# Slice monogenic functions and a functional calculus for $n$-tuples of operators 

Irene Sabadini<br>Politecnico di Milano

Function Theory and Operator Theory: Infinite Dimensional and Free Settings, Ben-Gurion University, June 27-30, 2011
(1) Motivations

2 Slice monogenic functions
(3) The Cauchy formula with slice-monogenic kernel
(4) Functional calculus for $n$-tuples of operators

- Definition of the $\mathcal{S}$-functional calculus
- Some properties of the functional calculus
(5) The $\mathcal{S C}$-functional calculus
- Preliminaries for the $\mathcal{S C}$-functional calculus
- Definition of the $\mathcal{S C}$-functional calculus


## Motivations

Let $T$ be a bounded operator on a Banach space, we define

$$
f(T)=\frac{1}{2 \pi i} \int_{\Gamma}(\lambda \mathcal{I}-T)^{-1} f(\lambda) d \lambda,
$$

where $\Gamma$ is a rectifiable Jordan curve that surrounds the spectrum of $T$.

## Problems

- How to generalize the definition to quaternionic operators? Quaternionic Quantum Mechanics and Quantum Fields (Adler, Oxford University Press 1995)
- How to define a function of $n$-tuples of operators?
- H.Weyl (1930): The Theory of Groups and Quantum Mechanics
- R.F. Anderson (J. Funct. Anal., 1969): functional calculus uses the Fourier transform and holds for self-adjoint operators $A_{1}, \ldots, A_{n}$.
- J. L. Taylor (Acta Math., 1970): uses holomorphic functions in several variables. The most explicit calculus is for commuting operators. Algebraic treatment.
- B. Jefferies, A. McIntosh and coauthors (1987-2004) use monogenic functions with values in a Clifford algebra for commuting operators or noncommuting operators satisfying additional hypothesis on their spectrum.


## Slice monogenic functions

## Notations

Let $\mathbb{R}_{n}$ be the real Clifford algebra over $n$ imaginary units $e_{1}, \ldots, e_{n}$ satisfying the relations

$$
e_{i} e_{j}+e_{j} e_{i}=0, \quad i \neq j \quad e_{i}^{2}=-1
$$

An element in the Clifford algebra will be denoted by

$$
\sum_{A} e_{A} x_{A}
$$

where

$$
A=\left\{i_{1} \ldots i_{r}\right\} \in \mathcal{P}\{1,2, \ldots, n\}, \quad i_{1}<\ldots<i_{r}
$$

is a multi-index and $e_{A}=e_{i_{1}} e_{i_{2}} \ldots e_{i_{r}}, e_{\emptyset}=1$.

## Slice monogenic functions

Example. $\mathbb{R}_{2}=\mathbb{H}$

$$
q=x_{0}+e_{1} x_{1}+e_{2} x_{2}+e_{1} e_{2} x_{12},
$$

$e_{1}=i, e_{2}=j, e_{1} e_{2}=k$.
An element $\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}$ will be identified with the element

$$
x=x_{0}+\underline{x}=x_{0}+\sum_{j=1}^{n} x_{j} e_{j} \in \mathbb{R}_{n}
$$

called, in short, paravector. The norm of $x \in \mathbb{R}^{n+1}$ is defined as

$$
|x|^{2}=x_{0}^{2}+x_{1}^{2}+\ldots+x_{n}^{2},
$$

$\underline{x}$ is the 1 -vector part of $x$; the conjugate of $x$ is defined by $\bar{x}=x_{0}-\underline{x}=x_{0}-\sum_{j=1}^{n} x_{j} e_{j}$.

## Slice monogenic functions

The sphere $\mathbb{S}$

$$
\mathbb{S}=\left\{\underline{x}=e_{1} x_{1}+\ldots+e_{n} x_{n} \mid x_{1}^{2}+\ldots+x_{n}^{2}=1\right\} \quad I \in \mathbb{S}, I^{2}=-1
$$

## Imaginary unit associated to $x \in \mathbb{R}^{n+1}$

Given an element $x=x_{0}+\underline{x} \in \mathbb{R}^{n+1}$ let us set

$$
I_{x}=\left\{\begin{array}{l}
\frac{\underline{x}}{|\underline{x}|} \quad \text { if } \underline{x} \neq 0 \\
\text { any element of } \mathbb{S} \text { otherwise. }
\end{array}\right.
$$

## The ( $n-1$ )-sphere $[x]$

Given an element $x \in \mathbb{R}^{n+1}$, we define

$$
[x]=\left\{y \in \mathbb{R}^{n+1}: y=x_{0}+I|\underline{x}|, \quad I \in \mathbb{S}\right\}
$$

