Slice monogenic functions and a functional calculus for n-tuples of operators

Irene Sabadini

Politecnico di Milano

Function Theory and Operator Theory: Infinite Dimensional and Free Settings, Ben-Gurion University, June 27-30, 2011

1 Motivations

- 2 Slice monogenic functions
- 3 The Cauchy formula with slice-monogenic kernel
- 4 Functional calculus for n-tuples of operators
 - Definition of the S-functional calculus
 - Some properties of the functional calculus
- 5 The *SC*-functional calculus
 - Preliminaries for the SC-functional calculus
 - Definition of the SC-functional calculus

Motivations

Slice monogenic functions The Cauchy formula with slice-monogenic kernel Functional calculus for *n*-tuples of operators The SC-functional calculus

Motivations

Let \mathcal{T} be a bounded operator on a Banach space, we define

$$f(T) = rac{1}{2\pi i} \int_{\Gamma} (\lambda \mathcal{I} - T)^{-1} f(\lambda) \, d\lambda,$$

where Γ is a rectifiable Jordan curve that surrounds the spectrum of $\mathcal{T}.$

Problems

- How to generalize the definition to quaternionic operators?
 Quaternionic Quantum Mechanics and Quantum Fields (Adler, Oxford University Press 1995)
- How to define a function of *n*-tuples of operators?

- H.Weyl (1930): The Theory of Groups and Quantum Mechanics
- R.F. Anderson (J. Funct. Anal., 1969): functional calculus uses the Fourier transform and holds for self-adjoint operators $A_1, ..., A_n$.
- J. L. Taylor (Acta Math., 1970): uses holomorphic functions in several variables. The most explicit calculus is for commuting operators. Algebraic treatment.
- B. Jefferies, A. McIntosh and coauthors (1987-2004) use monogenic functions with values in a Clifford algebra for commuting operators or noncommuting operators satisfying additional hypothesis on their spectrum.

Slice monogenic functions

Notations

Let \mathbb{R}_n be the real Clifford algebra over *n* imaginary units e_1, \ldots, e_n satisfying the relations

$$e_i e_j + e_j e_i = 0, \ i \neq j \qquad e_i^2 = -1.$$

An element in the Clifford algebra will be denoted by

$$\sum_{A} e_{A} x_{A}$$

where

$$A = \{i_1 \dots i_r\} \in \mathcal{P}\{1, 2, \dots, n\}, \ i_1 < \dots < i_r$$

is a multi-index and $e_A = e_{i_1} e_{i_2} \dots e_{i_r}$, $e_{\emptyset} = 1$.

Slice monogenic functions

Example. $\mathbb{R}_2 = \mathbb{H}$

$$q = x_0 + e_1 x_1 + e_2 x_2 + e_1 e_2 x_{12},$$

 $e_1 = i$, $e_2 = j$, $e_1e_2 = k$. An element $(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1}$ will be identified with the element

$$x = x_0 + \underline{x} = x_0 + \sum_{j=1}^n x_j e_j \in \mathbb{R}_n$$

called, in short, paravector. The norm of $x \in \mathbb{R}^{n+1}$ is defined as

$$|x|^2 = x_0^2 + x_1^2 + \ldots + x_n^2,$$

<u>x</u> is the 1-vector part of x; the conjugate of x is defined by $\bar{x} = x_0 - \underline{x} = x_0 - \sum_{j=1}^n x_j e_j$.

Slice monogenic functions

The sphere \$

$$S = \{ \underline{x} = e_1 x_1 + \ldots + e_n x_n \mid x_1^2 + \ldots + x_n^2 = 1 \}$$
 $I \in S$, $I^2 = -1$

Imaginary unit associated to $x\in \mathbb{R}^{n+}$

Given an element $x = x_0 + \underline{x} \in \mathbb{R}^{n+1}$ let us set

$$M_x = \begin{cases} rac{\underline{X}}{|\underline{X}|} & ext{if } \underline{X} \neq \mathbf{0}, \\ & ext{any element of } \mathbf{S} & ext{otherwise.} \end{cases}$$

The (*n* – 1)-sphere [*x*]

Given an element $x \in \mathbb{R}^{n+1}$, we define

$$[x] = \{ y \in \mathbb{R}^{n+1} : y = x_0 + I | \underline{x} |, I \in \mathbb{S} \}.$$

