An Attempt At License Plate Number Recognition
Using Edge Tracing And Tangent Curves

Hadar Rottenberg
The problem of character recognition is but a small field in computational vision and may be generalized into the problem of shape recognition and pattern matching.

Shape recognition is a major field in computational vision, with implementation in many different applications from OCR to finding tumors in medical images.

When approaching the problem of shape recognition I have divided the task ahead into three parts.

1. Finding the borders of each shape.

2. Representation of each shape pattern in a compact form which allows easy matching.
3. Finding the license plate and the numbers in the image.

Some assumptions are taken into consideration since we deal in a special case of OCR:

1. The numbers on the license plate are well defined.

2. We deal with local license plates which are on a yellow background with black numbers.

3. The image we receive is not rotated.

Task 1 – Finding the contour.
When looking for shape borders I first had to detect the edges in the image using the Prewitt Edge Detector after converting the image to BW.

I could think of two methods for finding the borders of the shape

A. Hough Transform.

B. Edge Tracing

Since we are going to segment each number individually I have decided to use the simple but effective method of edge tracing, which will also allow doing other image calculations when passing over the edges.
I have used the moore tracing method, scanning clockwise around each pixel until the next is reached.

Task 2 – Contour template

Some of the possible ways to represent a shape that were discussed in class came to mind when approaching this task,

A. Edge chains.

B. Curve orientation.

C. Polyline fitting.
D. Using a method similar to Houghman and Clows, by segmenting the shape into a grid and labeling the type of curve in each segment (concave arc, corner, straight line etc)

I ruled out the first option since we are going to deal with pictures taken under different lighting conditions and not printed text scanned documents so there are going to be a lot of "bumps" when tracing the borders.

Option D. was ruled out since it was too dependant on location, and wasn't invariant under different transformations.
Polyline fitting seemed like a good Idea but required many computations.

The best choice was Curve orientation for a number of reasons:
1. Invariant under different transformations.

2. Easy to calculate using the gradient we calculated when using the edge detector.

3. Compact.

4. Easy to compare.

I started by measuring the curve difference between each successive line segment (|Φ(Pi) - Φ(Pi+1)|) where Φ is the tangent of the current edge pixel relative to the X axis.

To avoid noise I had to average the degree along a certain number of pixels which together produced a border segment, also marking only difference points bigger than 15degrees separated by a distance chosen relatively to the image size.

At first the results looked promising since same numbers under different transformations where segmented in the same way as seen in figure 1-3.

[image: image1.jpg]

[image: image2.jpg]

[image: image3.jpg]

[image: image4.jpg]

[image: image5.jpg]

Figure 2 – rotation invariance
[image: image6.jpg]

[image: image7.emf]0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

140

160

180

Arc Length

Absolute Tangent Degree

Comparison of '3' images

Figure 3 – '6's taken form different plates
I moved on to the next step of pattern matching, I figured the best way to see if two patterns match is fitting each curve difference point in pattern A to a point in pattern B and giving a score to each possible match. The two pattern matching score would be the match yielding the highest score. I used an altered version of the Longest Common Subsequence algorithm, here the results where less encouraging, since patterns composed of curves like 2 and 6 would yield a high match sometimes even higher than different images of the same number.
I had to think of a better way of matching or a better way of edge aggregation

The first option that came in mind was to use the resulting feature points in a different way, by imposing a grid on the image and measuring the number of feature points in each cell ,or measuring relative distance between feature points.

The second option which I eventually chose was to use the tangent curve function of the shape, though this method is not rotationally invariant it suited my needs since we assume all the images are aligned correctly (even though this method can easily be made rotationally invariant in future applications by rotating the tangent function axis and shifting the X axis).
[image: image8.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

20

40

60

80

100

120

140

160

180

Normalized Arc Length

Absolute Tangent Degree

Same '3' images - Normalized spline sampling comparison

After measuring the tangent function I normalized the result by the shape length to receive size invariant function and smoothed the result using spline fitting and resampling the function at 100 points, the resulting points are our shape pattern which can be matched using least squared distance score to other patterns(figures 4-5).

[image: image9.emf]Task 3- Segmenting the license plate
Fortunately we live in Israel and we don't have different colorful license plates
So I decided to use the straightforward method of leaving only the yellow-brown pixels in the image (filtering the gif map file from) as seem in figure 6.

Using matlab bwlabel for segmentation of yellow regions into distinct objects (each object is a connected component of yellow pixels) and finnaly passing each possible license plate object to our edge tracing function which trace the different borders trying to match each contour that was found to a shape in our database (figures 6-8).
[image: image10.jpg]11:288-03

pvan
SR Eet I

[image: image11.png]

[image: image12.emf]0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

40

60

80

100

120

140

160

180

Results and Conclusions
Based on the tangent curves I was optimistic the program would work well, but the recognition results of plates weren't as good as expected.

The problem may lie in one or more of the following:

A. Plates shot from larger distance were more prune to noise. As seen above

B. Changes in the angle between the camera and the plate also cause the recognition to fail.
C. Orientation invariance wasn't forced, causing numbers to receive high score on wrong matching, applying it would have probably increased the recognition ratio.

[image: image13.png]

Optical recognition of real life objects is a hard since it depands on the current state of the environment in contrast to predefined environments such as scanned documents.

In order to achieve good recognition more constraints need to be applied and better segmentation and noise reduction is needed.

Some methods that might have good effect are:

A. Using hough transform to recognize the plate area, leaving only the black pixels inside that area.

B. Applying smoothing filters to the plate area such as Gaussian filter.

C. Segmenting the plate into characters instead of scanning the whole plate together.

D. Applying a grid on the features contour to differentiate between closed and open characters, 6/9.
E. Better tangent curve matching, trying different rotations and choosing the one yielding the highest score.

The bright side
Sampled font numbers taken from "word" documents were matched correctly against one or more of my sampled plates digits.

The process describing numbers using tangent curve can be easily transformed into recognizing any other type of shapes.
References:
See website.

�

Original 2 taken from a plate

�

Same image but this time resized

Figure 1 – size invariance

�

�

�

�

The plate this '6' was taken

from was shot from above

giving it a little different shape

�

Figure 4 – Arc-length parameterization of 2 different '3' images.

��
Figure 5 – Arc-length Normalized comparison

� EMBED Photoshop.Image.8 \s ���

Figure 7 – resulting trace

 � �

Figure 6 – Original image and the colored filltered image

�

Figure 8 – Times new roman '3' digit VS plate '3' digit

�

Figure 8 – Well recognized plate

_1183340169.psd