## Slice monogenic functions

The sphere $\mathbb{S}$

$$
\mathbb{S}=\left\{\underline{x}=e_{1} x_{1}+\ldots+e_{n} x_{n} \mid x_{1}^{2}+\ldots+x_{n}^{2}=1\right\} \quad I \in \mathbb{S}, I^{2}=-1
$$

## Imaginary unit associated to $x \in \mathbb{R}^{n+1}$

Given an element $x=x_{0}+\underline{x} \in \mathbb{R}^{n+1}$ let us set

$$
I_{x}=\left\{\begin{array}{l}
\frac{\underline{x}}{|\underline{x}|} \quad \text { if } \underline{x} \neq 0 \\
\text { any element of } \mathbb{S} \text { otherwise. }
\end{array}\right.
$$

## The ( $n-1$ )-sphere $[x]$

Given an element $x \in \mathbb{R}^{n+1}$, we define

$$
[x]=\left\{y \in \mathbb{R}^{n+1}: y=x_{0}+I|\underline{x}|, \quad I \in \mathbb{S}\right\}
$$

## Slice monogenic functions

The sphere $\mathbb{S}$

$$
\mathbb{S}=\left\{\underline{x}=e_{1} x_{1}+\ldots+e_{n} x_{n} \mid x_{1}^{2}+\ldots+x_{n}^{2}=1\right\} \quad I \in \mathbb{S}, I^{2}=-1
$$

## Imaginary unit associated to $x \in \mathbb{R}^{n+1}$

Given an element $x=x_{0}+\underline{x} \in \mathbb{R}^{n+1}$ let us set

$$
I_{x}=\left\{\begin{array}{l}
\frac{\underline{x}}{|\underline{x}|} \quad \text { if } \underline{x} \neq 0 \\
\text { any element of } \mathbb{S} \text { otherwise }
\end{array}\right.
$$

The ( $n-1$ )-sphere $[x]$
Given an element $x \in \mathbb{R}^{n+1}$, we define

$$
[x]=\left\{y \in \mathbb{R}^{n+1}: y=x_{0}+I|\underline{x}|, \quad I \in \mathbb{S}\right\}
$$

## The complex plane $\mathbb{C}_{l}$

The vector space $\mathbb{R}+I \mathbb{R}$ passing through 1 and $I \in \mathbb{S}$ will be denoted by $\mathbb{C}_{l}$, while an element belonging to $\mathbb{C}_{I}$ will be denoted by $u+I v$, for $u$, $v \in \mathbb{R} . \mathbb{C}_{1}$ can be identified with a complex plane.

## Slice monogenic functions

## Slice monogenic functions

Let $U \subseteq \mathbb{R}^{n+1}$ be an open set and let $f: U \rightarrow \mathbb{R}_{n}$ be a real differentiable function.
Let $I \in \mathbb{S}$ and let $f_{l}$ be the restriction of $f$ to the complex plane $\mathbb{C}_{l}$. We say that $f$ is a (left) slice monogenic function, or s-monogenic function, if for every $I \in \mathbb{S}$, we have

$$
\frac{1}{2}\left(\frac{\partial}{\partial u}+I \frac{\partial}{\partial v}\right) f_{l}(u+l v)=0 .
$$

We say that $f$ is a right slice monogenic function, or right s-monogenic function, if for every $I \in S$, we have

$$
\frac{1}{2}\left(\frac{\partial}{\partial u} f_{l}(u+I v)+\frac{\partial}{\partial v} f_{l}(u+I v) I\right)=0 .
$$

## The Cauchy formula with slice-monogenic kernel

## Theorem

Let $x, s \in \mathbb{R}^{n+1}$. Then

$$
\sum_{n \geq 0} x^{n} s^{-1-n}=-\left(x^{2}-2 x s_{0}+|s|^{2}\right)^{-1}(x-\bar{s})
$$

for $|x|<|s|$, where $\bar{s}=s_{0}-\underline{s}$.

## The Cauchy formula with slice-monogenic kernel

## Definition of noncommutative Cauchy kernel

We will call the expression

$$
\begin{equation*}
S^{-1}(s, x)=-\left(x^{2}-2 s_{0} x+|s|^{2}\right)^{-1}(x-\bar{s}), \tag{1}
\end{equation*}
$$

defined for $x^{2}-2 s_{0} x+|s|^{2} \neq 0$, noncommutative Cauchy kernel.

## The Cauchy formula with slice-monogenic kernel

## Proposition

$x^{2}-2 s_{0} x+|s|^{2}$ vanishes on the ( $n-1$ )-sphere

$$
[s]=\left\{y=s_{0}+I|\underline{s}|, I \in \mathbb{S}\right\}
$$

## Theorem

The function $S^{-1}(s, x)$ is left s-monogenic in the variable $x$ and right $s$-monogenic in the variable $s$ in its domain of definition.