Slice monogenic functions

The sphere \$

$$S = \{ \underline{x} = e_1 x_1 + \ldots + e_n x_n \mid x_1^2 + \ldots + x_n^2 = 1 \}$$
 $I \in S$, $I^2 = -1$

Imaginary unit associated to $x \in \mathbb{R}^{n+1}$

Given an element $x = x_0 + \underline{x} \in \mathbb{R}^{n+1}$ let us set

$$U_{x} = \begin{cases} rac{\underline{X}}{|\underline{x}|} & \text{if } \underline{x} \neq \mathbf{0}, \\ & \text{any element of } \mathbf{\$} & \text{otherwise.} \end{cases}$$

The (n-1)-sphere [x]

Given an element $x \in \mathbb{R}^{n+1}$, we define

$$[x] = \{ y \in \mathbb{R}^{n+1} : y = x_0 + I | \underline{x} |, \ I \in \mathbb{S} \}.$$

Slice monogenic functions

The sphere \$

$$S = \{ \underline{x} = e_1 x_1 + \ldots + e_n x_n \mid x_1^2 + \ldots + x_n^2 = 1 \}$$
 $I \in S$, $I^2 = -1$

Imaginary unit associated to $x \in \mathbb{R}^{n+1}$

Given an element $x = x_0 + \underline{x} \in \mathbb{R}^{n+1}$ let us set

$$U_x = \begin{cases} \frac{\underline{X}}{|\underline{X}|} & \text{if } \underline{X} \neq \mathbf{0}, \\ & \text{any element of $\$$ otherwise.} \end{cases}$$

The (n-1)-sphere [x]

Given an element $x \in \mathbb{R}^{n+1}$, we define

$$[x] = \{ y \in \mathbb{R}^{n+1} : y = x_0 + I | \underline{x} |, I \in \mathbb{S} \}.$$

< (T) >

The complex plane \mathbb{C}_I

The vector space $\mathbb{R} + I\mathbb{R}$ passing through 1 and $I \in S$ will be denoted by \mathbb{C}_I , while an element belonging to \mathbb{C}_I will be denoted by u + Iv, for u, $v \in \mathbb{R}$. \mathbb{C}_I can be identified with a complex plane.

Slice monogenic functions

Slice monogenic functions

Let $U \subseteq \mathbb{R}^{n+1}$ be an open set and let $f : U \to \mathbb{R}_n$ be a real differentiable function.

Let $I \in S$ and let f_I be the restriction of f to the complex plane \mathbb{C}_I . We say that f is a (left) slice monogenic function, or s-monogenic function, if for every $I \in S$, we have

$$\frac{1}{2}\left(\frac{\partial}{\partial u}+I\frac{\partial}{\partial v}\right)f_l(u+lv)=0.$$

We say that f is a right slice monogenic function, or right s-monogenic function, if for every $I \in$ \$, we have

$$\frac{1}{2}\left(\frac{\partial}{\partial u}f_{l}(u+lv)+\frac{\partial}{\partial v}f_{l}(u+lv)I\right)=0.$$

The Cauchy formula with slice-monogenic kernel

Theorem

Let $x, s \in \mathbb{R}^{n+1}$. Then $\sum_{n \ge 0} x^n s^{-1-n} = -(x^2 - 2xs_0 + |s|^2)^{-1}(x - \overline{s})$ for |x| < |s|, where $\overline{s} = s_0 - \underline{s}$.

.

The Cauchy formula with slice-monogenic kernel

Definition of noncommutative Cauchy kernel

We will call the expression

$$S^{-1}(s,x) = -(x^2 - 2s_0x + |s|^2)^{-1}(x - \overline{s}), \tag{1}$$

defined for $x^2 - 2s_0x + |s|^2 \neq 0$, noncommutative Cauchy kernel.

The Cauchy formula with slice-monogenic kernel

Proposition

$$x^2 - 2s_0x + |s|^2$$
 vanishes on the $(n-1)$ -sphere

$$[s] = \{y = s_0 + I | \underline{s} |, I \in \$\}$$

Theorem

The function $S^{-1}(s, x)$ is left s-monogenic in the variable x and right s-monogenic in the variable s in its domain of definition.

A 30 b

The Cauchy formula with slice-monogenic kernel

Let $U \subseteq \mathbb{R}^{n+1}$ be a domain.

