CA2 + γ∗C = 0

Liran Shaul (BGU) Pole placement 8 / 37
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The definition of operator vessels

The definition of operator vessels

This, in turn, forces the input signal to satisfy another PDE

[σ2∗D
∂

∂t1
− σ1∗D

∂

∂t2
+ σ2∗CB̃σ1 − σ1∗CB̃σ2 + γ∗D]u(t1, t2) = 0 (2.7)

To make sure any admissible input signal satisfies this equation, we assume
there is an operator D̃ : E∗ → Ẽ∗ such that

(A4) σ1∗D = D̃σ1 σ2∗D = D̃σ2 γ∗D = D̃γ + σ1∗CB̃σ2 − σ2∗CB̃σ1.

assuming such a D̃ exists, any admissible input signal satisfies (2.7).

Liran Shaul (BGU) Pole placement 9 / 37



The definition of operator vessels

The definition of operator vessels

This, in turn, forces the input signal to satisfy another PDE

[σ2∗D
∂

∂t1
− σ1∗D

∂

∂t2
+ σ2∗CB̃σ1 − σ1∗CB̃σ2 + γ∗D]u(t1, t2) = 0 (2.7)

To make sure any admissible input signal satisfies this equation, we assume
there is an operator D̃ : E∗ → Ẽ∗ such that
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The definition of operator vessels

The definition of operator vessels

The above discussion leads us to the notion of a Livsic-Kravitsky
commutative operator vessel:

An operator vessel B is a collection of operators and spaces

B = (A1,A2, B̃,C,D, D̃, σ1, σ2, γ, σ1∗, σ2∗, γ∗;H, E , E∗, Ẽ , Ẽ∗)

satisfying:
(A1) A1A2 = A2A1

(A2) A2B̃σ1 − A1B̃σ2 = B̃γ
(A3) σ2∗CA1 − σ1∗CA2 + γ∗C = 0
(A4) σ1∗D = D̃σ1 σ2∗D = D̃σ2

γ∗D = D̃γ + σ1∗CB̃σ2 − σ2∗CB̃σ1
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The definition of operator vessels

The definition of operator vessels

we also require the input signals u to be admissible input signals:

[σ2
∂

∂t1
− σ1

∂

∂t2
+ γ]u(t1, t2) = 0

which implies that the output signals y satisfy

[σ2∗
∂

∂t1
− σ1∗

∂

∂t2
+ γ∗]y(t1, t2) = 0

The system of equations associated to a vessel B is

∂x
∂t1

(t1, t2) = A1x(t1, t2) + B̃σ1u(t1, t2)

∂x
∂t2

(t1, t2) = A2x(t1, t2) + B̃σ2u(t1, t2)

y(t1, t2) = Cx(t1, t2) + Du(t1, t2)
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The definition of operator vessels

State space isomorphism

Given a vessel B and an isomorphism of the state space N : H → H, we may
perform state space isomorphism on B, and obtain a new vessel BN =

(N−1A1N,N−1A2N,N−1B̃,CN,D, D̃, σ1, σ2, γ, σ1∗, σ2∗, γ∗;H, E , E∗, Ẽ , Ẽ∗)

the new vessel BN shares with B all its intrinsic properties.

Liran Shaul (BGU) Pole placement 12 / 37



Transfer functions of operator vessels

Transfer functions of operator vessels

We construct the transfer function of a vessel B using frequency domain
analysis.

We let
u(t1, t2) = eλ1t1+λ2t2u0

x(t1, t2) = eλ1t1+λ2t2x0

and
y(t1, t2) = eλ1t1+λ2t2y0

for some u0 ∈ E , x0 ∈ H and y0 ∈ E∗.
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Transfer functions of operator vessels

Transfer functions of operator vessels

In this case, the input signal u is an admissible input signal if and only if u0
satisfies the following algebraic equation

[λ1σ2 − λ2σ1 + γ]u0 = 0

and similarly, for the output

[λ1σ2∗ − λ2σ1∗ + γ∗]y0 = 0

Plugging u, x and y into Σ, we obtain the following system of equations

λ1x0 = A1x0 + B̃σ1u0

λ2x0 = A2x0 + B̃σ2u0
y0 = Cx0 + Du0
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Transfer functions of operator vessels

Transfer functions of operator vessels

To solve this system (i.e, to find y0 in terms of u0), we multiply the first
equation by ξ1 ∈ C, the second by ξ2 ∈ C. Adding the resulting equations, we
obtain

(ξ1λ1 + ξ2λ2)x0 = (ξ1A1 + ξ2A2)x0 + B̃(ξ1σ1 + ξ2σ2)u0

Recall that the joint spectrum of a pair of commuting square matrices
A,B ∈ Mn(C), denoted by Spec(A,B), is the set of pairs (λ, µ) which have a
common eigenvector ∃0 6= v ∈ Cn, Av = λv and Bv = µv.