## The Cauchy formula with slice-monogenic kernel

Let $U \subseteq \mathbb{R}^{n+1}$ be a domain.

- $U$ is an s-domain if $U \cap \mathbb{R}$ is non empty and if $\mathbb{C}_{1} \cap U$ is a domain in $\mathbb{C}_{1}$ for all $I \in \mathbb{S}$.
- $U$ is axially symmetric if, for all $u+I v \in U$, the whole ( $n-1$ )-sphere [ $u+I v$ ] is contained in $U$.


## Representation formula

Let $U \subseteq \mathbb{R}^{n+1}$ be an axially symmetric s-domain. Let $f$ be an s-monogenic function on $U$. For any $x=x_{0}+I_{x}|\underline{x}| \in U$ the following formula holds:

$$
f(x)=\frac{1}{2}\left[1-I_{x} \mid\right] f\left(x_{0}+||\underline{x}|)+\frac{1}{2}\left[1+I_{x} \mid\right] f\left(x_{0}-||\underline{x}|)\right.\right.
$$

## The Cauchy formula with slice-monogenic kernel

Let $U \subseteq \mathbb{R}^{n+1}$ be a domain.

- $U$ is an s-domain if $U \cap \mathbb{R}$ is non empty and if $\mathbb{C}_{1} \cap U$ is a domain in $\mathbb{C}_{1}$ for all $I \in \mathbb{S}$.
- $U$ is axially symmetric if, for all $u+I v \in U$, the whole ( $\mathrm{n}-1$ )-sphere $[u+I v]$ is contained in $U$.


## Representation formula

Let $U \subseteq \mathbb{R}^{n+1}$ be an axially symmetric s-domain. Let $f$ be an $s$-monogenic function on $U$. For any $x=x_{0}+I_{x}|\underline{x}| \in U$ the following formula holds:

$$
f(x)=\frac{1}{2}\left[1-I_{x} I\right] f\left(x_{0}+I|\underline{x}|\right)+\frac{1}{2}\left[1+I_{x} I\right] f\left(x_{0}-I|\underline{x}|\right) .
$$

## The Cauchy formula with slice-monogenic kernel

## Cauchy formula with slice monogenic kernel

Let $U \subset \mathbb{R}^{n+1}$ be a bounded axially symmetric s-domain such that $\partial\left(U \cap \mathbb{C}_{1}\right)$ is union of a finite number of rectifiable Jordan curves for every $I \in \mathbb{S}$. Let $f$ be a left s-monogenic function on $W \supset U, x \in U$ and set $d s_{I}=d s / I, d s=d u+I d v$. Then

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathbb{C}_{l}\right)} S^{-1}(s, x) d s_{l} f(s) \tag{2}
\end{equation*}
$$

where

$$
S^{-1}(s, x)=-\left(x^{2}-2 s_{0} x+|s|^{2}\right)^{-1}(x-\bar{s})
$$

and the integral does not depend on $U$ and on the imaginary unit $I \in \mathbb{S}$.

## The Cauchy formula with slice-monogenic kernel

(1) G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Acad. Sci. Paris, Ser. I, 2006.
(2) F.Colombo, I. S., D.C. Struppa, Slice monogenic functions, Israel Journal of Mathematics, 2009.
(3) F.Colombo, I. S., A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, 2009.
(9) F.Colombo, I. S., D.C. Struppa, Extension properties for slice monogenic functions, Israel Journal of Mathematics, 2010.
(5) F.Colombo, I. S., D. C. Struppa Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math., 2010.
(6) R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. (2011).

## The Cauchy formula with slice-monogenic kernel

(1) F.Colombo, I. S., D.C. Struppa, Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, Birkhäuser, Basel, 2011.

## Functional calculus for $n$-tuples of operators

## Notation for several non commuting operators

- By $V$ we denote a Banach space over $\mathbb{R}$ with norm $\|\cdot\|$.
- By $V_{n}$ we denote the two-sided Banach module over $\mathbb{R}_{n}$ corresponding to $V \otimes \mathbb{R}_{n}$.
- An element in $V_{n}$ is of the type $\sum_{A} v_{A} \otimes e_{A}=\sum_{A} v_{A} e_{A}$ (where $A=i_{1} \ldots i_{r}, i_{\ell} \in\{1,2, \ldots, n\}, i_{1}<\ldots<i_{r}$ is a multi-index).
- We define $\|v\|=\sum_{A}\left\|v_{A}\right\|$.


