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Abstract

Automated domain factoring, and planning methods that uti-
lize them, have long been of interest to planning researchers.
Recent work in this area yielded new theoretical insight and
algorithms, but left many questions open: How to decom-
pose a domain into factors? How to work with these fac-
tors? And whether and when decomposition-based methods
are useful? This paper provides theoretical analysis that an-
swers many of these questions: it proposes a novel approach
to factored planning; proves its theoretical superiority over
previous methods; provides insight into how to factor do-
mains; and uses its novel complexity results to analyze when
factored planning is likely to perform well, and when not. It
also establishes the key role played by the domain’s causal
graph in the complexity analysis of planning algorithms.

Introduction
Factored planning is a collective name for planning algo-
rithms that exploit independence within a planning prob-
lem to decompose the domain, and then work on each sub-
domain (= factor) separately while trying to piece the con-
structed sub-plans into a valid global plan. Hierarchical
planners (Knoblock 1994; Lansky & Getoor 1995) are prob-
ably the best-known examples of such algorithms. They ver-
tically factor the domain into a set of increasingly more de-
tailed abstraction levels. They plan in each level separately
while reusing the solution of more abstract levels. The prob-
lem, however, is that hierarchical decomposition works well
only in domains where one component’s value has little di-
rect and indirect influence on that of others. When such
structure is missing, abstraction-generation techniques such
as (Sacerdoti 1974; Knoblock 1994) yield no or only mi-
nor decomposition, and backtracking between sub-domains
in the latter case can dominate the complexity of solving the
non-decomposed problem.

The spectacular improvement in standard planning algo-
rithm over the past decade, together with the above lim-
itations of vertical factoring, pushed factored planning to
the backstage of domain-independent planning research.1

∗On leave from Ben-Gurion University.
1Here we refer to methods that automatically induce a hierarchy

from domain description, unlike HTN planning (Erol, Hendler, &
Nao 1994) where the hierarchy provides additional domain knowl-
edge that often significantly improves performance.

Recently, however, this situation has somewhat changed.
First, a number of papers on the formal complexity of plan-
ning as a function of certain factored decomposition ap-
peared (Brafman & Domshlak 2003; Domshlak & Dinitz
2001). Second, recent developments in heuristic-search
planning have shown that factored problem decompositions
and abstractions can provide extremely effective heuristic
guidance (Helmert 2004). Finally, recent work by Amir
& Engelhardt 2003 (henceforth referred to as AE) has pro-
duced a systematic, general-purpose approach to factored
planning, with a clear worst-case complexity analysis.

This recent evolution of work on domain-independent fac-
tored planning leaves open two major questions. The first
question is how, i.e., what is the best way to decompose a
problem? Previous factoring methods used various graphi-
cal structures to drive the factorization process. The struc-
ture of such a graph is a significant parameter in the success
of each method. Hence, finding a graphical structure leading
to a provably better (or even optimal) factorization is clearly
of interest. The second, closely related question is when:
When should factored planning be expected to work better
than standard planning. Addressing this question requires
better understanding of the complexity of factored and non-
factored planning and the parameters affecting them.

In this paper we address these two questions of how and
when through the lens of worst-case complexity analysis.
We identify the domain’s causal graph as an essential struc-
ture in the analysis of factored planning, showing that it cap-
tures all the sufficient and necessary information about vari-
able interactions. In particular, we show that our approach
based on causal graphs is strictly more efficient (by up to
an exponential factor) than the AE approach. We show that
the tree-width of causal graphs plays a key role in the com-
plexity of both our approach to factored planning, as well
as existing methods for non-factored step-optimal planning.
This finding allows us to relate factored and non-factored
methods and understand when each is likely to work best.

Background
We start with a few basic definitions of the planning prob-
lem as defined in the SAS+ formalism (Bäckström & Nebel
1995) followed by the definition of the causal graph. The
SAS+ formalism models domains using multi-valued state
variables. It distinguishes between pre-conditions and pre-



vail conditions of an action. The former are required values
of variables that are affected by the action. The latter are re-
quired values of variables that are not affected by the action.
The post-conditions of an action describe the new values its
precondition variables. For example, having a visa is a pre-
vail condition for applying the action Enter-USA, while hav-
ing a valid ticket is a precondition of the action Fly-To-USA,
as its value changes from true to false following the action’s
execution. An action is applicable if and only if both its pre-
and prevail conditions are satisfied.

Definition 1 A SAS+ problem instance is given by a
quadruple Π = 〈V,A, I,G〉, where:
• V = {v1, . . . , vn} is a set of state variables with finite

domains dom(vi). The domain dom(vi) of the variable vi
induces an extended domain dom+(vi) = dom(vi)∪{u},
where u denotes the value: unspecified.

• I is a fully specified initial state, that is, I ∈ ×dom(vi).
By I[i] we denote the value of vi in I .

• G specifies a set of alternative goal states. Adopting the
standard practice in the planning research, we assume
that such a set is specified by a partial assignment on V ,
that is, G ∈ ×dom+(vi). By G[i] we denote the value
provided by G to vi (with, possibly, G[i] = u.)

• A = {a1, . . . , am} is a finite set of actions. Each
action ai is a tuple 〈pre(ai), post(ai), prv(ai)〉, where
pre(ai), post(ai), prv(ai) ⊆ ×dom+(vi) denote the pre-,
post-, and prevail conditions of a, respectively. In what
follows, by pre(a)[i], post(a)[i], and prv(a)[i] we denote
the corresponding values of vi.