- *U* is an s-domain if $U \cap \mathbb{R}$ is non empty and if $\mathbb{C}_I \cap U$ is a domain in \mathbb{C}_I for all $I \in S$.
- U is axially symmetric if, for all $u + lv \in U$, the whole (n-1)-sphere [u + lv] is contained in U.

Representation formula

Let $U \subseteq \mathbb{R}^{n+1}$ be an axially symmetric s-domain. Let f be an s-monogenic function on U. For any $x = x_0 + l_x |\underline{x}| \in U$ the following formula holds:

$$f(x) = \frac{1}{2} \Big[1 - I_x I \Big] f(x_0 + I |\underline{x}|) + \frac{1}{2} \Big[1 + I_x I \Big] f(x_0 - I |\underline{x}|).$$

The Cauchy formula with slice-monogenic kernel

Let $U \subseteq \mathbb{R}^{n+1}$ be a domain.

- *U* is an s-domain if $U \cap \mathbb{R}$ is non empty and if $\mathbb{C}_I \cap U$ is a domain in \mathbb{C}_I for all $I \in S$.
- U is axially symmetric if, for all $u + lv \in U$, the whole (n-1)-sphere [u + lv] is contained in U.

Representation formula

Let $U \subseteq \mathbb{R}^{n+1}$ be an axially symmetric s-domain. Let f be an s-monogenic function on U. For any $x = x_0 + I_x |\underline{x}| \in U$ the following formula holds:

$$f(x) = \frac{1}{2} \Big[1 - I_x I \Big] f(x_0 + I |\underline{x}|) + \frac{1}{2} \Big[1 + I_x I \Big] f(x_0 - I |\underline{x}|).$$

The Cauchy formula with slice-monogenic kernel

Cauchy formula with slice monogenic kernel

Let $U \subset \mathbb{R}^{n+1}$ be a bounded axially symmetric s-domain such that $\partial (U \cap \mathbb{C}_I)$ is union of a finite number of rectifiable Jordan curves for every $I \in \mathbb{S}$. Let f be a left s-monogenic function on $W \supset U$, $x \in U$ and set $ds_I = ds/I$, ds = du + Idv. Then

$$f(x) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_I)} S^{-1}(s, x) ds_I f(s)$$
⁽²⁾

where

$$S^{-1}(s,x) = -(x^2 - 2s_0x + |s|^2)^{-1}(x - \overline{s})$$

and the integral does not depend on U and on the imaginary unit $I \in S$.

The Cauchy formula with slice-monogenic kernel

- G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Acad. Sci. Paris, Ser. I, 2006.
- F.Colombo, I. S., D.C. Struppa, *Slice monogenic functions*, Israel Journal of Mathematics, 2009.
- F.Colombo, I. S., A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, 2009.
- F.Colombo, I. S., D.C. Struppa, Extension properties for slice monogenic functions, Israel Journal of Mathematics, 2010.
- F.Colombo, I. S., D. C. Struppa Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math., 2010.
- R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. (2011).

伺い イラト イラト

The Cauchy formula with slice-monogenic kernel

F.Colombo, I. S., D.C. Struppa, Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics, Birkhäuser, Basel, 2011.

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Notation for several non commuting operators

- By V we denote a Banach space over \mathbb{R} with norm $\|\cdot\|$.
- By V_n we denote the two-sided Banach module over ℝ_n corresponding to V ⊗ ℝ_n.
- An element in V_n is of the type $\sum_A v_A \otimes e_A = \sum_A v_A e_A$ (where $A = i_1 \dots i_r$, $i_\ell \in \{1, 2, \dots, n\}$, $i_1 < \dots < i_r$ is a multi-index).
- We define $||v|| = \sum_A ||v_A||$.

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

• Let
$$T_j \in \mathcal{B}(V)$$
, $j = 0, 1, ..., n$.

- We define an operator $T = T_0 + \sum_{j=1}^n T_j e_j$ and its action on $v = \sum v_B e_B \in V_n$ as $T(v) = \sum_{i,B} T_i(v_B) e_i e_B$.
- The operator T is right-linear and bounded on V_n . We define $||T|| = \sum_i ||T_i||_{\mathcal{B}(V)}$.

•
$$\mathcal{B}^{0,1}(V_n) = \{T \mid T = T_0 + \sum_{j=1}^n T_j e_j \mid T_j \in \mathcal{B}(V)\}.$$

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Definition

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $s \in \mathbb{R}^{n+1}$. We define the *S*-resolvent operator series as

$$S^{-1}(s,T) := \sum_{n \ge 0} T^n s^{-1-n}$$
(3)

for ||T|| < |s|.

Theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $s \in \mathbb{R}^{n+1}$. Then

$$\sum_{n>0} T^n s^{-1-n} = -(T^2 - 2T \operatorname{Re}[s] + |s|^2 \mathcal{I})^{-1} (T - \overline{s}\mathcal{I}), \qquad (4)$$

for ||T|| < |s|.

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Definition (The S-spectrum and the S-resolvent set)

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $s \in \mathbb{R}^{n+1}$. We define the S-spectrum $\sigma_S(T)$ of T as:

$$\sigma_{\mathcal{S}}(\mathcal{T}) = \{ s \in \mathbb{R}^{n+1} : \mathcal{T}^2 - 2 \operatorname{Re}[s]\mathcal{T} + |s|^2 \mathcal{I} \text{ is not invertible} \}.$$

The S-resolvent set $\rho_S(T)$ is defined by

$$\rho_{\mathcal{S}}(\mathcal{T}) = \mathbb{R}^{n+1} \setminus \sigma_{\mathcal{S}}(\mathcal{T}).$$

Definition (The S-resolvent operator)

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $s \in \rho_S(T)$. We define the S-resolvent operator as

$$S^{-1}(s,T) := -(T^2 - 2 \mathrm{Re}[s]T + |s|^2 \mathcal{I})^{-1}(T - \overline{s}\mathcal{I}).$$

A 30 b

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $s \in \rho_S(T)$. Let $S^{-1}(s, T)$ be the S-resolvent operator. Then $S^{-1}(s, T)$ satisfies the (S-resolvent) equation

$$S^{-1}(s,T)s-TS^{-1}(s,T)=\mathcal{I}.$$

Having in mind the definition of $\sigma_S(T)$ we can state the following result:

Theorem (Structure of the S-spectrum)

Let $T \in \mathcal{B}^{0,1}(V_n)$ and suppose that $p = \operatorname{Re}[p] + \underline{p}$ belongs $\sigma_S(T)$ with $\underline{p} \neq 0$. Then all the elements of the (n-1)-sphere [p] belong to $\sigma_S(T)$.

This result implies that if $p \in \sigma_S(T)$ then either p is a real point or the whole (n-1)-sphere [p] belongs to $\sigma_S(T)$.

マロト イラト イラト

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Theorem (Compactness of S-spectrum)

Let $T \in \mathcal{B}^{0,1}(V_n)$. Then the S-spectrum $\sigma_S(T)$ is a compact nonempty set. Moreover, $\sigma_S(T)$ is contained in $\{s \in \mathbb{R}^{n+1} : |s| \le ||T||\}$.

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Definition (Admissible sets U)

We say that $U \subset \mathbb{R}^{n+1}$ is an admissible set if

- it is an axially symmetric s-domain that contains the S-spectrum $\sigma_S(T)$ of $T \in \mathcal{B}^{0,1}(V_n)$,
- ∂(U ∩ C_I) is union of a finite number of rectifiable Jordan curves for every I ∈ S.

Definition (Locally s-monogenic on $\sigma_S(T)$)

Suppose that U is admissible and \overline{U} is contained in a domain of s-monogenicity of a function f. Then such a function f is said to be locally s-monogenic on $\sigma_S(T)$. We will denote by $\mathcal{M}_{\sigma_S(T)}$ the set of locally s-monogenic functions on $\sigma_S(T)$.

・ 同 ト ・ ヨ ト ・ ヨ

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $f \in \mathcal{M}_{\sigma_S(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be an admissible set and let $ds_I = ds/I$ for $I \in S$. Then the integral

$$\frac{1}{2\pi}\int_{\partial(U\cap\mathbb{C}_l)}S^{-1}(s,T)\ ds_l\ f(s)$$

does not depend on the open set U nor on the choice of the imaginary unit $I \in S$.

Definition of the \mathcal{S} -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Definition (of the S-functional calculus)

Let $T \in \mathcal{B}^{0,1}(V_n)$ and $f \in \mathcal{M}_{\sigma_S(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be an admissible set and let $ds_I = ds/I$ for $I \in S$. We define

$$f(T) := \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_I)} S^{-1}(s, T) \, ds_I f(s). \tag{5}$$

Functional calculus for *n*-tuples of operators

- F. Colombo, I. S., D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal., 254 (2008), 2255–2274.
- F. Colombo, I. S., The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators, J. Math. Anal. Appl. 373 (2011), 655-679.
 - \Rightarrow Cauchy formula allowing to define f(T) in the general case.
- F. Colombo, I. S. A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, 2009, 69–99.