## Functional calculus for $n$-tuples of operators

- $\mathcal{B}(V)$ is the space of bounded $\mathbb{R}$-linear operators from the Banach space $V$ to itself endowed with the natural norm denoted by $\|\cdot\|_{\mathcal{B}(V)}$.
- Let $T_{j} \in \mathcal{B}(V), j=0,1, \ldots, n$.
- We define an operator $T=T_{0}+\sum_{j=1}^{n} T_{j} e_{j}$ and its action on $v=\sum v_{B} e_{B} \in V_{n}$ as $T(v)=\sum_{i, B} T_{i}\left(v_{B}\right) e_{i} e_{B}$.
- The operator $T$ is right-linear and bounded on $V_{n}$. We define $\|T\|=\sum_{i}\left\|T_{i}\right\|_{\mathcal{B}(V)}$.
- $\mathcal{B}^{0,1}\left(V_{n}\right)=\left\{T\left|T=T_{0}+\sum_{j=1}^{n} T_{j} e_{j}\right| T_{j} \in \mathcal{B}(V)\right\}$.


## Functional calculus for $n$-tuples of operators

## Definition

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $s \in \mathbb{R}^{n+1}$. We define the $S$-resolvent operator series as

$$
\begin{equation*}
S^{-1}(s, T):=\sum_{n \geq 0} T^{n} S^{-1-n} \tag{3}
\end{equation*}
$$

for $\|T\|<|s|$.

## Theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $s \in \mathbb{R}^{n+1}$. Then

$$
\begin{equation*}
\sum_{n \geq 0} T^{n} s^{-1-n}=-\left(T^{2}-2 T \operatorname{Re}[s]+|s|^{2} \mathcal{I}\right)^{-1}(T-\bar{s} \mathcal{I}) \tag{4}
\end{equation*}
$$

for $\|T\|<|s|$.

## Functional calculus for $n$-tuples of operators

## Definition (The $S$-spectrum and the $S$-resolvent set)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $s \in \mathbb{R}^{n+1}$. We define the $S$-spectrum $\sigma_{S}(T)$ of $T$ as:

$$
\sigma_{S}(T)=\left\{s \in \mathbb{R}^{n+1} \quad: \quad T^{2}-2 \operatorname{Re}[s] T+|s|^{2} \mathcal{I} \quad \text { is not invertible }\right\} .
$$

The $S$-resolvent set $\rho_{S}(T)$ is defined by

$$
\rho_{S}(T)=\mathbb{R}^{n+1} \backslash \sigma_{S}(T)
$$

## Definition (The $S$-resolvent operator)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $s \in \rho_{S}(T)$. We define the $S$-resolvent operator as

$$
S^{-1}(s, T):=-\left(T^{2}-2 \operatorname{Re}[s] T+|s|^{2} \mathcal{I}\right)^{-1}(T-\bar{s} \mathcal{I}) .
$$

## Functional calculus for $n$-tuples of operators

## Theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $s \in \rho_{S}(T)$. Let $S^{-1}(s, T)$ be the $S$-resolvent operator. Then $S^{-1}(s, T)$ satisfies the ( $S$-resolvent) equation

$$
S^{-1}(s, T) s-T S^{-1}(s, T)=\mathcal{I} .
$$

Having in mind the definition of $\sigma_{S}(T)$ we can state the following result:

## Theorem (Structure of the $S$-spectrum)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and suppose that $p=\operatorname{Re}[p]+\underline{p}$ belongs $\sigma_{S}(T)$ with $\underline{p} \neq 0$. Then all the elements of the $(n-1)$-sphere $[p]$ belong to $\sigma_{S}(T)$.

This result implies that if $p \in \sigma_{S}(T)$ then either $p$ is a real point or the whole $(n-1)$-sphere $[p]$ belongs to $\sigma_{S}(T)$.

## Functional calculus for $n$-tuples of operators

## Theorem (Compactness of $S$-spectrum)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$. Then the $S$-spectrum $\sigma_{S}(T)$ is a compact nonempty set. Moreover, $\sigma_{S}(T)$ is contained in $\left\{s \in \mathbb{R}^{n+1}:|s| \leq\|T\|\right\}$.

## Functional calculus for $n$-tuples of operators

## Definition (Admissible sets $U$ )

We say that $U \subset \mathbb{R}^{n+1}$ is an admissible set if

- it is an axially symmetric s-domain that contains the $S$-spectrum $\sigma_{S}(T)$ of $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$,
- $\partial\left(U \cap \mathbb{C}_{l}\right)$ is union of a finite number of rectifiable Jordan curves for every $I \in \mathbb{S}$.


## Definition (Locally s-monogenic on $\sigma_{S}(T)$ )

Suppose that $U$ is admissible and $\bar{U}$ is contained in a domain of s-monogenicity of a function $f$. Then such a function $f$ is said to be locally s-monogenic on $\sigma_{S}(T)$.
We will denote by $\mathcal{M}_{\sigma_{S}(T)}$ the set of locally s-monogenic functions on $\sigma_{S}(T)$.

