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Abstract. Several schemes have been proposed for compactly representing mul-
tiattribute utility functions, yet none seems to achieve the level of success achieved
by Bayesian and Markov models for probability distributions. In an attempt to
bridge the gap, we propose a new representation for utility functions which fol-
lows its probabilistic analog to a greater extent. Starting from a simple definition
of marginal utility by utilizing reference values, we define a notion of conditional
utility which satisfies additive analogues of the chain rule and Bayes rule. We
farther develop the analogy to probabilities by describing a directed graphical
representation that relies on our concept of conditional independence. One ad-
vantage of this model is that it leads to a natural structured elicitation process,
very similar to that of Bayesian networks.

1 Introduction

Specifying a multi-variate utility function is known to be a difficult task, and often
considered a bottleneck in implementation of intelligent systems. It requires quantifying
one’s preferences – a non-trivial cognitive task which involves contemplating a large
number of questions about the relative desirability of uncertain outcomes, or gambles.
Furthermore, the very personal and subjective nature of utility information makes it
harder to reuse and learn, unlike probabilistic knowledge, which can often be learned
from data and reused for various instances of a system. Yet, the preference and utility
elicitation tasks must be carried out when analyzing decision problems. A number of
attempts have been made to aid this elicitation process by structuring it so that either
the type of questions that must be answered is simpler and/or the number of questions
is smaller. Often, this process is aided by some graphical structure that captures some
properties of the utility function.

The level of success of current formalisms is not clear, partly because assessing
the benefit of various utility elicitation processes is difficult. Even given that current
models provide significant theoretical simplifications, the cognitive burden imposed by
the elicitation process may still be prohibitive for practical applications. Given the well
recognized practical benefits yielded by probabilistic graphical models, it is likely that
much more can be done for utilities, too. In this work we attempted to follow the foot-
steps of probability theory more closely than before, by defining a notion of conditional
utility that is closer in form to its probabilistic analog. We then show how this concept



leads naturally to milestones such as the chain rule and Bayes rule analogies, and fi-
nally to a graphical representation based on a directed acyclic graph. While our new
method of representing and eliciting utilities bears certain similarities to existing meth-
ods, as detailed below, it offers an elicitation process – both for qualitative structure and
numeric values – that is clear, simple, and intuitive. Furthermore, it provides immedi-
ate computational benefits, and several promising direction for future research that are
based on the close resemblance to probabilistic models. We believe that this method can
become an essential part of the toolkit of decision analysts and an important component
in real-world decision support systems.

In the remainder of this paper we define a new notion of conditional utility and
utilize it to define utility difference networks. We explain their elicitation process and
compare them to existing formalism for representing structured utility functions. Fi-
nally, we discuss a few open questions.

2 Background and Related Work

Let Θ denote the space of possible outcomes, with � a preference relation (weak total
order) over Θ. Let Γ = {a1, . . . , an} denote a set of attributes describing Θ. Each
attribute a ∈ Γ has a domain D(a), so that Θ ⊆

∏n
i=1D(ai). We use prime signs

and superscripts to denote specific assignment for an attribute, and a concatenation of
assignment symbols (as in a′ia

′′
j ) means that each of the attributes gets a respective

value. We use γ and γi to denote subsets of Γ , and the same notation as before to
denote assignments to all the attributes in the set. For example, if γ1 = {ai, aj}, then
γ0
1 = a0

i a
0
j . Finally, we use D(γ) to denote the set of all possible assignments to γ, that

is the projection of Θ over
∏
ai∈γ D(ai).

Definition 1. Let γ1, γ2 ⊂ Γ . γ1 and γ2 are conditionally additive independent (CAI)
given their complement Γ \ (γ1 ∪γ2), if preferences over lotteries on Γ depend only on
their marginal conditional probability distributions over γ1 and γ2.

Graphical models have been employed for the representation of decomposed utility,
as early as by (Gorman, 1968; Tatman and Shachter, 1990). However, the first repre-
sentation that relies on conditional independence, and thus follow the footsteps of prob-
abilistic models, can be attributed to Bacchus and Grove (1995). These authors show
that conditional additive independence has a perfect map, meaning that given a set of
attributes and a preference order, there exists a graph whose node separation expresses
the exact set of independence conditions. Further, they show that the utility function
decomposes to a sum over lower dimensional functions, each defined over a maximal
clique of the graph. This decomposition is a special type of generalized additive in-
dependence (GAI), a global independence condition introduced originally by Fishburn
(1967).

Definition 2. Let γ1, . . . , γg ⊆ Γ such that
⋃g
i=1 γi = Γ . γ1, . . . , γg are called gen-

eralized additive independent (GAI) if preferences over lotteries on Γ depend only on
their marginal distributions over γ1, . . . , γg .