The factorization of planning problems we propose here
is based on the well-known causal graph structure (Bacchus
& Yang 1994; Knoblock 1994; Brafman & Domshlak 2003;
Domshlak & Dinitz 2001; Helmert 2004; Williams & Nayak
1997).

Definition 2 Given a planning problem Π = 〈V,A, I,G〉,
the causal graph CGΠ of Π is a mixed (directed/undirected)
graph over the nodes V . A directed edge (−−−→vi, vj) appears
in CGΠ if (and only if) some action in A that changes the
value of vj has a prevail condition involving some value of
vi. An undirected edge (vi, vj) appears in CGΠ if (and only
if) some action in A changes the values of vi and vj simul-
taneously.

Informally, the immediate predecessors of v in CGΠ are
all those variables that directly affect our ability to change
the value of v. It is worth noting that nothing in Definition 2
prevents us from having for some pair of variables vi, vj ∈
V in CGΠ both (−−−→vi, vj), and (−−−→vj , vi), and (vi, vj). In any
case, it is evident that constructing the causal graph CGΠ of
any given SAS+ planning problem Π is straightforward.

Example 1 Suppose we have two packages, A and B, a
rocket, and two locations, E and M . Packages can be ei-
ther in a location or in the rocket, and the rocket requires
fuel to fly. The actions correspond to loading and unloading
the packages, flying the rocket, and fueling the rocket. Fly-
ing the rocket consumes the fuel, but it can be fueled in any
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Figure 1: Causal graph for Example 1.

location. We model this problem in the SAS+ formalism as
follows. The variables are r, a, b, f ; r denotes the position
of the rocket and its domain is at-E, at-M. a and b denote
positions of the packages A and B and their domains are:
at-E, at-M, at-rocket. f denotes whether or not the rocket
has fuel with values full and empty. For x 6= y ∈ {e,m},
the actions are fly-x-y, load-x-y, unload-x-y, and fuel. The
fly-x-y actions have two precondition – f=full and r=at-x.
Their post-conditions are f=empty and r=at-y. The load-
x-y actions have one precondition – x=at-y – and one pre-
vail condition – r=at-y. The single post-condition is x=at-
rocket. Finally, the action fuel has one pre-condition and
one post-condition: empty and full respectively. The causal
graph for this problem is shown in Figure 1.

Sequence-Based CSP Planning
The central questions for any factored planning approach are
how to decompose the problem and how to piece together
solutions from different sub-domains. Our initial answer to
the first question, which later we generalize, is very simple:
factor = variable. We can now focus on the questions of how
to combine a set of given local plans for different factors, and
then, how to generate these local plans. The causal graph
plays a key role in the algorithm we propose. Its tree-width
plays an equally important role in the complexity analysis of
the algorithm.

Locally-Optimal Factored Planning
Let Ai ⊆ A denote the set of all actions affecting vi ∈
V . Suppose that, for every vi, we are given a set of pre-
scheduled action sequences SP lan(vi) where each ρi ∈
SP lan(vi) is a finite sequence of pairs (a, t) with a ∈ Ai,
and t ∈ Z+ is the time point at which a is to be performed.
We now ask ourselves how we might construct plans using
these n sets of action sequences SP lan(vi). A key observa-
tion is that this particular problem can be solved by compil-
ing it into a binary CSP (denoted SeqCSP) over n variables
X1, . . . , Xn where:

1. The domain of Xi is exactly SP lan(vi), and

2. The constraints of SeqCSP bijectively correspond to the
edges of the causal graph CGΠ.

Informally, the constraint corresponding to a directed edge
(−−−→vi, vj) ∈ CGΠ ensures that the action sequence selected
for vi provides all the prevail conditions required by the ac-
tions of the sequence selected for vj , and that the timing of
this provision is correct. The constraint corresponding to an
undirected edge (vi, vj) ∈ CGΠ ensures that the restrictions



procedure LID
d := 1
loop

for i := 1 . . . n do
Dom(Xi) := all sub-plans for vi of length up to d,

over all schedules across nd time points.
Construct SeqCSPΠ(d) over X1, . . . , Xn.
if ( solve-csp(SeqCSPΠ(d)) ) then

Reconstruct a plan ρ from the solution of SeqCSPΠ(d).
return ρ

else
d := d+ 1

endloop

Figure 2: Factored planning via local iterative deepening.

of the sequences selected for vi and vj to Ai∩Aj are identi-
cal. This causal-graph based problem reformulation allows
us to formalize the worst-case complexity of solving our
“sequences combination” problem in a structure-informed
manner. Since each constraint of SeqCSP can be veri-
fied in polynomial time, from a classical result on tractable
CSPs (Dechter 2003) we have that the time complexity of
the “sub-plans combination” problem is O(nσw+1), where
w is the tree-width of the undirected graph underlying CGΠ,
and σ = maxi {|SP lan(vi)|}.

While in itself our “sequences combination” problem is
not of general interest, the distance between its CSP formu-
lation, and that of general planning problems is not large.
Specifically, given a planning problem Π = 〈V,A, I,G〉,
one can solve it using the LID (short for local iterative deep-
ening) procedure depicted in Figure 2. LID searches for a
plan by performing local iterative deepening on the maximal
number of changes that a plan might induce on a single state
variable. Given such an upper bound d ≥ 1, LID formu-
lates a constraint satisfaction problem SeqCSPΠ(d) where,
for 1 ≤ i ≤ n, SP lan(vi) contains all (consistent with I
and G) sequences of length at most d of actions affecting vi.
Each such sequence is considered with respect to all possi-
ble time schedules of its actions. Since each state variable
in iteration d is allowed to change its value up to d times,
it is sufficient to consider a time horizon of nd. If, at some
iteration d, SeqCSPΠ(d) is solvable, a valid plan (containing
no idle time points) can be easily extracted from the corre-
sponding solution of SeqCSPΠ(d).