## Functional calculus for $n$-tuples of operators

## Theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $f \in \mathcal{M}_{\sigma_{S}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be an admissible set and let $d s_{I}=d s / I$ for $I \in \mathbb{S}$. Then the integral

$$
\frac{1}{2 \pi} \int_{\partial\left(U \cap C_{1}\right)} S^{-1}(s, T) d s_{l} f(s)
$$

does not depend on the open set $U$ nor on the choice of the imaginary unit $I \in \mathbb{S}$.

## Functional calculus for $n$-tuples of operators

## Definition (of the $S$-functional calculus)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and $f \in \mathcal{M}_{\sigma_{s}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be an admissible set and let $d s_{I}=d s / I$ for $I \in \mathbb{S}$. We define

$$
\begin{equation*}
f(T):=\frac{1}{2 \pi} \int_{\partial\left(U \cap \mathrm{C}_{1}\right)} S^{-1}(s, T) d s_{l} f(s) . \tag{5}
\end{equation*}
$$

## Functional calculus for $n$-tuples of operators

(1) F. Colombo, I. S., D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal., 254 (2008), 2255-2274.
(2) F. Colombo, I. S., The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators, J. Math. Anal. Appl. 373 (2011), 655-679.
$\Rightarrow$ Cauchy formula allowing to define $f(T)$ in the general case.
(3) F. Colombo, I. S. A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, 2009, 69-99.

## Some properties of the functional calculus

## Theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$.
(a) If $f$ and $g \in \mathcal{M}_{\sigma_{S}(T)}$ then

$$
(f+g)(T)=f(T)+g(T), \quad(f \lambda)(T)=f(T) \lambda, \quad \text { for all } \lambda \in \mathbb{R}_{n}
$$

(b) If $\phi \in \mathcal{N}_{\sigma(T)}$ and $g \in \mathcal{M}_{\sigma_{S}(T)}$. Then

$$
(\phi g)(T)=\phi(T) g(T)
$$

where

$$
\mathcal{N}(U)=\left\{f \in \mathcal{M}(U) \mid f\left(\mathbb{C}_{l}\right) \subseteq \mathbb{C}_{1}, \forall I \in \mathbb{S}\right\}
$$

(c) If $f(s)=\sum_{n \geq 0} s^{n} p_{n}, p_{n} \in \mathbb{R}_{n}$, belongs to $\mathcal{M}_{\sigma_{s}(T)}$, then

$$
f(T)=\sum_{n \geq 0} T^{n} p_{n}
$$

## Some properties of the functional calculus

## Theorem (Composition)

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right), f \in \mathcal{N}_{\sigma_{S}(T)}, \phi \in \mathcal{N}_{\sigma_{s}(f(T))}$ and let $F(s)=\phi(f(s))$. Then $F \in \mathcal{M}_{\sigma_{s}(T)}$ and $F(T)=\phi(f(T))$.

## The S-Spectral Mapping Theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right), f \in \mathcal{N}_{\sigma(T)}$, and $\lambda \in \sigma_{S}(T)$. Then

$$
\sigma_{s}(f(T))=f\left(\sigma_{s}(T)\right)=\left\{f(s): s \in \sigma_{s}(T)\right\} .
$$

## Some properties of the functional calculus

## Definition ( $S$-spectral radius of $T$ )

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$. We call $S$-spectral radius of $T$ the real nonnegative number

$$
r_{s}(T):=\sup \left\{|s|: s \in \sigma_{s}(T)\right\}
$$

## The $S$-spectral radius theorem

Let $T \in \mathcal{B}^{0,1}\left(V_{n}\right)$ and let $r_{s}(T)$ be the $S$-spectral radius of $T$. Then

$$
r_{s}(T)=\lim _{m \rightarrow \infty}\left\|T^{m}\right\|^{1 / m}
$$

## Functional calculus for $n$-tuples of operators

## A functional calculus for unbounded operators

Let $V$ be a Banach space and $T=T_{0}+\sum_{j=1}^{m} e_{j} T_{j}$ where $T_{\mu}: \mathcal{D}\left(T_{\mu}\right) \rightarrow V$ are linear operators for $\mu=0,1, \ldots, n$ where at least one of the $T_{j}$ 's is an unbounded operator. Define the extended $S$-spectrum as