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Some properties of the functional calculus

Theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$. (a) If f and $g \in \mathcal{M}_{\sigma_S(T)}$ then $(f+g)(T) = f(T)+g(T), \quad (f\lambda)(T) = f(T)\lambda, \text{ for all } \lambda \in \mathbb{R}_n.$ (b) If $\phi \in \mathcal{N}_{\sigma(T)}$ and $g \in \mathcal{M}_{\sigma_S(T)}$. Then $(\phi g)(T) = \phi(T)g(T).$

where

 $\mathcal{N}(U) = \{ f \in \mathcal{M}(U) \mid f(\mathbb{C}_I) \subseteq \mathbb{C}_I, \forall I \in \$ \}.$

(c) If $f(s) = \sum_{n \geq 0} s^n p_n$, $p_n \in \mathbb{R}_n$, belongs to $\mathcal{M}_{\sigma_{\mathcal{S}}(\mathcal{T})}$, then

$$f(T) = \sum_{n\geq 0} T^n p_n$$

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Some properties of the functional calculus

Theorem (Composition)

Let $T \in \mathcal{B}^{0,1}(V_n)$, $f \in \mathcal{N}_{\sigma_S(T)}$, $\phi \in \mathcal{N}_{\sigma_S(f(T))}$ and let $F(s) = \phi(f(s))$. Then $F \in \mathcal{M}_{\sigma_S(T)}$ and $F(T) = \phi(f(T))$.

The S-Spectral Mapping Theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$, $f \in \mathcal{N}_{\sigma(T)}$, and $\lambda \in \sigma_S(T)$. Then

$$\sigma_{\mathcal{S}}(f(T)) = f(\sigma_{\mathcal{S}}(T)) = \{f(s) : s \in \sigma_{\mathcal{S}}(T)\}.$$

Definition of the $\mathcal{S}\mbox{-}{\mbox{functional calculus}}$ Some properties of the functional calculus

Some properties of the functional calculus

Definition (S-spectral radius of T)

Let $T \in \mathcal{B}^{0,1}(V_n)$. We call S-spectral radius of T the real nonnegative number

$$r_{\mathcal{S}}(\mathcal{T}) := \sup\{ |s| : s \in \sigma_{\mathcal{S}}(\mathcal{T}) \}.$$

The S-spectral radius theorem

Let $T \in \mathcal{B}^{0,1}(V_n)$ and let $r_S(T)$ be the S-spectral radius of T. Then

$$r_{\mathcal{S}}(T) = \lim_{m \to \infty} \|T^m\|^{1/m}.$$

(4) (E. (b)) (4)

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

A functional calculus for unbounded operators

Let V be a Banach space and $T = T_0 + \sum_{j=1}^m e_j T_j$ where $T_\mu : \mathcal{D}(T_\mu) \to V$ are linear operators for $\mu = 0, 1, ..., n$ where at least one of the T_i 's is an unbounded operator. Define the extended S-spectrum as

$$\overline{\sigma}_{S}(T) := \sigma_{S}(T) \cup \{\infty\}.$$

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Functional calculus for *n*-tuples of operators

Definition

Let V be a Banach space and V_n be the two-sided Banach module over \mathbb{R}_n corresponding to $V \otimes \mathbb{R}_n$. Let $T_{\mu} : \mathcal{D}(T_{\mu}) \subset V \to V$ be linear closed densely defined operators for $\mu = 0, 1, ..., n$. Let

$$\mathcal{D}(T) = \{ v \in V_n : v = \sum_B v_B e_B, v_B \in \bigcap_{\mu=0}^n \mathcal{D}(T_\mu) \}$$
(6)

be the domain of the operator $T = T_0 + \sum_{j=1}^n e_j T_j, \quad T : \mathcal{D}(T) \subset V_n \to V_n.$ Let us assume that 1) $\bigcap_{\mu=0}^n \mathcal{D}(T_{\mu})$ is dense in V_n , 2) $\mathcal{D}(T^2) \subset \mathcal{D}(T)$ is dense in V_n ,