An (expected) utility function u(·) can be decomposed additively according to its
(possibly overlapping) GAI sub-configurations.

Theorem 1 (Fishburn (1967)). Let γ1, . . . , γg be GAI. Then there exist functions f1, . . . , fg
such that

u(a1, . . . , am) =
g∑
r=1

fr(γr). (1)

Bacchus and Grove revived this notion and named it GAI. This opened the way to an
increasing body of research on representation and reasoning with GAI. Boutilier et al.
(2001) introduce UCP networks, which is a directed form of CAI-maps. The direction-
ality though is obtained from identifying preferential independence conditions over sets
of attributes, that is exogenously to the GAI decomposition. Gonzales and Perny (2004)
introduce GAI nets, which is a graphical representation for GAI, where nodes represent
subsets of attributes, and nodes are connected if their respective subsets intersect. Braz-
iunas and Boutilier (2005) provide a method of elicitation that takes advantage of the
locality property of GAI.

CAI and GAI require comparisons of probability distributions and preferences over
lotteries. In applications in which uncertainty is not a crucial element (e.g., electronic
commerce applications), it is not required and usually not desired to involve probabili-
ties in user interaction. Engel and Wellman (2007) extend the work of Dyer and Sarin
(1979) and introduce conditional difference independence (CDI). Intuitively, attributes
x and y are CDI of each other if any difference in value over assignments to x does not
depend on the current assignment of y, for any possible assignment to the rest of the
variables. CDI is very similar to CAI, and therefore has a perfect map as well.

Definition 3. 3 Let γ1, γ2 ⊂ Γ . γ1 and γ2 are conditionally difference independent
given γ3 = Γ \ (γ1 ∪ γ2), denoted as CDI(X,Y ), if

∀ assignments γ̂3, γ
′
1, γ
′′
1 , γ
′
1, γ
′′
2

u(γ′1γ
′
2γ̂3)− u(γ′′1 γ′2γ̂3) = u(γ′1γ

′′
2 γ̂3)− u(γ′′1 γ′′2 γ̂3)

Our new concept of independence and graphical model most closely resemble CDI.
However, in comparison to CDI, it introduces several benefits: (i) it is directional, al-
lowing for a more intuitive elicitation process and (ii) the independence condition is
weaker, meaning it can be applied in some cases wherein which CDI does not hold.

Another direction of research relied on other types of utility independence. CUI
networks (Engel and Wellman, 2008) is a graphical model that relies on the concept of
conditional utility independence (Keeney, 1971), which intuitively requires the (cardi-
nal) preference order over a subset of the attributes to be independent of another subset
of attributes. Earlier works by Shoham (1997) and La Mura and Shoham (1999) are
also seeking utility representation that is similar to a probability distribution. Shoham
(1997) proposes a redefinition of utility function as a set function, over additive factors

3 Difference independence and CDI are defined given a preference order over preference differ-
ences, and its numeric representation is a measurable value function. For brevity of presenta-
tion we describe it in terms of utilities.



in the domain that together contribute to the decision maker’s well being. La Mura and
Shoham (1999) propose only a redefinition of the utility independence concept, which is
a multiplicative version of difference independence (that is, refers to utility ratios rather
than differences). In non-probabilistic settings, and especially in situations in which de-
cision outcomes can be measured against monetary differences (as in purchasing), we
believe that utility differences are more natural to elicit than ratios.

A common drawback of most previous models is that most focus is given to the
process of data elicitation, whereas the process of structure elicitation, in which the in-
dependence structure is identified, is usually left to domain experts. This is particularly
true for GAI based representations, as UCP and GAI networks, because there is no ex-
plicit and intuitive process for identifying and/or verifying GAI conditions. Our novel
model, in contrast, has the benefit of an intuitive and incremental structure elicitation
process.

3 Reference and Conditional Utility

There are inherent differences between probability distributions and utility functions,
which make any analogy between the two problematic. Arguably, the most primal dif-
ference is the fact that probability distribution is a set function, defined over events that
encapsulate a set of atomic outcomes. In contrast, there is no meaning for the utility of
a set of atomic outcomes. For probability distributions, there is a natural definition for
a function over a subspace of the world on which the problem is defined. Technically, if
the world is represented by a set of attributes Γ , one can define a probability distribution
over some γ ⊂ Γ by summing over the atomic outcomes that hold for any assignment
to γ, thus marginalize out the irrelevant parameters (namely, Γ \ γ).