Theorem 1 LID is a sound and complete planning algo-
rithm. Moreover, if LID terminates with a plan ρ at iteration
d, then, for any other plan ρ′ for the considered problem in-
stance, there exists a state variable that changes its value on
ρ′ at least d times.

The CSP encoding used in LID may seem a bit crude, but
it is simple to understand, and all the essential ideas and
formal results of this work already fall out from it. In the
technical report we describe an equivalent, yet technically
more involved, encoding in the spirit of standard planning-
as-CSP encodings. For the next result we introduce the fol-
lowing notation: Let Plan(Π) be the (possibly infinite) set
of all plans for Π. For each plan ρ ∈ Plan(Π), and each
1 ≤ i ≤ n, let ρi denote the subset of all actions in ρ af-
fecting variable vi. Finally, let GCG denote the undirected

graph underlying causal graph CGΠ.

Theorem 2 Given a planning problem Π, it can be solved
using LID in time

O(n(nδa)wδ+δ) (1)

where a = maxi {|Ai|}, w is the tree-width of GCG, and δ
is the local depth of Π defined as:

δ = min
ρ∈Plan(Π)

max
1≤i≤n

{|ρi|} (2)

Proof: By Theorem 1 and the construction of LID, it is
not hard to verify that LID terminates exactly in iteration
δ as in Eq. 2. Since, for 1 ≤ d < δ, the constraint sat-
isfaction problem SeqCSPΠ(d) is a proper subproblem of
SeqCSPΠ(δ), solving the latter provides the dominant part
of time complexity of solving Π using LID. Considering
any SeqCSPΠ(d), note that the domain size of each of its
variables is Θ(

(
nd
d

)
ad), that is O

(
(nda)d

)
. Since the con-

straint graph of SeqCSPΠ(d) is isomorphic to GCG, the
well-known results on tractable CSP (Dechter 2003) imply
that SeqCSPΠ(d) can be solved in timeO(n(nda)wd+d). �

Theorem 2 expresses the complexity of LID in terms of
two parameters. The tree width of the domain’s causal graph
measures the level of interaction between the domain vari-
ables. The parameter δ is problem-instance dependent and it
expresses the minmax amount of work required on a single
variable. In particular, we note that Theorem 2 establishes a
new tractable class of planning problems, because for prob-
lems with both w and δ bounded by some constants, Eq. 1
trivially reduces to a polynomial.

Generalized Factoring
So far, we assumed that factor = variable, yet it is not clear
that this factorization leads to the best possible worst-case
performance. Here we take a closer look at this question
by drawing on our previous analysis to understand possible
effects of using a different factoring.

Two parameters affect the worst-case complexity of fac-
tored planning: tree-width and minmax number of changes
per factor (local depth, for factor=variable.) Thus, we need
to understand the effect of alternative factorizations on these
parameters. Consider variables v1, . . . , vk that change their
value c1, . . . , ck times in a locally optimal plan when single
variable factors are used. If we combine these variables into
a single factor, this new factor will change its value at most∑k
i=1 ci times in any locally optimal (for the new factoriza-

tion) plan. In general, it is not hard to verify that the minmax
number of changes per factor under factorization with max-
imal factor size k could be as large as kδ.

While this seems like a big loss, observe that it can be off-
set by a reduction in the tree-width of the constraint graph.
Indeed, it is well known that for each CSP whose primal
graph has tree-width w, there is a tree-decomposition with
maximal node size w + 1. Such a tree-decomposition de-
fines an equivalent CSP whose variables (our new factors)



are cross-products of the original variables, and whose con-
straint graph forms a tree2, that is, has tree-width of 1. We
also already know that df , the minmax number of value
changes per new factor, is upper bounded by (w+1)δ. How-
ever, observe that it can also be much better. For any tree-
decomposition, we know that df is bounded by the maximal
sum of value changes of original variables in any new factor.
If so, then unless all the variables clustered together have to
change δ times each, df would be less than (w + 1)δ, and
possibly much less, down to δ!

Consequently, we can adapt LID to any tree-
decomposition, and any form of factoring. Instead of
iterating over the maximal number of value changes
of a variable, we iterate over the maximal number of
value changes of a factor, i.e., a node of the given tree-
decomposition. We refer to this procedure as LID-GF, and
its complexity is described by Theorem 3.

Theorem 3 Given a planning problem Π, the time com-
plexity of solving it using LID-GF on an optimal tree-
decomposition of GCG is O

(
n(wa+ a)df

)
, where w is the

treewidth of GCG, a = maxi {|Ai|}, and df ≤ (w + 1)δ.

It is now apparent that by moving from the extreme of fac-
tor = variable to an optimal tree-decomposition, we cannot
lose, and are most likely to improve our worst-case com-
plexity. The complexity now changes from exponential in
wδ to something that is at least as good as wdavg , where
davg is the maximal (over the factors) average number of
variable changes within the factor. Thus, when constructing
a tree-decomposition, one needs to consider both the cluster
size and its variability, where the value to keep in mind is
the (unknown) sum of value changes of variables in a clus-
ter. The good news is that even if we know nothing about
the domain, Theorems 2 and 3 imply that we cannot lose by
moving to an optimal tree-decomposition.