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Some properties of the functional calculus

Definition

Consider $k \in \mathbb{R}^{n+1}$ and the homeomorphism

$$\Phi:\overline{\mathbb{R}}^{n+1}\to\overline{\mathbb{R}}^{n+1}\quad\text{for}\quad k\in\mathbb{R}^{n+1}$$

defined by

$$p = \Phi(s) = (s-k)^{-1}, \quad \Phi(\infty) = 0, \quad \Phi(k) = \infty.$$

Definition of the $\mathcal{S}\xspace$ -functional calculus Some properties of the functional calculus

Some properties of the functional calculus

Definition

Let $T : \mathcal{D}(T) \to V_n$ be a linear closed operator as above with $\rho_S(T) \cap \mathbb{R} \neq \emptyset$ and suppose that $f \in \mathcal{M}_{\overline{\sigma}_S(T)}$. Let us consider

$$\phi(p) := f(\Phi^{-1}(p))$$

and the operator

$$A := (T - k\mathcal{I})^{-1}$$
, for some $k \in \rho_{\mathcal{S}}(T) \cap \mathbb{R}$.

We define

$$f(T) = \phi(A). \tag{7}$$

Preliminaries for the $\mathcal{SC}\text{-functional calculus}$ Definition of the $\mathcal{SC}\text{-functional calculus}$

Preliminaries for the \mathcal{SC} -functional calculus

Definition

Let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin [s]$.

• We say that $S^{-1}(s,x)$ is written in the form I if

$$S^{-1}(s,x) := -(x^2 - 2x \operatorname{Re}[s] + |s|^2)^{-1}(x - \overline{s}).$$

• We say that $S^{-1}(s, x)$ is written in the form II if

$$S^{-1}(s,x) := (s-\bar{x})(s^2 - 2\operatorname{Re}[x]s + |x|^2)^{-1}.$$

 $\begin{array}{l} \mbox{Preliminaries for the \mathcal{SC}-functional calculus} \\ \mbox{Definition of the \mathcal{SC}-functional calculus} \end{array}$

Preliminaries for the \mathcal{SC} -functional calculus

Can we substitute T for x in $S^{-1}(s, x)$ written in the form II? Yes, but we must require that the components of the operator T commute among themselves.

We denote by $\mathcal{BC}^{0,1}(V_n)$ the space of bounded paravector operators with commuting components.

Theorem

Let
$$T \in \mathcal{BC}^{0,1}(V_n)$$
 and $s \in \mathbb{R}^{n+1}$. Then

$$\sum_{m\geq 0} T^m s^{-1-m} = (s\mathcal{I} - \overline{T})(s^2\mathcal{I} - s(T + \overline{T}) + T\overline{T})^{-1},$$

for ||T|| < |s|.

 $\begin{array}{l} \mbox{Preliminaries for the \mathcal{SC}-functional calculus} \\ \mbox{Definition of the \mathcal{SC}-functional calculus} \end{array}$

Preliminaries for the \mathcal{SC} -functional calculus

Definition (The \mathcal{F} -spectrum and the \mathcal{F} -resolvent sets)

Let $T \in \mathcal{BC}^{0,1}(V_n)$. We define the \mathcal{F} -spectrum of T as:

 $\sigma_{\mathcal{F}}(T) = \{ s \in \mathbb{R}^{n+1} : s^2 \mathcal{I} - s(T + \overline{T}) + T \overline{T} \text{ is not invertible} \}.$

The \mathcal{F} -resolvent set of T is defined by

$$\rho_{\mathcal{F}}(T) = \mathbb{R}^{n+1} \setminus \sigma_{\mathcal{F}}(T).$$

Definition (The $S_{\mathcal{C}}$ -resolvent operator)

Let $T \in \mathcal{BC}^{0,1}(V_n)$ and $s \in \rho_{\mathcal{F}}(T)$. We define the $\mathcal{S}_{\mathcal{C}}$ -resolvent operator as

$$\mathcal{S_C}^{-1}(s,T) := (s\mathcal{I} - \overline{T})(s^2\mathcal{I} - s(T + \overline{T}) + T\overline{T})^{-1}.$$

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

Definition of the \mathcal{SC} -functional calculus

Theorem

Let $T \in \mathcal{BC}^{0,1}(V_n)$ and $f \in S\mathcal{M}_{\sigma_{\mathcal{F}}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be admissible domain and let $ds_I = ds/I$ for $I \in S$. Then the integral

$$\frac{1}{2\pi} \int_{\partial (U \cap \mathbb{C}_l)} \mathcal{S}_{\mathcal{C}}^{-1}(s, T) \, ds_l \, f(s) \tag{8}$$

does not depend on the open set U nor on the choice of the imaginary unit $I \in S$.