Lemma 3.1. Given A,B ∈ Mn(C), such that AB = BA, there exist ξ1, ξ2 ∈ C
such that ξ1A + ξ2B is invertible, if and only if (0, 0) /∈ Spec(A,B).

Hence, assuming (λ1, λ2) /∈ Spec(A1,A2), we may choose ξ1, ξ2 such that
ξ1(λ1I − A1) + ξ2(λ2I − A2) is invertible, so that
x0 = (ξ1(λ1I − A1) + ξ2(λ2I − A2))−1B̃(ξ1σ1 + ξ2σ2)u0.
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Transfer functions of operator vessels

Transfer functions of operator vessels

This implies that
y0 = (D + C(ξ1(λ1I − A1) + ξ2(λ2I − A2))−1B̃(ξ1σ1 + ξ2σ2))u0. Hence, the
transfer function of a vessel B is given by

SB(λ1, λ2) = D + C(ξ1(λ1I − A1) + ξ2(λ2I − A2))−1B̃(ξ1σ1 + ξ2σ2)

Note that for a u0 with u admissible input signal, this is independent of ξ1, ξ2.
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Transfer functions of operator vessels

Controllability, observability and minimal vessels

Let C denote the controllable subspace, i.e the space of all vectors h ∈ H such
that there exist an admissible input u for which the state function x satisfies,
x(0, 0) = 0, and x(t1, t2) = h for some (t1, t2) ∈ R2. A vessel B is called
controllable if C = H.

Similarly, let O⊥ denote the unobservable subspace, i.e the subspace of all
vectors h ∈ H such that the unique solution (u, x, y) of the system of
equations associated to the vessel, with x(0, 0) = h, and u ≡ 0 has y ≡ 0. A
vessel B is called observable if O⊥ = 0.
A vessel is called minimal if it is both controllable and observable.
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The discriminant curve of a vessel

The discriminant curve of a vessel

Assume now that dim E = dim Ẽ , and dim E∗ = dim Ẽ∗.

We have seen that a frequency function u satisfies the compatibility PDE if
and only if (λ1σ2 − λ2σ1 + γ)u0 = 0.
We define two kernel bundles

Ein(λ1, λ2) = ker(λ1σ2−λ2σ1 +γ) Eout(λ1, λ2) = ker(λ1σ2∗−λ2σ1∗+γ∗)

Let

pin(λ1, λ2) = det(λ1σ2−λ2σ1 + γ) pout(λ1, λ2) = det(λ1σ2∗−λ2σ1∗+ γ∗)

Theorem 4.1. (Livsic-Kravitsky): pin ≡ λpout for some λ ∈ C×.
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The discriminant curve of a vessel

The discriminant curve of a vessel

Let p = pin = λpout.

Let C0 = {(λ1, λ2) ∈ C2 : p(λ1, λ2) = 0}. The curve C0 (and the associated
projective plane curve C) is called the discriminant curve of the vessel B.
Since whenever u is an admissible input signal, the resulting output signal y is
also admissible, we see that the natural domain of definition of the transfer
function SB is the input bundle Ein, and that for any (λ1, λ2) ∈ C, SB(λ1, λ2)
maps Ein(λ1, λ2) into Eout(λ1, λ2).
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The discriminant curve of a vessel

Cayley-Hamilton theorem for vessels

Theorem 4.2. (Livsic-Kravitsky): The generalized Cayley-Hamilton theorem
for vessels: For a minimal vessel B, p(A1,A2) = 0.

Corollary 4.3. Spec(A1,A2) ⊆ C.
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The discriminant curve of a vessel

The discriminant curve of a vessel
The input and output bundles

In all that follows we make the following assumptions on the curve C : C is
smooth of degree m, intersects the line at infinity at m distinct points, and
p(λ1, λ2) = (p′(λ1, λ2))r, where p′ is irreducible.

Theorem 4.4. If r = 1, for each λ = (λ1, λ2) ∈ C,
dim Ein(λ1, λ2) = dim Eout(λ1, λ2) = 1.

