Introduction to Computational and Biological Vision
Detecting grapes in vineyard images
Sivan Radt
The goal is to detect clusters of grapes in different pictures that were taken in a vineyard. The photos are taken by a robot, passing between the vines and filming to his sides. The pictures include grapes, but also a complex background (sky, earth, foliage that's connected to the vine and that isn't connected). If we can spy those grapes automatically, we can improve actions that demand accuracy, such as spraying against pests and harvest.
To solve the problem, first we'll have to find the qualities that differentiate the grapes from the rest of the image.
Grapes are:

· Green

· Smooth surfaces (The normal's direction changes gently and gradually)

· Round

· Relatively small

· Usually in clusters – if you find a grape, there's a big chance that there's another one next to it.

IMPORTANT NOTE: Identifying grapes (at least in this project) is based on high probability and not on 100% accuracy.
Some ideas for solving the problem:
1. Create a stock of pictures of grapes; trying to compare them all over the picture.
Problem: Very bad run time!

2. Finding the front grape in the cluster – it's almost perfectly round – and from it, find the grapes around.

3. Find circles in the image, segment them and then check which of the circles are still in the image.

4. The elimination way: Delete all the pixels that can't be a part of a cluster.

Notice that:

We have to look around the pixel so we can decide whether it should be black or white. The size of the environment we test for sure has an affect on the result's accuracy.

In the images from the database we got, almost always the "burnt" areas belong to the background and not to the grapes.
Some ponderings to start:

1. Bad quality of images – how can we improve the quality without losing the edges? Do we need to improve it at all?

2. How do we find "circles"?

3. How do we choose the size of the environment that we're testing?

4. "Burnt" parts of the image: if they contain grapes, how will we detect them? We can't do it by shape, and we can't do it by color – because on those pixels the RGB is 255,255,255.

Before we start, we'll have to prepare the image – try to make it as clear and sharp as we can, so the segmentation process will be easier and more accurate.

An image like this one is a bit of a problem:
[image: image32.emf]
We'll try to make it simpler, and hope for the best.
Learning through experience –
ideas to make the images simpler, and the segmentation easier

Filtering red shades
For example: slika1860
[image: image2.jpg]

Almost immediately you can see that pixels with red level which is way higher than the green level can be filtered – areas like the trunk and the branches. If we color black all the pixels that pass the test: Red/1.2 > Green, we will get:
[image: image3.emf]
Slika1860 without pixels where the red level was too high
Notice that after filtering the red shades, some "dots" remained – small areas of black pixels in gray area, and even in a grape area, and also small gray areas surrounded by black areas.

Filtering red shades – also filters parts of the grapes sometimes.

Segmentation via thresholding – Global thrsholding
Take a look at the original image in grayscale.

If we divide each pixel's value by x, round the result downwards, then multiply by x, we'll get an image where the number of shades is smaller, and the color areas are bigger (we get rid of middle shades). The bigger x is, the smaller the number of segments will be (strong segmentation).

For example:

The picture before segmentation and its histogram -
[image: image1.jpg]

[image: image7.emf]
After segmentation with the parameter 50, we'll get:
[image: image8.emf][image: image9.png]

And after a more "delicate" segmentation, with the parameter 20, we'll get:
[image: image10.png]

[image: image11.png]

That's "Global thresholding" – the whole picture is segmented according to the same thresholds all over it.
The problem with this method, is that a parameter may work nicely for one image, and badly for another. Also, the fact that the light changes gradually in the parts of the image that interests us (the grapes – smooth and round) might mess the segmentation.
Let's try a different method that can deal with gradual changes better.
Segmentation via thresholding – Local adaptive thresholding
The code was written by Guanglei Xiong,
Adaptivethreshold segments the image using local adaptive thresholding. Its input is the size of the testing window, and the output is a b/w image, containing the result of the segmentation.
http://www.mathworks.com/matlabcentral/fileexchange/8647
I changed the original function so it will return a matrix of integers and not logicals, so we can run on it the Hough transform function and find circles.
[image: image12.png]

If we use it on the previous image with the parameter 20, we'll get:
[image: image13.emf]
And with the parameter 5:
Finding circles – slika1812

We studied in class the Hough transform that identifies lines in sets of points through the voting system. We also studied how to use it to find circles. This transform is a bit problematic when we use it to detect circles in a "noisy" image, so we have to use it only after some preperations that make the image more comfortable to use.

http://www.mathworks.com/matlabcentral/fileexchange/9168
What's nice about the function – it detects less-than-perfect circles.

What's less nice about it – it detects shapes that aren't close to circles as circles.
[image: image4.jpg]

[image: image14.png]

How to find anything but the grapes
Get to work

We'll start with a fairly simple picture:
[image: image15.emf]
Slika1916
[image: image16.emf]Convert the image to grayscale:
Slika1916 – rgb2gray

· Will adjusting the contrast in the image help, interrupt, or have no affect at all?

