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Abstract Visual tracking is considered a common pro-

cedure in many real-time applications. Such systems are

required to track objects under changes in illumination,

dynamic viewing angle, image noise and occlusions

(to name a few). But to maintain real-time performance

despite these challenging conditions, tracking methods

should require extremely low computational resources,

therefore facing a trade-off between robustness and speed.

Emergence of new consumer-level cameras capable of

capturing video in 60 fps challenges this tradeoff even

further. Unfortunately, state-of-the-art tracking techniques

struggle to meet frame rates over 30 VGA-resolution fps

with standard desktop power, let alone on typically-weaker

mobile devices. In this paper we suggest a significantly

cheaper computational method for tracking in colour video

clips, that greatly improves tracking performance, in terms

of robustness/speed trade-off. The suggested approach

employs a novel similarity measure that explicitly com-

bines appearance with object kinematics and a new adap-

tive Kalman filter extends the basic tracking to provide

robustness to occlusions and noise. The linear time com-

plexity of this method is reflected in computational effi-

ciency and high processing rate. Comparisons with two

recent trackers show superior tracking robustness at more

than 5 times faster operation, all using naı̈ve C/C??

implementation and built-in OpenCV functions.

1 Introduction

Visual tracking is used today in numerous applications

such as surveillance, video communication, military mis-

sions, games, augmented reality and more. To be suc-

cessful and practical, tracking algorithms need to satisfy

two basic, though sometimes conflicting qualities: robust-

ness and speed. Robustness implies the ability of the

algorithm to track objects under various transformations of

the visual signal, and in particular under changes of shape

and appearance of the tracked object, due to factors such as

illumination variations, occlusions, clutter, distractions,

etc. The speed, on the other hand, relates to the number of

frames per second (fps) that can be processed on a given

computational resource. Typically, the robustness of a

tracker is inversely related to the practical speed by which

it can operate. Nowadays, common video cameras capable

of capturing video at 60 fps produce a ramp up in

requirements for computationally cheap trackers, while

special equipment and specific applications (in sport or

military) may demand trackers with even faster operation

capability. Once computational resources are limited (as is

often the case in camera clusters, mobile devices, embed-

ded systems, or on board robotics systems) tracking per-

formance may decrease severely, enough to prevent

practical use or to critically limit the remaining resources

needed for higher level tasks. When put in isolation,

tracking methods must, therefore, exhibit ‘‘above real

time’’ performance without compromising robustness. In

this paper, we introduce such a method, which significantly

improves the robustness/speed trade-off.

Tracking is certainly one of the most popular methods in

computer vision [43], which motivated quantitative studies

and complexity analysis of various classes of methods [32].

The operation of visual tracking can be thought of as the
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recurrent detection of a predefined target in a sequence of

images. In general, such target detection methods can be

divided into geometric or direct methods. Geometric

approaches require the extraction of a set of geometric

primitives (e.g., points, contours, corners, etc.) from the

two consecutive frames [17, 39]. Matching between frames

is then obtained by classification. The computational

complexity involved in both, the feature extraction and the

classification phase, results in tracking speeds that rarely

exceeds 30 fps [10, 20, 39]. Unlike geometric approaches,

direct methods [14, 18, 19, 33, 34, 31, 41] exploit pixel

intensities/colour without having to extract and match

geometric features. Direct methods either depend only on

colour histograms [1, 4, 38], disregarding the structural

arrangement of pixels, or on appearance models, which

ignore the statistical properties. There are several short-

comings for these representations. On the one hand, pop-

ulating higher dimensional histograms by a small number

of pixels results in incomplete representation. On the other

hand, appearance models are sensitive to geometric and

photometric transformations. Attempts to cope with this

weakness of appearance models have driven the template

update approach that has raised in turn the well-known

drifting problem [26]. Many techniques thus avoid tem-

plate update and deal with appearance variations via more

sophisticated template matching such as advanced histo-

gram modelling [4] or learning and classification [5].

Often, direct methods provide better robustness/speed

trade-off presenting higher frame rates, e.g., [41] reaching

50–100 fps, on small frame sizes (typically up to VGA).

One of the powerful constraints for rejecting false pos-

itives during tracking is target kinematics. Tracking

methods commonly incorporate kinematic priors implicitly

using model-based estimators such as Kalman and Particle

filters. One such prior relies on certain assumptions of the

target’s kinematic properties. For example, Matei et al.

[25] recently used kinematic features with appearance cues

to train classifiers and increase the discrimination between

vehicles in their tracking scenarios. In this paper, we use a

direct combination of appearance and kinematic priors. Our

kinematic constraint is based on the soft assumption that

target velocity is locally constant between consecutive

frames. More specifically, we suggest a new measure of

similarity based on normalized cross correlation (NCC)

endowed with a penalty according to the deviation from the

predicted target path (which is updated at each frame). The

resultant similarity measure, integrated with a Kalman fil-

ter, yields a smoother cost function, tolerant to noise and

appearance changes in a computationally efficient way.