Perhaps the better news is that we have here a concrete
role for domain knowledge. Suppose we have some idea
about which variables are likely to change a lot and which
variables are likely to change just a little. In that case, we
can impose some constraints on the tree-decomposition, en-
suring that certain variables appear together in it. We can do
this by constructing a constrained tree-decomposition, that
is, a tree decomposition in which we a priori require certain
problem variables to be together. This could lead us to tree
decomposition with larger nodes, but with smaller sum-of-
value-changes, leading to improved performance.

Comparison with AE

Having our generalized LID-GF approach, we now show that
it provides better complexity guarantees than AE, a recently
proposed approach to factored planning with the first clear
complexity analysis (Amir & Engelhardt 2003).

2Though constructing an optimal tree-decomposition (i.e., one
with maximal node size w + 1) is NP-hard (Arnborg, Cornell, &
Proskurowski 1987), there are numerous effective, fast approxima-
tion and heuristic algorithms for this problem.

Similarly to LID-GF, AE has a single factoring phase, fol-
lowed by a sequence of planning phases invoked in an iter-
ative deepening fashion over the upper-bound on the depth
of the local plans. The factoring phase takes a certain graph
induced by the given problem instance, and constructs a tree
decomposition of this graph (named here AEGΠ) using one
of the off-the-shelf algorithms for close-to-optimal tree de-
composition. Given such a tree of planning factors (each fac-
tor corresponding to a subset of state variables), each plan-
ning phase processes this tree incrementally in a bottom-up
fashion. In processing each sub-domain, AE looks for a lo-
cal plan of a bounded depth over a certain set of complex
macro actions. The search for local plans is performed us-
ing a generic black-box planner.3

Though algorithmically different, both LID-GF and AE
use local iterative deepening to search for plans, and pro-
vide similar guarantees on the quality of the resulting plan.
That is, plans returned by both approaches are guaranteed to
be locally optimal at the level of factors of tree decompo-
sition in use. However, the worst-case complexity of these
two approaches is not the same. First, while both approaches
scale linearly in the number of state variables, the worst-case
complexity of AE grows exponentially inwaedf = Θ(w2

aeδ)
where wae is the tree-width of AEGΠ, while that of LID-GF
grows exponentially in wdf = Θ(wδ). Assuming for a
moment that the tree-width of the causal graph and this of
AEGΠ are comparable, this already shows that LID-GF is
worst-case more efficient than AE. However, Theorem 4
shows that the actual difference is much larger, and that it
can be exponential in Θ(n).

Theorem 4 Given a planning problem Π, let w be the tree-
width of GCG, and wae be the tree-width of AEGΠ. For all
planning problems Π, we have wd ≤ wae, and there are
problems for which we have wd = O(1) and wae = Θ(n).

Proof: The gap between the time complexity of LID-GF
and AE stems from the structure of the dependencies be-
tween the state variables that these two approaches exploit.
While problem decomposition in LID-GF is based on the
causal graph, AEGΠ is an undirected graph over the nodes
V , containing an edge (vi, vj) iff there is an action a ∈ A
that somehow involves both vi and vj , that is,

(pre(a)[i] 6= u ∨ post(a)[i] 6= u ∨ prv(a)[i] 6= u)∧
(pre(a)[j] 6= u ∨ post(a)[j] 6= u ∨ prv(a)[j] 6= u)

Given that, it is easy to verify that GCG is a subgraph of
AEGΠ, and thus w ≤ wae.

To show the potentially linear difference between w and
wae, consider the following problem Π′ over (possibly
propositional) variables v1, . . . , vn:
• v1, . . . , vn−1 can each be changed independently (and

only independently) of the rest of the variables, i.e.,
∀1 ≤ i ≤ n− 1,∀a ∈ Ai,∀1 ≤ j ≤ n. prv(a)[j] = u

• For each pair of variables from v1, . . . , vn−1, there exists
an action changing the value of vn prevailed by an assign-
ment to this pair of variables, that is:
∀1 ≤ i 6= j ≤ n− 1 ∃a ∈ An. prv(a)[i] 6= u ∧ prv(a)[j] 6= u

3For detailed description of AE, see (Amir & Engelhardt 2003).



Here, GCG forms a tree (that is, w = 1), while AEGΠ forms
a clique of all n nodes, and thus wae = n. �

Factoring and Plan Optimality
Classical planning offers a few notions of plan optimality,
with the most standard being sequential optimality (hence-
forth, OP), which corresponds to a plan with a minimal num-
ber of actions. Step-optimal planning (SOP) is an alternative
that stands for minimizing the number of time steps in which
a plan can be executed under a valid parallelizing of its ac-
tions. Depending on the application, SOP can be either of
interest on its own, or considered as a reasonable compro-
mise when OP is beyond reach. We argue that, from this
perspective, the notion of local optimality (LOP) targeted
by factored planners is not any different. In some applica-
tions, LOP is of interest on its own, e.g., in the context of
distributed systems. And viewed as an approximation to OP,
LOP and SOP provide similar guarantees, as shown below.

Lemma 1 Given a planning problem Π, let
mop,msop,mlop denote the number of actions in an
optimal, step-optimal, and locally optimal plan, respec-
tively. We have that msop ≤ n ·mop and mlop ≤ n ·mop

(where n is the number of variables in Π), and both these
bounds are tight.