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

Definition of the \mathcal{SC} -functional calculus

Definition (of the S_C -functional calculus)

Let $T \in \mathcal{BC}^{0,1}(V_n)$ and $f \in \mathcal{SM}_{\sigma_{\mathcal{F}}(T)}$. Let $U \subset \mathbb{R}^{n+1}$ be admissible domain and let $ds_I = ds/I$ for $I \in \mathbb{S}$. We define

$$f(T) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_l)} \mathcal{S}_{\mathcal{C}}^{-1}(s, T) \, ds_l \, f(s). \tag{9}$$

Theorem

Let
$$T \in \mathcal{BC}^{0,1}(V_n)$$
. Then $\sigma_{\mathcal{F}}(T) = \sigma_{\mathcal{S}}(T)$.

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

Definition of the \mathcal{SC} -functional calculus

Advantage: the \mathcal{F} -spectrum is easier to compute than the \mathcal{S} -spectrum. \mathcal{F} -spectrum takes into account the commutativity of the operators while the \mathcal{S} -spectrum does not.

The $\mathcal F\text{-spectrum}$ is related to the $\mathcal F\text{-functional calculus.}$

• F. Colombo, I.S., *The F*-spectrum and the *SC*-functional calculus, Proceedings of the Royal Society of Edinburgh, Section A, (2012).

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Proposition

Let f be an holomorphic function in an open set of the upper half complex plane

$$f(x + \iota y) = u(x, y) + \iota v(x, y)$$

$$q = x_0 + ix_1 + jx_2 + kx_3 := x_0 + \underline{q}$$

Then

$$\Delta_4(u(x_0, |\underline{q}|) + \frac{\underline{q}}{|\underline{q}|}v(x_0, |\underline{q}|))$$

is Fueter regular, while when $x_0 + \underline{x} \in \mathbb{R}^{n+1}$

$$\Delta_{n+1}^{\frac{n-1}{2}}(u(x_0,|\underline{x}|)+\frac{\underline{X}}{|\underline{X}|}v(x_0,|\underline{x}|))$$

is in the kernel of Dirac operator.

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Remark

Even though $S^{-1}(s, x)$ written in the form I is more suitable for several applications, for example for the definition of a functional calculus, it does not allow easy computation of the powers of the Laplacian

$$\Delta = \partial_{x_0}^2 + \sum_{j=1}^n \partial_{x_j}^2$$

applied to it. The form II is the one that allows, by iteration, the computation of $\Delta^{\frac{n-1}{2}}S^{-1}(s,x)$.

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Theorem (Explicit computation of $\Delta^{rac{n-1}{2}}S^{-1}(s,x)$)

Let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin [s]$. Let $S^{-1}(s, x) = (s - \bar{x})(s^2 - 2\operatorname{Re}[x]s + |x|^2)^{-1}$ be the slice-monogenic Cauchy kernel and let $\Delta = \sum_{i=0}^{n} \frac{\partial^2}{\partial x_i^2}$ be the Laplace operator in the variable x. Then, for $h \ge 1$, we have:

$$\Delta^h S^{-1}(s,x) = C_{n,h}(s-\bar{x})(s^2 - 2 \mathrm{Re}[x]s + |x|^2)^{-(h+1)}$$

where

$$C_{n,h} := (-1)^h \prod_{\ell=1}^h (2\ell) \prod_{\ell=1}^h (n - (2\ell - 1)).$$

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Theorem

Let *n* be an odd number and let $x, s \in \mathbb{R}^{n+1}$ be such that $x \notin [s]$. Then the function $\Delta^h S^{-1}(s, x)$ is a right s-monogenic function in the variable *s*, for any *h*.

Theorem

Let *n* be an odd number and let *x*, $s \in \mathbb{R}^{n+1}$ be such that $x \notin [s]$. Then the function $\Delta^{\frac{n-1}{2}}S^{-1}(s,x)$ is a monogenic function in the variable *x*.