If r > 1 it may be the case that at some points the dimension of Ein and Eout

drops. To avoid this, we shall make an assumption in the sequel that for each
λ = (λ1, λ2) ∈ C, dim Ein(λ1, λ2) = dim Eout(λ1, λ2) = r.
It follows that Ein and Eout are actually holomorphic vector bundles of rank r
over the curve C.
Furthermore, our construction of the transfer function, shows that SB is
actually a bundle map. In summary, we have:

Theorem 4.5. For a vessel B, the transfer function SB : Ein → Eout is a
meromorphic bundle map, with poles(SB) ⊆ Spec(A1,A2).
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Meromorphic bundle maps

Meromorphic bundle maps and their divisor data

Given a compact Riemann surface X, and two holomorphic vector bundles
E,F over X, a bundle map T : E → F which is meromorphic as a map
between the complex manifolds E and F will be called a meromorphic bundle
map.

Given a point p ∈ X, and a local section φ at a neighborhood of p, with
φ(p) 6= 0, we may write in local coordinates T(z)φ(z) = zkψ(z) where ψ is a
local section of F with ψ(p) 6= 0. If k > 0 we say that T has a right zero of
order k at direction φ. If k < 0 we say that ψ has a right pole of order k at
direction ψ.
Left zeros and poles are defined similarly.
In the matrix case over sub-bundles of a trivial bundle (which is really what
we have in mind), such a theory of divisors has been developed extensively in
the book "Interpolation of rational matrix functions" by Ball, Gohberg and
Rodman.
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Meromorphic bundle maps

Using the local theory presented in the book of Ball, Gohberg and Rodman
one may show that

Theorem 5.1. Given a minimal vessel

B = (A1,A2, B̃,C,D, D̃, σ1, σ2, γ, σ1∗, σ2∗, γ∗;H, E , E∗, Ẽ , Ẽ∗)

its left pole data is determined up to state space similarity by the triple
(A1,A2, B̃).
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State feedback and the pole placement problem

State feedback

We now formulate state feedback for vessels. Let B be a vessel, and suppose
that F : H → E . We may form a new collection

BClosed loop
F = (A1 + B̃σ1F,A2 + B̃σ2F, B̃,C +DF,D, D̃, σ1, σ2, γ, σ1∗, σ2∗, γ∗)

A small calculation shows that

Proposition 6.1. The collection BClosed loop
F is an operator vessel if and only if

F satisfies the following 2 equations:

σ2FA1 − σ1FA2 + γF = 0
σ1FB̃σ2 − σ2FB̃σ1 = 0

Such an F is called an admissible feedback for B.
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State feedback and the pole placement problem

The pole placement problem

We may now formulate the pole placement problem for operator vessels:

Problem 6.2. Given a vessel B, find an admissible feedback F such that the
left pole data of the transfer function of the closed loop system SBClosed loop

F
is a

prescribed pole data on the discriminant curve C.
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The solution

The factorization

As might be expected, it turns out that the effect of state feedback takes place
in the input space. In fact, for every controllable vessel B and any admissible
feedback F, the transfer function of the closed loop vessel BClosed loop

F factors

Ein
R−1
−−→ Ein

S−→ Eout

where S is the transfer function of the open loop vessel, and R is the transfer
function of a vessel BController

F whose construction will be explained in the
sequel.
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The solution

The Ball-Vinnikov realization theorem

Suppose σ1, σ2, γ, γ∗ ∈ Mn(C) are given matrices, and suppose that
det(λ1σ2 − λ2σ1 + γ) = det(λ1σ2 − λ2σ1 + γ∗) is a polynomial defining a
smooth irreducible curve C which intersects the line at infinity at (m = deg C)
distinct points. Let Ein(λ1, λ2) = ker(λ1σ2 − λ2σ1 + γ) and
Eout(λ1, λ2) = ker(λ1σ2 − λ2σ1 + γ∗) be vector bundles over C.

Theorem 7.1. (Ball-Vinnikov): Given any meromorphic bundle map
S : Ein → Eout such that S acts as the identity operator at all points of C at
infinity. Then there exist a unique (up to state space isomorphism) minimal
vessel B with the same determinantal representations and with D = D̃ = I
such that SB = S.
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The solution

The vessel BController
F

In order to solve the pole placement problem, we must analyze 2 different
algebraic questions:

1. Determine what are the admissible feedbacks (if any)

2. Learn to control the joint spectrum Spec(A1 + B̃σ1F,A2 + B̃σ2F).

The answer to both of these problems is given by the following object:

Given a vessel B and any operator (not necessarily admissible) F : H → E ,
define a collection

BController
F = (A1,A2, B̃,−F, I, I, σ1, σ2, γ, σ1, σ2, γ)
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The solution

The vessel BController
F

Theorem 7.2. An operator F is an admissible feedback for B if and only if
BController

F is a vessel

The proof is an easy verification.