Already we can spot some properties that might help:
1. The "burnt" areas in the image don't belong to grape areas. We can immediately color them black. We'll define a "burnt" area as the pixels with value at least 200.

[image: image17.emf]After filtering those areas, we'll get:
without pixels with value>200
Notice that some gray "spots" were created in the areas we colored black. They're too small to be grapes. Will adjusting the contrast prevent those spots?
[image: image18.emf]
without pixels with value>200, after increasing contrast

Enhancement of the contrast didn't prevent the creation of spots, but some areas that weren't deleted previously, are now black. So we can delete from the image all the pixels that were colored black in this stage or in the previous.
[image: image19.emf]
Image 1: Without pixels who were deleted without or with contrast
2. Assuming there are no red grapes in our vineyard, we can color very red areas like the trunk and branches, in clack.

[image: image20.emf]We'll try it on image 1. We define a "very red" area as a pixel that its R value is at least 1.2 times higher than its G value.
Image 2: Removing very red areas from Image 1
We can see that a large area of the background is erased, but also is a part of the grapes.

Now we can erase the gray dots in the blackened areas. We can use them as "Salt & Pepper" noise, and get rid of it with the median filter – medfilt2, with a window size 4x4. We get:[image: image21.emf]
Image 3: removing noise

How do we get rid of what's left of the earth and the trunk? There are some options we can try:

A. We won't. We'll try now detecting circles in the image. We'll search for circles with 5 to 15 pixels of radius.

 CircularHough_Grd(S3, [5 15], 3, 6)
[image: image22.emf]
Finding circles too soon: not even close to the real solution.

Apparently we need some more pre-processing. We didn't find most of the grapes, but found tons of not-grapes…
B. We'll filter the image again, this time the window size is 10x10.[image: image23.emf]
Image 4: removing noise again, with a bigger "window"
C. We'll try to detect the edges, to see why CircularHough_Grd doesn't recognize the grapes as circles.

By using the Prewitt algorithm, we get:[image: image24.emf]
Edge detection with the Prewitt algorithm on Image 4

And if we use the Canny algorithm:[image: image25.emf]
Edge detection with the Canny algorithm on Image 4. It's much more detailed.

D. What happens if we segment using local adaptive thresholding?[image: image26.emf]
Image 5: Segmentation via local adaptive thresholding, with a window sized 4
We can see that our desired segment is "dirtier" – it's the changes in the grapes' gradient. If we can isolate this segment – problem is solved.
Next stage: softening the image a bit more. The median filter again, with a window of size 10x10.
[image: image27.emf]
Image 6: softening image 5
And if we try detecting circles now, we get:[image: image28.jpg]

Found circles on image 6
CircularHough_Grd(S5, [2 6], 20, 4)
The best result is:[image: image29.jpg]

The grapes in slika1916 as tagged by a human observer
The symmetric difference between the best result and what we got is: 37106 different pixels.
To summarize the process:
1. Convert the image to grayscale

2. Filtering "burnt out" areas

3. Filtering red areas

4. Smoothing the image using the median filter

5. Segmentation with adaptive local threshold

6. Finding the circles
What happens when we try it on other images:
[image: image30.emf]
[image: image31.emf]

[image: image5.jpg]

[image: image6.emf]
Conclusions:
1. I didn't write a perfect function for detecting grapes.

2. The number of smooth filtering, size of test window, radius of the circles we look for – all those change from image to image. They're hard to be determined in advance, if it's possible at all/

3. "Burnt out" areas in the image: can't be analyzed. I chose to filter them out.

4. You can try and work and test and think of an idea for days. It just doesn't work.

5. As said in class:

SEGMENTATION ISN'T EASY!
Important functions I used
DetectGrapes(I)

Input: an RGB image

Returns: A matrix sized as the input.

Any pixel identified as part of a grape is white. The rest are black.
Adaptivethreshold(img, w_size)

Input: an image, the size of the window for segmentation

Returns: a b/w matrix sized as the input.

Segments the image with the adaptive local threshold method.
CircularHough_Grd(img, rad_range, grd_thresh)
Input: an image, a range of values represent the smallest and the largest radiuses of the circles we look for, and a threshold for the gradient – point where the gradient value is lower will not participate in the "voting" process.

Returns: The Circles matrix, an array of the circles' centers, and an array of the radiuses.
Symdif (A, B)
Calculates the symmetric difference between to marices. I wrote it to check how accurate detectGrapes is. (It's not that accurate)
Some articles I found helpful
http://blogs.mathworks.com/steve/2006/06/02/cell-segmentation/
http://blogs.mathworks.com/pick/2008/05/23/detecting-circles-in-an-image/
Also I used MATLB HELP quite a lot.
2000

1500

1000

500

0

250

200

150

100

50

0

0

50

100

150

200

250

0

2000

4000

6000

8000

10000

12000

14000

0

50

100

150

200

250

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