Given the “approximation equivalence” between SOP and
LOP established by Lemma 1, we turn to consider the time
complexity guarantees of standard methods for OP, SOP, and
LOP. To the best of our knowledge, such worst-case time
guarantees for OP are either exponential in the length of the
optimal plan (e.g., state-space forward search using BFS), or
exponential in the problem size (e.g., planning-as-CSP with
a linear encodings (Kautz & Selman 1996)). At this point,
for SOP, all methods with established complexity guaran-
tees are of the second type, that is, worst-case exponential in
the problem size – we will have something to say about this
later. Thus, moving from OP to SOP appears to buy us noth-
ing in terms of formal bounds on the time complexity. The
situation with LOP, however, is different. Theorem 2 shows
that the direct dependence of LID’s complexity on both the
problem size and plan length is polynomial. The exponential
dependence of LID is on two other, deeper problem charac-
teristics, namely the tightness of problem structure (w), and
the amount of local effort required on each problem factor
in order to solve the problem (δ).

Below we take a closer look at the relationship between
the complexity guarantees for LOP, SOP, and OP. In the
course of this comparative analysis, we provide and exploit
some new results on the complexity of SOP. In particular,
these results show that in certain situations SOP can actu-
ally provide better upper bounds on time complexity than
OP. Moreover, these results emphasize the importance of the
causal graph in the analysis of planning, as its tree-width
plays an important role in the analysis of SOP, as well.

Complexity of SOP using DK
To make our discussion concrete, we consider a character-
istic planning-as-CSP approach to SOP described in (Do &
Kambhampati 2001) (named here DK). While describing
the DK encoding, we ignore the use of graphplan in DK to
obtain reachability information in form of temporal mutexes.
We make this simplification to separate between the core of
the methods and their various possible extensions. The DK
encoding is parameterized by an upper bound, m, on the
step-length of a plan. Given m, the DK encoding includes a
single variable v[k] for every problem variable v and every
time stamp 1 ≤ k ≤ m. The domain of each variable v[k]

is the set of actions that can change the value of v. For any
1 ≤ k ≤ m, the value of all variables v[k] encode the state
of the system at time k. The following (binary) constraints
are imposed:

• Initial state: If v[1]
i = a, then pre(a) ∪ prv(a) ⊆ I .

• Goals: If v[m]
i = a and G[i] 6= u, then post(a)[i] = G[i].

• Precondition: If v
[k]
i = a and v

[k−1]
i = a′, then

post(a′)[i] = pre(a)[i].

• Prevail condition: If v[k]
i = a, v[k−1]

j = a′, v[k]
j = a′′,

and prv(a)[j] 6= u, then post(a′)[j] = post(a′′)[j] =
prv(a)[j].

• Simultaneity: If a ∈ Ai ∩Aj , then v[k]
i = a iff v[k]

j = a.

Example 2 Consider the Rocket domain once again, and let
m = 3. The DK encoding of this domain is as follows.
• Initial-state: Set dom(f [1]) = {noopfull, f ly-e-m},
dom(r[1]) = {noopr=e, f ly-e-m}, etc.

• Goal-state:
For A, we set dom(a[3]) = {noopa=m, unload-a-m}.

• Precondition relevant to r[2]:

r
[2] ∈ {noopr=e, fly-e-m} → r

[1] ∈ {noopr=e, fly-m-e}

r
[2] ∈ {noopr=m, fly-m-e} → r

[1] ∈ {noopr=m, fly-e-m}

• Prevail relevant to a[2]:

a
[2] ∈ {load-e, unload-e} → r

[1] ∈ {noopr=e, fly-m-e} ∧

r
[2] ∈ {noopr=e}

a
[2] ∈ {load-m,unload-m} → r

[1] ∈ {noopr=m, fly-e-m} ∧

r
[2] ∈ {noopr=m}

• Simultaneity:

r
[2]

= fly-e-m ↔ f
[2]

= fly-e-m

r
[2]

= fly-m-e ↔ f
[2]

= fly-m-e

The DK encoding, when used in conjunction with itera-
tive deepening on the plan-length bound m is guaranteed to
yield a step-optimal plan (Do & Kambhampati 2001). Now,
Figure 3 depicts the primal graph G(3)

DK of DK-CSPΠ(3) for
our running example. Observe that constraints between vari-
ables at adjacent time points in DK-CSPΠ(m) (i.e., variables
of the form v

[k]
j and v[k+1]

i ) involve only neighboring vari-

ables within the causal graph. Indeed, G(m)
DK corresponds to
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Figure 3: Primal graph G(d)
DK of DK-CSPΠ(3) for example.

connected layers of (undirected) causal graphs GCG. Thus,
we would expect the tree-width of G(m)

DK to be closely related
to the tree-width w of GCG, and this is indeed the case.

Lemma 2 Let Π be a planning problem, and let w be the
tree-width of GCG. For any m ≥ 1, the tree-width wm of
G(m)
DK is bounded by

wm ≤ min {wm,n}. (3)

This upper bound is tight for m > n, that is, we have wm =
n.

Proof: The proof of the upper bound as in Eq. 3 is by con-
structing tree decompositions that provide it. If wm ≥ n,
then consider the decomposition of G(m)

DK obtained by con-
tracting the nodes v[i]

1 , . . . , v
[i]
n , for each 1 ≤ i ≤ m. The

resulting decomposition forms a path over m clusters of n
original variables each, providing a tree decomposition of
G(m)
DK of width n. Otherwise, if wm < n, then consider the

decomposition of G(m)
DK obtained by contracting the nodes

v
[1]
i , . . . , v

[m]
i , for each 1 ≤ i ≤ n. By the structure of

G(m)
DK , this decomposition results in a graph of n clusters of

m original nodes each, with the graph being isomorphic to
GCG. Hence, optimal tree-decomposition of this graph of
clusters will result in a tree of width at most wm.