Whereas there is no meaning for marginalizing parameters of a utility function, a
similar effect can be achieved by fixing those parameters on some reference value. For
probabilities, we ask the question what is the probability of outcomes in γ when we
don’t know the value of Γ \ γ. While we do not have an exact analogy for utilities,
with reference values we get ask: what is the utility of outcomes in γ when the value of
Γ \ γ is fixed on the reference. The idea of using a reference value has been exploited
in previous works (Fishburn, 1967; Braziunas and Boutilier, 2005; Engel and Wellman,
2008), however it was never taken quite as far in driving the analogy to probabilities.

Let a0
1 . . . a

0
n ∈ Θ denote a predetermined complete assignment, which we call the

reference assignment. The reference assignment allows us to define a utility function
over a subspace of the joint domain. Let γ = Γ \ γ.

Definition 4. The reference utility function is defined as follows

ur(γ) = u(γγ0)

The next step is to define the notion of conditioning, within a subspace of the domain.

Definition 5. The conditional utility function is defined as follows

ur(γ1|γ2) = ur(γ1γ2)− ur(γ0
1γ2)

where γ = Γ \ {γ1 ∪ γ2}.



This definition has a direct rooting in the definition of conditional probabilities. The
definition of the latter is

p(γ1|γ2) =
p(γ1γ2)
γ2

As common in probabilistic reasoning, we take a log of the definition in order to replace
multiplication with additivity. This results exactly in Definition 5.

Given that, it is not surprising that the utility function exhibits an additive decom-
position which is similar to the multiplicative decomposition of a probability function.
We first have to normalize the utility function (henceforth) such that u(Γ 0) = 0.

Theorem 2 (The chain rule).

u(Γ ) =
n∑
i=1

ur(ai|{aj}i−1
j=1)

Proof. By definitions of conditional utility and reference utility,

ur(ai|{aj}i−1
j=1) = ur(a1 . . . ai−1ai)− ur(a1 . . . ai−1a

0
i ) =

u(a1 . . . ai−1aia
0
i+1 . . . a

0
n)− u(a1 . . . ai−1a

0
i a

0
i+1 . . . a

0
n)

Summing over i = 1, . . . , n on both sides yields the desired result, because: (1) the
negative term for i = 1 is u(a0

1 . . . a
0
n) = 0, (2) the negative term for i cancels out with

the positive term for i − 1 (both are u(a1 . . . ai−1a
0
i a

0
i+1 . . . a

0
n)), and (3) the positive

term for i = n is u(Γ ). ut

Finally, it is easy to see that this definition obeys an additive adaptation of Bayes rule.
Again, taking log over the probabilistic equation we obtain the following

Theorem 3 (Bayes Rule Analog).

ur(γ1|γ2) = ur(γ2|γ1) + ur(γ1)− ur(γ2)

3.1 Conditional Independence

The chain rule by itself does not provide significant computational value, because the
last term (i = n) includes the left-hand side of the equation u(Γ ). The idea, similar to
the one employed to achieve compact probability functions, is that the conditional utility
function ur(ai|a1, . . . , ai−1) may not depend on all of the attributes a1, . . . , ai−1, but
only on some subset of them, in which case the terms considered by the chain rule have
lower dimensionality. This is formalized as follows.

Definition 6. γ1 is said to be conditionally independent of γ2 given γ3 (CDIr(γ1, γ2|γ3))
if for any γ′3 ∈ D(γ3),

ur(γ1|γ2γ
′
3) = ur(γ1|γ′3)



When γ3 = Γ \ γ1 ∪ γ2, then CDIr(γ1, γ2|γ3) is equivalent to γ1 and γ2 being
CDI. Therefore, CDIr is a generalization of CDI . The novelty of this definition is that
it refers to a subset of the attributes. Whereas in previous independence concepts the
conditional set must always be “the rest of the attributes”, here we specifically select a
conditional set, and can ignore the attributes which are not relevant to γ1.

As an example, consider the values in Table 1, which provides the value for the
eight different instantiations of three boolean attributes, x, y, and z. The difference be-
tween the two values in each column corresponds to the difference in x given difference
instantiations of yz.

x0yz x0y0z x0yz0 x0y0z0

9 6 6 3

xyz xy0z xyz0 xy0z0

12 7 8 5

Table 1: Utility for each assignment to attributes x, y, and z.

We see that CDI(x, y) does not hold because u(xyz) − u(x0yz) 6= u(xy0z) −
u(x0y0z) (according to the two left columns). In our terms it means that CDIr(x, y|z)
does not hold. However, CDIr(x, y|) does hold, because the difference is equal for the
reference value z0 (see the two right columns): u(xyz0) − u(x0yz0) = u(xy0z0) −
u(x0y0z0) (or, equivalently, ur(x|y) = ur(x|)).