$$
\bar{\sigma}_{S}(T):=\sigma_{S}(T) \cup\{\infty\}
$$

## Functional calculus for $n$-tuples of operators

## Definition

Let $V$ be a Banach space and $V_{n}$ be the two-sided Banach module over $\mathbb{R}_{n}$ corresponding to $V \otimes \mathbb{R}_{n}$. Let $T_{\mu}: \mathcal{D}\left(T_{\mu}\right) \subset V \rightarrow V$ be linear closed densely defined operators for $\mu=0,1, \ldots, n$. Let

$$
\begin{equation*}
\mathcal{D}(T)=\left\{v \in V_{n}: v=\sum_{B} v_{B} e_{B}, \quad v_{B} \in \bigcap_{\mu=0}^{n} \mathcal{D}\left(T_{\mu}\right)\right\} \tag{6}
\end{equation*}
$$

be the domain of the operator
$T=T_{0}+\sum_{j=1}^{n} e_{j} T_{j}, \quad T: \mathcal{D}(T) \subset V_{n} \rightarrow V_{n}$. Let us assume that

1) $\bigcap_{\mu=0}^{n} \mathcal{D}\left(T_{\mu}\right)$ is dense in $V_{n}$,
2) $\mathcal{D}\left(T^{2}\right) \subset \mathcal{D}(T)$ is dense in $V_{n}$,

## Some properties of the functional calculus

## Definition

Consider $k \in \mathbb{R}^{n+1}$ and the homeomorphism

$$
\Phi: \overline{\mathbb{R}}^{n+1} \rightarrow \overline{\mathbb{R}}^{n+1} \quad \text { for } \quad k \in \mathbb{R}^{n+1}
$$

defined by

$$
p=\Phi(s)=(s-k)^{-1}, \quad \Phi(\infty)=0, \quad \Phi(k)=\infty .
$$

## Some properties of the functional calculus

## Definition

Let $T: \mathcal{D}(T) \rightarrow V_{n}$ be a linear closed operator as above with $\rho_{S}(T) \cap \mathbb{R} \neq \emptyset$ and suppose that $f \in \mathcal{M}_{\bar{\sigma}_{s}(T)}$. Let us consider

$$
\phi(p):=f\left(\Phi^{-1}(p)\right)
$$

and the operator

$$
A:=(T-k \mathcal{I})^{-1}, \text { for some } k \in \rho_{S}(T) \cap \mathbb{R} .
$$

We define

$$
\begin{equation*}
f(T)=\phi(A) . \tag{7}
\end{equation*}
$$

## Preliminaries for the $\mathcal{S C}$-functional calculus

## Definition

Let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin[s]$.

- We say that $S^{-1}(s, x)$ is written in the form I if

$$
S^{-1}(s, x):=-\left(x^{2}-2 x \operatorname{Re}[s]+|s|^{2}\right)^{-1}(x-\bar{s}) .
$$

- We say that $S^{-1}(s, x)$ is written in the form II if

$$
S^{-1}(s, x):=(s-\bar{x})\left(s^{2}-2 \operatorname{Re}[x] s+|x|^{2}\right)^{-1} .
$$

## Preliminaries for the $\mathcal{S C}$-functional calculus

Can we substitute $T$ for $x$ in $\mathcal{S}^{-1}(s, x)$ written in the form II? Yes, but we must require that the components of the operator $T$ commute among themselves.
We denote by $\mathcal{B C}^{0,1}\left(V_{n}\right)$ the space of bounded paravector operators with commuting components.

## Theorem

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$ and $s \in \mathbb{R}^{n+1}$. Then

$$
\sum_{m \geq 0} T^{m} s^{-1-m}=(s \mathcal{I}-\bar{T})\left(s^{2} \mathcal{I}-s(T+\bar{T})+T \bar{T}\right)^{-1}
$$

for $\|T\|<|s|$.

## Preliminaries for the $\mathcal{S C}$-functional calculus

## Definition (The $\mathcal{F}$-spectrum and the $\mathcal{F}$-resolvent sets)

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$. We define the $\mathcal{F}$-spectrum of $T$ as:

$$
\sigma_{\mathcal{F}}(T)=\left\{s \in \mathbb{R}^{n+1} \quad: s^{2} \mathcal{I}-s(T+\bar{T})+T \bar{T} \quad \text { is not invertible }\right\} .
$$

The $\mathcal{F}$-resolvent set of $T$ is defined by

$$
\rho_{\mathcal{F}}(T)=\mathbb{R}^{n+1} \backslash \sigma_{\mathcal{F}}(T) .
$$

## Definition (The $\mathcal{S}_{\mathcal{C}}$-resolvent operator)

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$ and $s \in \rho_{\mathcal{F}}(T)$. We define the $\mathcal{S}_{\mathcal{C}}$-resolvent operator as

$$
\mathcal{S}_{\mathcal{C}}{ }^{-1}(s, T):=(s \mathcal{I}-\bar{T})\left(s^{2} \mathcal{I}-s(T+\bar{T})+T \bar{T}\right)^{-1} .
$$