Now we prove the tightness of the upper bound in Eq. 3
for m > n. Consider a cops-and-robber game, played on a
finite, undirected graph G. The robber stands on a vertex of
the graph, and can at any time run at great speed to any other
vertex of the graph along a cop-free path in the graph. There
are n+ 1 cops, each of whom at any time either stands on a
vertex or is in a helicopter. The goal of the cops is to land one
of them via helicopter on the vertex occupied by the robber,
while the robber tries to avoid her capture. Helicopters allow
cops to move arbitrarily. The flying cops can see the robber,
but also the robber can see the helicopters approaching and
change vertex before they land. One of the seminal results
on tree-width of graphs is that G has tree-width at least n if
and only if n cops have no winning strategy for this game
on G (Seymour & Thomas 1993).

Returning to our lemma, it is now enough to describe an
escape strategy for the robber against n cops on G(m)

DK . Here
we show a strategy for n− 1 cops; the strategy for n cops is
similar, but somewhat more technical.

Since the number of nodes in GCG is greater than the
number of cops, there is at least one vi ∈ V such that the
path v[1]

i , . . . , v
[m]
i in G(m)

DK is free of cops. Similarly, since
m > n, there exists 1 ≤ j ≤ m such that the time slice
v
[j]
1 , . . . , v

[j]
n is free of cops. The robber moves to the inter-

section v[j]
i of these cop-free path and time slice. When cops

announce their move, find such cop-free path and time-slice
in their new position. If these intersect on v[l]

k , then move
“horizontally” from v

[j]
i to v[l]

i , and then “vertically” from
v
[l]
i to v[l]

k . �

Using Lemma 2, we can immediately provide a structure-
aware complexity bound on the “global-length” iterative
deepening approach to CSP-based planning.

Theorem 5 Let Π be a planning problem, w be the
tree-width of GCG, and m be the minimal concurrent
length of a plan for Π. Then, Π can be solved
in time O(min {nm · an+1, nm · awm+1}), where a =
maxi {|Ai|}.

LID/LOP vs. DK/SOP
With these results, we can compare the relative strengths and
weaknesses of DK and LID with respect to their time com-
plexity guarantees. We believe that the overall insight holds
for other SOP methods as well. We distinguish between a
few cases based on the tightness of the causal graph (w),
and the step-length of optimal plans (m).
(1) w = Θ(n). This is the case of very dense causal graphs,
indicating strong interactions between variables. This case
is a-priori unlikely to be favorable for a factored approach,
and Theorems 2 and 5 concur.
(2) w = O(1). In that case, LID’s complexity is exponential
in δ, while DK is exponential in min{m,n}. Since δ ≤ m,
LID dominates whenever δ < n. For example, when m =
O(n2), we must have δ ≥ n. However, if m = o(n log n),
and local plans are well balanced (recall our discussion of
general factorization), we have δ < n. And if m = o(n),
then δ < n for any factorization.
(3) w = o(n). In such case (e.g., w = log(n)), LID com-
plexity is exponential in δw, whereas DK is exponential
in min{mw,n}. As in case (2), LID is a win when local
plan length is not too large in comparison to n/w, e.g., if
w = log n and δ = o(n/ log(n)).

In short, considering scalability in terms of complexity
guarantees, we see that LOP scales better than SOP when lo-
cal plans are not too long (relatively to n), and the causal tree
is not too dense, satisfying the relation wδ < min {wm,n}.
Similarly, it can be shown that LOP scales better than OP
if the domain preserves the relation wδ < min {mop, n}.
Intuitively, if the number of factors grows proportionally to
the number of problem variables, and the topology of the
causal graph and the required local efforts on the factors
remain bounded, LOP will scale up. It is then natural to
ask whether interesting problems have such features. While
this ultimately requires empirical evaluation, we can already
point out a few very encouraging indications.



First, upon examination of the standard benchmarks used
in recent IPCs, we found4 that the step-optimal plan length
in all these benchmarks is relatively low, and does not ap-
pear to grow faster than n. Second, if one considers the type
of oversubscription planning problems recently discussed in
the literature (Smith 2004; Benton, Do, & Kambhampati
2005), one sees that many such problems are characterized
by the need to accomplish many, relatively independent and
simple tasks (e.g., small experiments at different sites). Fi-
nally, (Williams & Nayak 1997) describe planning for me-
chanical systems with many parts possibly contributing to
the plan, but only a small number of actions each. We be-
lieve that these observations strongly encourage theoretical
and empirical analysis of factored planning.