4 Utility Difference Networks

Loyal to the Bayes-net analogy, we seek a directed graphical structure, with a node
for each attribute, and the following property: each attribute is conditionally directional
independent, given its parents, of all its other non-descendants. Let Pa(a) denote the
parents of a node a in a graph, and let Dn(a) denote its descendants. Furthermore, let
Co(a) = Γ \ {a} ∪ Pa(a) ∪Dn(a).

Definition 7. A utility difference network is a DAGG = (V,E), with V corresponding
to a set of attributes Γ , and for any a ∈ Γ , CDIr(a, Pa(a)|Co(a)).

The utility computation from the directed graph is again very similar to how probabil-
ities are computed from a Bayes-net. The following theorem is a direct result of the
chain rule and Definition 7.

Theorem 4. The utility function can be computed from the utility difference network as
follows

u(Γ ) =
n∑
i=1

ur(ai|Pa(ai))



Previous graphical models usually assume that the model is given, obtained by some
domain expert. In particular, how to identify a GAI decomposition remains an unsolved
question (except for the case that the GAI structure is a result of a collection of CAI or
CDI conditions). Note also that while each pairwise CDI condition requires in theory
the verification of order of exp(n) equalities for utility differences (because a verifica-
tion is required for each instantiation of the rest of the attributes), with our new notion
of conditional independence we only need to consider the independent attributes and
the conditioning set. However, we note that when creating a full network this is not a
significant advantage, because the number of queries for the last variable in the ordering
will reach the same order of magnitude as in CDI.

4.1 Elicitation

The process of obtaining a utility difference network structure is similar in spirit to
that used for Bayesian networks. It is summarized by the following procedure. As is the
case in Bayesian network, the result depends on the variable ordering that is used by the
procedure, and the choice of variable ordering is usually based on heuristic assessments.
Intuitively, we would like to place the most important variables first, because these are
the variables that are likely to have many connections to other variables. By keeping
them on top we avoid having to represent all of these dependencies as parents of the
same variable. Furthermore, it makes intuitive sense to have the important variables
first, so the dependence between other variables are conditioned on them.

For each variable in its turn, we find a set of parents: those attributes that are required
in order to render the current variable independent of the rest. We use the notation
Γ i = {a1, . . . , ai}, and (x, y) refers to a directed arc from x ∈ V to y ∈ V .

algorithm ProcGetStructure(Γ )
input: Γ , ordered as {a1, . . . , an}
output: a utility difference network over Γ

for i=1 to n:
find minimal Γ̂ i ⊆ Γ i−1 such that CDIr(ai, Γ i−1 \ Γ̂ i|Γ̂ i)
For each x ∈ Γ̂ i, Add (x, ai) to E

return G = (Γ ,E)

The data in the nodes of a utility difference network is in form of conditional utility
function, that is obtained by querying a user for preference differences. For example,
the node a with parents γ requires the function ur(a|γ), which is obtained by queries
for the differences ur(aγ)− ur(a0γ).

4.2 Example

In order to demonstrate the difference between CDI and CDIr, we consider the hard-
drive example used by Engel and Wellman (2007), and we show their CDI-map of
the problem in Figure 1a. The example describes various decision criteria that a pro-
curement department of a company evaluates when purchasing some quantity of new
hard-drives. Below, each attribute is listed with a designated attribute name (the first
letter), and its (sometimes arbitrary) domain.



RPM (R) 3600, 4200, 5400 RPM
Transfer rate (T ) 3.4, 4.3, 5.7 MBS
Volume (V ) 60, 80, 120, 160 GB
Supplier ranking (S) 1, 2, 3, 4, 5
Quality rating (Q) (of the HD brand) 1, 2, 3, 4, 5
Delivery time (D) 10, 15, 20, 25, 30, 35 days
Warranty (W ) 1, 2, 3 years
Insurance (I) (for the case the deal is signed but not implemented) α, β, γ
Payment timeline (P ) 10, 30, 90 days

Intuitively, the most salient criterion is volume, and the other important ones are RPM,
warranty, and quality; hence the ordering prefix V,R,W,Q seems sensible. The rest of
the ordering is less crucial, and we use I,D, P, T . First, V is placed as a root. When R
is considered next, we find that it depends on V because for high volume hard-drives
the marginal utility of improving RPM is higher. We find thatW depends on V , because
larger hard-drives tend to fail more. Now when considering Q, we might find that there
is similar dependence between Q and V . However, if the reference value of W is the
maximum value (3 years), we might find that given the reference value of W (and the
rest of the variables), Q and V are independent because the longer warranty alleviates
(substitutes) quality concerns. Further down in the network we might see a similar ef-
fect: a convenient value for insurance alleviates the dependency of delivery terms on
the payment terms. In addition, we find the CDI conditions as described by Engel and
Wellman (2007). For example, given any fixed value of V the marginal value of im-
proving the quality rating does not depend on the RPM. Also, S is CDI and therefore
CDIr of all the rest. We obtain the DAG depicted in Figure 1b. The utility difference
network does not achieve lower dimension than the corresponding CDI-map, however
it provides directionality that can be exploited for a more natural elicitation process.