## Definition of the $\mathcal{S C}$-functional calculus

## Theorem

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$ and $f \in \mathcal{S} \mathcal{M}_{\sigma_{\mathcal{F}}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be admissible domain and let $d s_{I}=d s / I$ for $I \in \mathbb{S}$. Then the integral

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{\partial\left(U \cap C_{1}\right)} \mathcal{S}_{\mathcal{C}}^{-1}(s, T) d s_{l} f(s) \tag{8}
\end{equation*}
$$

does not depend on the open set $U$ nor on the choice of the imaginary unit $I \in \mathbb{S}$.

## Definition of the $\mathcal{S C}$-functional calculus

## Definition (of the $\mathcal{S}_{\mathcal{C}}$-functional calculus)

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$ and $f \in \mathcal{S} \mathcal{M}_{\sigma_{\mathcal{F}}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be admissible domain and let $d s_{I}=d s / I$ for $I \in \mathbb{S}$. We define

$$
\begin{equation*}
f(T)=\frac{1}{2 \pi} \int_{\partial\left(U \cap C_{l}\right)} \mathcal{S}_{\mathcal{C}}^{-1}(s, T) d s_{l} f(s) \tag{9}
\end{equation*}
$$

## Theorem

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$. Then $\sigma_{\mathcal{F}}(T)=\sigma_{S}(T)$.

## Definition of the $\mathcal{S C}$-functional calculus

Advantage: the $\mathcal{F}$-spectrum is easier to compute than the $\mathcal{S}$-spectrum. $\mathcal{F}$-spectrum takes into account the commutativity of the operators while the $\mathcal{S}$-spectrum does not.
The $\mathcal{F}$-spectrum is related to the $\mathcal{F}$-functional calculus.

- F. Colombo, I.S., The $\mathcal{F}$-spectrum and the $\mathcal{S C}$-functional calculus, Proceedings of the Royal Society of Edinburgh, Section A, (2012).


## The SC-functional calculus

## Proposition

Let $f$ be an holomorphic function in an open set of the upper half complex plane

$$
\begin{gathered}
f(x+\iota y)=u(x, y)+\iota v(x, y) \\
q=x_{0}+i x_{1}+j x_{2}+k x_{3}:=x_{0}+\underline{q}
\end{gathered}
$$

Then

$$
\Delta_{4}\left(u\left(x_{0},|\underline{q}|\right)+\frac{q}{|\underline{q}|} v\left(x_{0},|\underline{q}|\right)\right)
$$

is Fueter regular, while when $x_{0}+\underline{x} \in \mathbb{R}^{n+1}$

$$
\Delta_{n+1}^{\frac{n-1}{2}}\left(u\left(x_{0},|\underline{x}|\right)+\frac{\underline{x}}{|\underline{x}|} v\left(x_{0},|\underline{x}|\right)\right)
$$

is in the kernel of Dirac operator.

## The $\mathcal{S C}$-functional calculus

## Remark

Even though $S^{-1}(s, x)$ written in the form I is more suitable for several applications, for example for the definition of a functional calculus, it does not allow easy computation of the powers of the Laplacian

$$
\Delta=\partial_{x_{0}}^{2}+\sum_{j=1}^{n} \partial_{x_{j}}^{2}
$$

applied to it. The form II is the one that allows, by iteration, the computation of $\Delta^{\frac{n-1}{2}} S^{-1}(s, x)$.

## The $\mathcal{S C}$-functional calculus

## Theorem (Explicit computation of $\Delta^{\frac{n-1}{2}} S^{-1}(s, x)$ )

Let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin[s]$. Let $S^{-1}(s, x)=(s-\bar{x})\left(s^{2}-2 \operatorname{Re}[x] s+|x|^{2}\right)^{-1}$ be the slice-monogenic Cauchy kernel and let $\Delta=\sum_{i=0}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ be the Laplace operator in the variable $x$. Then, for $h \geq 1$, we have:

$$
\Delta^{h} S^{-1}(s, x)=C_{n, h}(s-\bar{x})\left(s^{2}-2 \operatorname{Re}[x] s+|x|^{2}\right)^{-(h+1)} .
$$

where

$$
C_{n, h}:=(-1)^{h} \prod_{\ell=1}^{h}(2 \ell) \prod_{\ell=1}^{h}(n-(2 \ell-1))
$$

## The SC-functional calculus

## Theorem

Let $n$ be an odd number and let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin[s]$. Then the function $\Delta^{h} S^{-1}(s, x)$ is a right $s$-monogenic function in the variable $s$, for any $h$.