The Implicit Local Encoding
At this point, we are basically done with our theoretical anal-
ysis of factored planning and causal graphs. However, we
would like to address one pragmatic problem with the ex-
plicit sequence-based encoding that we used throughout the
paper. This encoding has variables with very large domains.
Each variable assignment makes a relatively strong commit-
ment about the nature of the plan. This has no implications
regarding our theoretical worst-case analysis, yet in practice,
this is usually not a very good idea. Here we would like to
address a question that may have arisen in the mind of the
reader regarding the possibility of encoding factored plan-
ning in a manner more similar to standard planning-as-CSP
approaches, where variable values correspond to the execu-
tion of a single action, rather than a sequence of actions. The
answer to this question is positive, although the encoding is
not obvious, a bit involved, and less intuitive.5

The new encoding created for the dth iteration of LID is
denoted here by CSPΠ(d). The variables of CSPΠ(d), are
X = {v(j)

i | 1 ≤ i ≤ n, 1 ≤ j ≤ d} with

Dom(v
(j)
i ) = {(a, t) | a ∈ Ai ∪NOOPi, 1 ≤ t ≤ nd} ,

where, for each vi ∈ V with dom(vi) = {ϑ1, . . . , ϑk},
NOOPi = {noopi,1, . . . , noopi,k} is a set of value-
preserving dummy actions with prv(noopi,j) = ∅, and
pre(noopi,j) = post(noopi,j) = ϑj . In short, the value of

v
(j)
i captures the jth value change of vi on a plan for Π. The

following five types of constraints are imposed. For ease
of presentation, in what follows we refer to the action and
time-point components of the value of v(j)

i by α(v(j)
i ) and

τ(v(j)
i ), respectively.

(a) Initial state: Variables of the form v
(1)
i can be assigned

only to actions that are executable in the initial state.

(b) Goal state: Variables of the form v
(d)
i can be assigned

only to actions that produce/preserve the goal value for
vi (if any.)

4For additional closely related observations, see analysis of
planning under “canonicity assumption” in (Vidal & Geffner 2006)
where each action is assumed to be required at most once.

5This is why we decided to stick with the explicit sequence en-
coding so far.

(c) Precondition: If α(v(k)
i ) = a, then v(k−1)

i must have as
its value an action providing/preserving pre(a)[i].

(d) Prevail: For each (−−−→vk, vi) ∈ CGΠ, and each 1 ≤
j, l ≤ d, we pose a constraint ψ1 ∨ ψ2 ∨ ψ3 over
{v(j)
i , v

(l)
k , v

(l+1)
k }, where

ψ1 ≡ prv(α(v
(j)
i ))[k] = u

ψ2 ≡ τ(v
(j)
i ) < τ(v

(l)
k ) ∨ τ(v

(j)
i ) > τ(v

(l+1)
k )

ψ3 ≡ τ(v
(j)
i ) > τ(v

(l)
k ) ∧ τ(v

(j)
i ) < τ(v

(l+1)
k ) ∧

prv(α(v
(j)
i ))[k] = post(α(v

(l)
k ))[k]

Informally, if the action α(v(j)
i ) is independent of the value

of vk (that is, ψ1 holds), or v(j)
i gets scheduled either before

the lth or after the (l + 1)th value changes of vk (that is,
ψ2 holds), then this particular pair of value changes of vk is
irrelevant to applicability of v(j)

i . Otherwise, α(v(l)
k ) should

provide α(v(j)
i ) with the value required by the latter.

(e) Simultaneity: For each (vi, vk) ∈ CGΠ, and each
1 ≤ j ≤ d, we pose a constraint φ1 ∨ φ2 over
{v(j)
i , v

(1)
k , . . . v

(d)
k }, where

φ1 ≡ α(v
(j)
i ) 6∈ Ai ∩Ak

φ2 ≡
_

1≤l≤d

α(v
(j)
i ) = α(v

(l)
k ) ∧ τ(v(j)

i ) = τ(v
(l)
k )

and a similar constraint is posed in the other direction. In-
formally, if α(v(j)

i ) is not one of the actions affecting both
vi and vk, then its scheduling does not require any synchro-
nization between vi and vk. Otherwise, the action α(v(j)

i )
should appear similarly scheduled in time in the sub-plans
for both vi and vk.

Example 3 Considering our Rocket domain with d = 3, a
snapshot of the CSPΠ(d) encoding is as follows.

• Initial-state: Set α(f (1)) ∈ {noopfull, f ly-e-m}, α(r(1)) =
{noopr=e, f ly-e-m}, etc.

• Goal-state:
For A, we have α(a[3]) ∈ {noopa=m, unload-a-m}.

• Precondition between r(2) and r(1):

r
(1)

= (fly-e-m, t1) −→“
r
(2)

= (fly-m-e, t2) ∨ r(2) = (noopr=m, t2)
”
∧ (t2 > t1)

• Prevail between r(2) and f (1), f (2):

ψ1 ←→ r
(2)

= (noopr=e, t2) ∨ r
(2)

= (noopr=m, t2)

ψ2 ←→

r
(2)

= (∗, t2) ∧ f(1)
= (∗, t′1) ∧ f

(2)
= (∗, t′2) ∧

`
t2 < t

′
1 ∨ t2 > t

′
2

´
ψ3 ←→

“
r
(2)

= (fly-e-m, t2) ∨ r(2) = (fly-m-e, t2)
”
∧“

f
(1)

= (fuel, t
′
1) ∨ f

(1)
= (noopfull, t

′
1)

”
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Figure 4: Primal graph G(3)
CSP of CSPΠ(3) for our example.

• Simultaneity between r(2) and f (1), f (2), f (3):

φ1 ←→ r
(2)

= (noope, t2) ∨ r
(2)

= (noopm, t2)

φ2 ←→ ξem ∨ ξme, where

ξem ←−
“
r
(2)

= (fly-e-m, t2) ∧ f(1)
= (fly-e-m, t′1) ∧ (t2 = t

′
1)

”
∨“

r
(2)

= (fly-e-m, t2) ∧ f(2)
= (fly-e-m, t′2) ∧ (t2 = t

′
2)

”
“
r
(2)

= (fly-e-m, t2) ∧ f(3)
= (fly-e-m, t′3) ∧ (t2 = t

′
3)

”
and ξme is defined symmetrically.