Theorem 7.3. For any admissible feedback F, the transfer function of the
closed loop system SBClosed loop

F
factors as

SBClosed loop
F

= SB ◦ (SBController
F

)−1

again, the proof is by calculation.
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The solution

The pole placement theorem

Theorem 7.4. Let B be a minimal vessel. Given a left pole data D on the
discriminant curve C, there exist an admissible feedback F such that
left poles(BClosed loop

F ) = D if and only if there is a meromorphic bundle map
T : Ein → Eout with the same left zero data as the left zero data of SB and with
the same behavior at all points at infinity as SB.

One direction of the theorem is almost immediate. If such an F is given, by
calculating the inverse system of the closed loop system, one sees
immediately that both the open loop and the closed loop transfer functions
share the same left zero data, and the same behavior at infinity.
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The solution

The pole placement theorem

For the converse, suppose such a T is given. Let R = T−1 ◦ SB, R : Ein → Ein.
Then R|∞ = I, and has the same left pole data as S does.

Using the Ball-Vinnikov realization theorem, we may construct a vessel V
with SV = R. Then, since B and V share the same pole data, it follows that
(up to state space isomorphism which does not affect pole placement), they
share the same (A1,A2, B̃). It follows that V = BController

F for F = −CV , and
thus, T = SBClosed loop

F
, which completes the proof.
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Examples

The case of line bundles

To discuss some examples, let us, for simplicity, restrict ourselves to the r = 1
case. Thus, Ein and Eout are now assumed to be line bundles. It is then may be
verified that

Theorem 8.1. To give a meromorphic bundle map T : Ein → Eout with the
same left zero data as the left zero data of SB and with the same behavior at
all points at infinity as SB is equivalent to construct a rational function
f ∈ K(C) whose zero divisor is equal to the poles of T, its pole divisor is
equal to the poles of SB, and its value at all points at infinity is 1.

Thus, in this case we see that the main obstruction for pole placement is the
genus of the curve.
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Examples

Genus 0 case

We now show how to obtain information about pole placement in more
specific examples (again, r = 1).

Example 8.2. Suppose B is a vessel, such that the discriminant curve C is a
smooth curve of genus 0. Let m = deg C. One has m = 1 or m = 2. Suppose
m = 1. Then C is actually a line. Hence, C intersects the line at infinity at
precisely one point. In this case, the interpolation problem of finding a
rational function which is 1 at infinity, having prescribed zeros and poles may
always be solved, so we can place poles one the curve arbitrarily. This is not
surprising, as vessels with m = 0 are the same as classical linear systems, so
our theorem is indeed a generalization of the classical pole placement.
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Examples

Genus 0 case

Example 8.3. Suppose now g = 0 and m = 2. In this case, C is a conic, and
it intersects the line at infinity at 2 distinct points. In this case, one can always
place exactly n− 1 poles, the last pole is then determined from the other
n− 1.
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Examples

General conclusions

Recall that L(D) = {f ∈ K(C) : (f ) + D ≥ 0}, and that l(D) = dim L(D). Let
P = Spec(A1,A2).

Corollary 8.4. Let l = l(P− D∞). If l = 0 then no poles could be placed. If
l ≥ 1, then generically, one may place exactly l poles. Moreover, generically,
once the l poles were chosen, the rest n− l poles of the system are determined
uniquely.
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Examples

General conclusions

Corollary 8.5. Let m = deg C, n = dimH. If n < m, no poles could be
placed. If n− m > 2g− 2, then l = n− m + 1− g, so that n− m + 1− g
poles could be placed generically.
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Examples

Elliptic curves

Example 8.6. As a final example, suppose C is an elliptic curve. In this case,
g = 1, and m = 3. For elliptic curves, the Riemann-Roch theorem implies
that l(D) = deg(D) for all D with deg(D) ≥ 1. Hence, if n ≥ 4, one can
always place poles, and, generically, one can place n− 3 poles. If n ≤ 2, no
place could be placed.

The case where n = 3 is a special case. In this case, the possibility of placing
a single pole depends on the points of p. The theory of special divisors on
elliptic curves then shows:

Theorem 8.7. If g = 1 and n = 3, then l > 0 (so that one can place poles) if
and only if for p = p1 + p2 + p3, the points p1, p2 and p3 lie on one line. (In
terms of the group of points of the elliptic curve, this just means that
p1 + p2 + p3 = 0).
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