- 4 3 3 4 4

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Definition (The \mathcal{F}_n -kernel)

Let *n* be an odd number. Let $x, s \in \mathbb{R}^{n+1}$. We define, for $s \notin [x]$, the \mathcal{F}_n -kernel as

$$\mathcal{F}_n(s,x) := \Delta^{rac{n-1}{2}} S^{-1}(s,x) = \gamma_n(s-ar{x})(s^2 - 2 \mathrm{Re}[x]s + |x|^2)^{-rac{n+1}{2}}$$

where

$$\gamma_n := (-1)^{(n-1)/2} 2^{(n-1)/2} (n-1)! \left(\frac{n-1}{2}\right)!.$$

Preliminaries for the \mathcal{SC} -functional calculus Definition of the \mathcal{SC} -functional calculus

The \mathcal{SC} -functional calculus

Theorem (The Fueter mapping theorem in integral form)

Let *n* be an odd number. Let $W \subset \mathbb{R}^{n+1}$ be an axially symmetric open set and let $f \in \mathcal{M}(W)$. Let *U* be a bounded axially symmetric open set such that $\overline{U} \subset W$. Suppose that the boundary of $U \cap L_I$ consists of a finite number of rectifiable Jordan curves for any $I \in S$. Then, if $x \in U$, the function $\check{f}(x)$ given by

$$\breve{f}(x) = \Delta^{\frac{n-1}{2}}f(x)$$

is monogenic and it admits the integral representation

$$\check{f}(x) = \frac{1}{2\pi} \int_{\partial(U \cap L_I)} \mathcal{F}_n(s, x) ds_I f(s), \quad ds_I = ds/I, \quad (10)$$

where the integral does not depend on U nor on the imaginary unit $I \in S$.

Preliminaries for the \mathcal{SC} -functional calculus Definition of the \mathcal{SC} -functional calculus

The \mathcal{SC} -functional calculus

Definition (\mathcal{F} -resolvent operator)

Let *n* be an odd number, $s \in \mathbb{R}^{n+1}$ and let $T \in \mathcal{BC}_n^{0,1}(V_n)$. For $s \in \rho_{\mathcal{F}}(T)$ we define the \mathcal{F} -resolvent operator by

$$\mathcal{F}_n(s,T) := \gamma_n(s\mathcal{I} - \overline{T})(s^2\mathcal{I} - s(T + \overline{T}) + T\overline{T})^{-\frac{n+1}{2}}.$$

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Definition

Let $T \in \mathcal{BC}^{0,1}(V_n)$ and let $U \subset \mathbb{R}^{n+1}$ be an axially symmetric s-domain that contains the \mathcal{F} -spectrum $\sigma_{\mathcal{F}}(T)$, such that $\partial(U \cap \mathbb{C}_I)$ is union of a finite number of rectifiable Jordan curves for every $I \in \mathbb{S}$. Let W be an open set in \mathbb{R}^{n+1} . A function $f \in \mathcal{SM}(W)$ is said to be locally s-monogenic on $\sigma_{\mathcal{F}}(T)$ if there exists a domain $U \subset \mathbb{R}^{n+1}$, as above and such that $\overline{U} \subset W$, on which f is s-monogenic. We will denote by $\mathcal{SM}_{\sigma_{\mathcal{F}}(T)}$ the set of locally s-monogenic functions on $\sigma_{\mathcal{F}}(T)$.

Preliminaries for the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus Definition of the $\mathcal{SC}\text{-}\mathsf{functional}$ calculus

The \mathcal{SC} -functional calculus

Definition (The \mathcal{F} -functional calculus)

Let *n* be an odd number, $T \in \mathcal{BC}^{0,1}(V_n)$. Let *U* be an open set, containing $\sigma_{\mathcal{F}}(T)$, as above. Suppose that $f \in \mathcal{SM}_{\sigma_{\mathcal{F}}(T)}$ and let $\check{f}(x) = \Delta^{\frac{n-1}{2}} f(x)$. We define the \mathcal{F} -functional calculus as

$$\check{f}(T) = \frac{1}{2\pi} \int_{\partial(U \cap \mathbb{C}_I)} \mathcal{F}_n(s, T) \, ds_I \, f(s).$$

F. Colombo, I.S., F. Sommen *The Fueter mapping theorem in integral* form and the \mathcal{F} -functional calculus, Mathematical Methods in the Applied Sciences, (2010).