Lemma 3 LID based on a sequence of CSPΠ(d) problems is
a sound and complete planning algorithm. Moreover, given
a solvable planning problem Π, LID over {CSPΠ(d)}∞d=1
terminates at iteration δ as in Eq. 2.

The proof of Lemma 3 is simple, yet technically involved
(and thus omitted here), showing that the constraints of
CSPΠ(d) simply imitate these of SeqCSPΠ(d).

But we would like to establish more than simply the cor-
rectness of the implicit encoding. We now prove that the
two encodings are equivalent complexity-wise by provid-
ing a precise characterization of the tree-width of the primal
graph associated with the implicit encoding: Consider the
primal graph G(d)

CSP of CSPΠ(d). Not very surprisingly, the
structure of this primal graph relates closely to the structure
of the causal graph. Specifically, if we have (vi, vj) ∈ GCG,
then, for 1 ≤ k, l ≤ d, we have (v(k)

i , v
(l)
j ) ∈ G(d)

CSP . By
exploiting this connection, Lemma 6 provides the precise
relation between the tree-width of G(d)

CSP and tree-width of
GCG, that is, of the causal graph.

Theorem 6 Let Π be a planning problem, w be the tree-
width of GCG, and wd be the tree-width of G(d)

CSP . Then, we
have wd = wd.

Proof: The upper bound wd ≤ wd can be shown by
constructing the corresponding tree decomposition. Specifi-
cally, consider the decomposition of G(d)

CSP obtained by con-
tracting the nodes v(1)

i , . . . , v
(m)
i , for each 1 ≤ i ≤ n. By

the structure of G(d)
CSP , this decomposition results in a graph

of n clusters of d original nodes each, with the graph being
isomorphic to GCG. Hence, optimal tree-decomposition of
this graph of clusters will result in a tree of width at most
wd.

To show the lower bound, first we need to introduce some
auxiliary notion. Given a finite, undirected graph G, let
V (G) be the set G’s vertices. A subset X ⊆ V (G) is con-
nected if X 6= ∅, and the restriction of G to X is connected.
Two vertex subsets X,Y of G touch if either X ∩ Y 6= ∅, or
some vertex in X share an edge with some vertex in Y . A
screen in G is a set of connected, mutually touching subsets
of V (G). A screen S has thickness ≥ k if there is no subset
X ⊆ V such that |X| < k, and X ∩H 6= ∅ for all H ∈ S.
The (important here) connection between the screens of G
and its tree-width is that the latter is ≥ k−1 if and only if G
has a screen of thickness ≥ k (Seymour & Thomas 1993).

Let SCG be a (guaranteed to exist) screen of thickness
w+1 in GCG. For 1 ≤ i ≤ d, let S(i)

CG be the corresponding
screen in G(d)

CSP restricted to {v(i)
1 , . . . , v

(i)
n }. Now, consider

the set S =
⋃d
i=1 S

(i)
CG. First, the structure of G(d)

CSP implies
that S is its screen, that is, all components of S are connected
and mutually touching. Second, thickness of S is ≥ wd +
1. To show that, assume to the contrary that there exists a
subset X ⊆ V (G(d)

CSP ) such that |X| < wd + 1, and X ∩
H 6= ∅ for all H ∈ S. Since |X| < wd + 1, there exists at
least one 1 ≤ i ≤ d such that |X ∩ {v(i)

1 , . . . , v
(i)
n }| ≤ w.

Likewise, by the construction of S, for 1 ≤ j 6= k ≤ d, all
pairs of components from S(j)

CG and S(k)
CG, respectively, are

vertex-disjoint. Together, these two properties imply that the
components of S(i)

CG can be covered by ≤ w vertexes, which
contradicts our initial assumption that S(i)

CG is a screen of
thickness w + 1 in G(d)

CSP restricted to {v(i)
1 , . . . , v

(i)
n }. �

Conclusion
The idea of divide and conquer through domain decomposi-
tion has always appealed to planning researchers. In this pa-
per we provided a formal study of some of the fundamental
questions factored planning brings up. This study resulted
in a number of key results and insights. First, it provides a
novel factored planning approach that is more efficient than
the best previous method of (Amir & Engelhardt 2003). Sec-
ond, it identifies the domain’s causal graph as one of the key
parameters in the complexity of factored and non-factored
planning. Third, the complexity analysis provided enables
us to compare between the complexity of standard and fac-
tored methods, and provides new classes of tractable plan-
ning problems. As we noted, these tractable classes appear
to be of genuine practical interest, which has not often been
the case for past results on tractable planning. Finally, our
analysis helps to understand what makes one factorization
better than another, and makes a concrete recommendation
on how to factor a problem domain both in presence and in
absence of additional domain knowledge.

Future work must examine how well our theoretical in-



sights and new performance guarantees translate into prac-
tical performance. However, note that Amir and Engel-
hardt (2003) have already demonstrated on a certain domain
that factored planning can significantly outperform state-of-
the-art planners such as FF (Hoffmann & Nebel 2001) and
IPP (Köehler & Hoffmann 2000). While the empirical eval-
uation in (Amir & Engelhardt 2003) is very preliminary,
it does indicate that on some non-trivial problems factored
planning can be extremely beneficial.
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