In years, tracker’s capabilities have been enhanced with

model-based estimators to cope with noise, clutter, dis-

tractions and occlusions. The two main strategies have

been Particle filters [13, 27, 38] and Kalman filters [17, 19,

24, 41]. Particle filters (PF) can estimate the state function

directly from data without any prior assumptions about the

associated noise distribution. One main drawback of PF

methods, however, is the curse of dimensionality [16].

Solutions can become more accurate by increasing the

number of particles but at the expense of extensive grow in

the computational workload. While parallel processors and

massively parallel devices such as GPUs can speed up the

number crunching, the considerably higher computation

effort will elevate power consumption, a crucial outcome

in many applications including mobile devices.

A classical alternative to PF is the Kalman filter [12,

40]. The linear Kalman estimator provides an optimal

solution (in least squares sense) when the state model and

measurements are deviated from their true values by

unbiased, uncorrelated, additive, Gaussian noise [12].

Although these optimal conditions are rarely satisfied in

visual tracking, the Kalman filter (KF) provides a compu-

tationally efficient and robust solution, as demonstrated in

many studies, e.g., [9, 11, 17, 19, 37].

In order to adjust the tracker to extreme changes in

target appearance, the Kalman Filter covariance matrices

are often varied during the course of track yielding what is

known as Adaptive Kalman Filter (AKF) [14, 19, 34, 41,

42]. Different studies suggest various updating functions

and arguments for the adaptive control. For instance, Fal-

vio et al. [19] endowed their KF with a SSD measure

applied on grey levels. In Weng et al. [41] the status of the

KF was changed by threshold over the amount of motion in

the scene, therefore working under the restrictive

assumption of a static camera scenario, allowing only for a

limited moving targets in the scene. Similarly, in [34] the

AKF is controlled by acceleration, introducing a noise-

sensitive argument and an ambiguity for targets having

constant velocity. While most previous works in visual

tracking concentrate on the argument of the adaptive

control, the important characteristics of the control func-

tion was overlooked. For instance, in [14, 19, 41] the status

of the KF was controlled by a binary function assigning the

AKF two discrete values, visible and occluded states.

In this work we use a mapping of the appearance similarity

score to adaptively update the noise covariance matrices

and continuously change the status of the tracker between

visible and occluded stages. This approach is motivated by

the reasoning that occlusions strongly affect the appearance

and are generated gradually. Our approach can be related to

the recently published study in [14] where the noise

covariance matrix was controlled by a kernel response.

However, the occlusion in this recent study was handled

separately from the KF, using, again, a binary function.

Performance assessment shows tracking success and

computational speeds on various test cases. The test bed

includes public data processed by state-of-the-art tracking
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approaches, e.g., [6, 7, 23]. The capability of the suggested

tracker is further demonstrated under notorious tracking

conditions such as specularities, change in viewing angle,

occlusion and noise.

To summarize this introduction, our contribution boils

down to a new visual tracking method that significantly

improves the robustness/speed tradeoff. We first suggest a

new measure for target-template similarity that endows

appearance metric with motion as prior. Proper normali-

zation maps these disparate measures to identical range,

allowing robustness to appearance and motion variations

under fixed setting. This somewhat non-standard integra-

tion of appearance and kinematics proves to significantly

enhance tracking performance in a computationally

efficient manner. Additionally, we introduce a continu-

ously-controlled adaptive Kalman filter that yields greater

tolerance to noise, occlusions and appearance changes. The

resultant method yields an effective tracker to run in excess

of 150 fps on a single core and standard implementation,

more than five times as fast as existing tracking methods

that still struggle to achieve above real time performance.

The rest of this paper is organized as follows: Sect. 2

presents our robust dissimilarity measure for appearance

correlation endowed with a motion prior. Section 3 then

discusses our novel adaptive Kalman filter while compu-

tational complexity is addressed in Sect. 4. This is followed

by experimental evaluation, performance assessment and

run-time comparison in Sect. 5. Finally the paper is con-

cluded with a summary and discussion in Sect. 6.

As a notational convention, we denote scalar and vector

quantities, respectively, by regular and bold face lower

case letters. Matrices are denoted by regular upper case

letters.

2 Object dissimilarity measure

In the template matching, a.k.a the sliding window

approach, the position of an object is found by minimizing

a dissimilarity measure between the appearance of an

image patch and a predetermined reference template. To

make the tracking algorithm robust to false detection and

reduce the computational load, we consider a region of

interest X at each frame, being K times the template size,

and search for the best matching criteria at this restricted

region. It is important to note that the search window is

forwarded at each frame to lower the chance for losing the

target by departing from the search window.