## Theorem

Let $n$ be an odd number and let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin[s]$. Then the function $\Delta^{\frac{n-1}{2}} S^{-1}(s, x)$ is a monogenic function in the variable $x$.

## The $\mathcal{S C}$-functional calculus

## Definition (The $\mathcal{F}_{n}$-kernel)

Let $n$ be an odd number. Let $x, s \in \mathbb{R}^{n+1}$. We define, for $s \notin[x]$, the $\mathcal{F}_{n}$-kernel as

$$
\mathcal{F}_{n}(s, x):=\Delta^{\frac{n-1}{2}} S^{-1}(s, x)=\gamma_{n}(s-\bar{x})\left(s^{2}-2 \operatorname{Re}[x] s+|x|^{2}\right)^{-\frac{n+1}{2}}
$$

where

$$
\gamma_{n}:=(-1)^{(n-1) / 2} 2^{(n-1) / 2}(n-1)!\left(\frac{n-1}{2}\right)!.
$$

## The $\mathcal{S C}$-functional calculus

## Theorem (The Fueter mapping theorem in integral form)

Let $n$ be an odd number. Let $W \subset \mathbb{R}^{n+1}$ be an axially symmetric open set and let $f \in \mathcal{M}(W)$. Let $U$ be a bounded axially symmetric open set such that $\bar{U} \subset W$. Suppose that the boundary of $U \cap L_{I}$ consists of a finite number of rectifiable Jordan curves for any $I \in \mathbb{S}$. Then, if $x \in U$, the function $\breve{f}(x)$ given by

$$
\breve{f}(x)=\Delta^{\frac{n-1}{2}} f(x)
$$

is monogenic and it admits the integral representation

$$
\begin{equation*}
\breve{f}(x)=\frac{1}{2 \pi} \int_{\partial\left(U \cap L_{I}\right)} \mathcal{F}_{n}(s, x) d s_{I} f(s), \quad d s_{I}=d s / I \tag{10}
\end{equation*}
$$

where the integral does not depend on $U$ nor on the imaginary unit $I \in \mathbb{S}$.

## The $\mathcal{S C}$-functional calculus

## Definition ( $\mathcal{F}$-resolvent operator)

Let $n$ be an odd number, $s \in \mathbb{R}^{n+1}$ and let $T \in \mathcal{B C}_{n}^{0,1}\left(V_{n}\right)$. For $s \in \rho_{\mathcal{F}}(T)$ we define the $\mathcal{F}$-resolvent operator by

$$
\mathcal{F}_{n}(s, T):=\gamma_{n}(s \mathcal{I}-\bar{T})\left(s^{2} \mathcal{I}-s(T+\bar{T})+T \bar{T}\right)^{-\frac{n+1}{2}} .
$$

## The $\mathcal{S C}$-functional calculus

## Definition

Let $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$ and let $U \subset \mathbb{R}^{n+1}$ be an axially symmetric s-domain that contains the $\mathcal{F}$-spectrum $\sigma_{\mathcal{F}}(T)$, such that $\partial\left(U \cap \mathbb{C}_{1}\right)$ is union of a finite number of rectifiable Jordan curves for every $I \in \mathbb{S}$. Let $W$ be an open set in $\mathbb{R}^{n+1}$. A function $f \in \mathcal{S M}(W)$ is said to be locally s-monogenic on $\sigma_{\mathcal{F}}(T)$ if there exists a domain $U \subset \mathbb{R}^{n+1}$, as above and such that $\bar{U} \subset W$, on which $f$ is s-monogenic. We will denote by $\mathcal{S} \mathcal{M}_{\sigma_{\mathcal{F}}(T)}$ the set of locally s-monogenic functions on $\sigma_{\mathcal{F}}(T)$.

## The $\mathcal{S C}$-functional calculus

## Definition (The $\mathcal{F}$-functional calculus)

Let $n$ be an odd number, $T \in \mathcal{B C}^{0,1}\left(V_{n}\right)$. Let $U$ be an open set, containing $\sigma_{\mathcal{F}}(T)$, as above. Suppose that $f \in \mathcal{S} \mathcal{M}_{\sigma_{\mathcal{F}}(T)}$ and let $\breve{f}(x)=\Delta^{\frac{n-1}{2}} f(x)$. We define the $\mathcal{F}$-functional calculus as

$$
\breve{f}(T)=\frac{1}{2 \pi} \int_{\partial\left(U \cap C_{1}\right)} \mathcal{F}_{n}(s, T) d s_{l} f(s) .
$$

F. Colombo, I.S., F. Sommen The Fueter mapping theorem in integral form and the $\mathcal{F}$-functional calculus, Mathematical Methods in the Applied Sciences, (2010).