5 Discussion

CDI is a stronger condition than CDIr, and as such the locality property it achieves is
stronger. To see this, consider the elicitation of data for an attribute x. In a CDI-map,
the marginal utility over x is independent of the value of any node outside its local
neighborhood. Therefore, the marginal utility of x can be elicited using local queries
that involve differences over x and given a fixed value of the neighbors, without even
knowing the value of the rest of the variables. In utility difference network the marginal
utility of x may in some cases depend on the value of a non-neighbor y. For example, if
y is an ancestor of x, the marginal value of x is independent of y given any value of x’s
parents, but only given that the rest of the variables are fixed on the reference value. It
is possible that there is some instantiation of the rest of the variables, under which the
independence is lost. Therefore, elicitation must specify explicitly that the the rest of
the variables are fixed on the reference value.

In fact, this can be seen as an advantage of utility difference network. In CDI-map,
such x and y will necessarily have an edge connecting them, whereas in a utility differ-
ence network such edge can be omitted. In that sense, utility difference network refines
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Fig. 1: Networks for the example: (a) CDI-map (b) utility difference network.

CDI. Furthermore, if x is fully CDI of y, this can be exploited in utility difference net-
works as well; as long as a local query makes sense to the user there is no need to
indicate explicitly that the rest of the variables are fixed on the reference value.

A promising direction coming out of this representation is in introducing a form of
Bayesian Learning for utilities. Consider a digital camera manufacturer that wishes to
obtain information about customers’ preferences. The company may be able to observe
some limited set of choices made by customers. Perhaps we can also assume that single
dimensional utilities (e.g., how much worths an improvement in a single attribute, all
else being equal) is easy to estimate, or elicit. The company can now use the evidence
(customer’s choices) and Theorem 3, in order to obtain data regarding future choices
of the customer. For example, the customer may have chosen to pay an extra $60 for
a camera with 10× zoom and 6mgp, over one with 7× zoom and 6mgp. Now (given
the single dimensional data, in the form of reference utilities over each attribute) the
company can compute the amount that the customer is willing to pay to get 6mgp over
4mgp, given that the zoom is 10×.

Practical problem with this direction are yet to be resolved: this assumes that the out-
comes above differ only in these two attributes, and in addition the rest of the attributes
are fixed on the reference value (or, alternatively, difference independence holds be-
tween the two attributes we considered and any other attribute). Furthermore, we should
theoretically be able to infer information about a customer only according to choices
made by that customer. It is possible though that in some cases heuristic information
can be inferred across different customers.



6 Conclusions

We propose a new representation scheme for utility functions. Starting from a definition
of utility for a subspace of the domain, with respect to reference value of the rest of the
attributes, we proceed with a definition of conditional utility as the marginal utility of an
attribute, conditioned on some other attributes, and relative to the reference value. We
show that conditional utility accommodates the logarithmic adaptations of the chain
rule and Bayes rule, and develop the analogy to probabilities further by describing a
directed graphical representation that relies on a concept of conditional independence.

In comparison with previous directed models (Boutilier et al., 2001; Engel and Well-
man, 2008), we believe that our representation is simpler and easier to construct. Utility
Difference Networks can be considered an adaptation of CDI-maps into a DAG, and
though does not provide reduction of dimensionality, we believe that it has the potential
to benefit the field in a similar way to how Bayesian Networks facilitated probabilistic
reasoning in comparison to Markov Networks.

There are several direction to explore following this work. One is the form of
Bayesian Learning proposed in Section 5. Furthermore, the fact that conditional util-
ities satisfy the chain rule and Bayes rule, implies that it may be possible to perform
utility inference using algorithms similar to those that are used for belief propagation.
Partial information obtained from observing the agent behavior, possibly coupled with
observations about single dimensional preferences of similar users, can be used to infer
other preferences. Value conditioning stemming from partial user choices or product
constraints can be reasoned with, much like evidence in belief propagation, yielding
estimates of the utility of various choices for other attributes.
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