2.1 Appearance correlation

As the appearance dissimilarity measure we start with the

normalized cross correlation (NCC), which is invariant to

affine photometric transformations of the appearance pat-

tern and acknowledged for its tolerance for varying illu-

mination conditions and noise [21].

Let c(x, y) denote the NCC measure of a multi-channel

(e.g., R,G,B) template in a search window. By definition,

-1 B c B 1 and hence bounded. Since zero and negative

correlations indicate poor matches (i.e., a non-target sub-

image), we rectify NCC negative values and apply an

algebraic manipulation to produce a revised measure that

exhibits smaller values to higher match measures:

crðx; yÞ ¼
1� cðx; yÞ cðx; yÞ� 0

1 Otherwise:

�
ð1Þ

This template matching process can be considered now

as the data fidelity part of an energy minimization, which

we later endow with a prior. Although at the first glance the

rectification of the NCC may seem unnecessary, this action

affects the relative weight between the data-fidelity term

and the prior and yields robustness (invariancy) of this

relative weight to the input (see also Sect. 2.2). The idea of

rectification (a.k.a truncation) for the matching measure

has been previously used in other domains [35].

Image colour is typically considered in terms of the

three RGB components. However, the RGB space is far

from being photometric invariant [22]. Indeed, a slight

change in the colour (in terms of human perception) often

yields a significant shift in RGB space. There are colour

spaces that offer (nearly) invariancy to photometric varia-

tions (e.g, [29, 41]). One such colour space is the HSV

(Hue-Saturation-Value) colour space typically described as

a conical volume and shown to be more resistant to lighting

changes since its three components are nearly uncoupled.

Both hue and saturation are robust to shadows and shading

while the hue is also invariant to specularities [29]. We,

therefore, transform the RGB colour components of the

captured colour frame to HSV space, prior to correlation

stage. Since the HSV space combines coordinates of dif-

ferent nature, and in particular, its H dimension is angular

rather than longitudinal, we represent the HSV space in the

Cartesian coordinates via projection.

2.2 Joint kinematic and appearance matching measure

Employing the above variations on standard tracking

building blocks is far from solving all tracking confounds

that one is likely to encounter, in typical video sequences.

Often tracking fails due to distractions, namely the exis-

tence of target-like image patches that enter the search

window and possess better appearance match with the

reference template than the real target patch. This possi-

bility becomes more likely as the target appearance is

drifted away in time and departs from the reference tem-

plate. To handle these so-called ‘‘distracters’’, causing a
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false-positive result, one must therefore, compensate the

matching procedure with other means. This section intro-

duces a new matching criteria utilizing our knowledge on

the objects motion pattern to be incorporated directly into

the matching measure.

Obviously, what differentiates the true target from a

distracter in any particular frame is its spatial coherence

with location in the previous frame. Assuming the target

was detected correctly in the past frames, one can exploit

this information, and the tendency of velocities to be

smooth, in the target similarity measure. As illustrated in

Fig. 1, let p(k - 1) and p(k) denote the instantaneous tar-

get position at two consecutive time steps (or frames) k - 1

and k, respectively. Moreover, let v(k) denote the measured

(or observed) velocity of a candidate pattern at time k while

v P(k) is its predicted velocity.1

Given these quantities, one can, therefore, define an

‘‘acceleration vector’’ that represents the deviation of the

target from the predicted pattern:

aðkÞ :¼ vðkÞ � vPðkÞð Þ=Dt: ð2Þ

with Dt ¼ 1 as the interval time unit between frames.

We assume a smooth object path with low accelerations

with respect to the frame rate. Hence, object positions

deviating from a constant velocity pattern (see Fig. 1) are

associated with lower probability for target location. We

modify the appearance-based NCC measure from Eq. 1

with this velocity coherence assumption. The new target

detection model then becomes

ðxT ; yTÞ ¼ argmin
ðx;yÞ2X

crðx; yÞ þ b
kaðkÞk
amax

� �
ð3Þ

where b is a relative weight between the appearance score

cr(x, y) and the motion prior while amax is a normalization

factor that reflects the maximum observable acceleration

(see Fig. 1).

In practice when the search window is advanced

according to the prediction model (see the dashed rectangle

in Fig. 1, the acceleration term a(k) can be calculated

directly by the distance of the patch from the centre of the

window. Setting amax according to window size entails

0� kaðkÞk
amax

� 1: In practice amax can be determined as a

factor of the target size. Hence, the motion prior term

possesses a constant dynamic range identical to the

appearance term, making the choice of the weight b
insensitive to the track conditions. Indeed, in our experi-

ments we have set it once for all of our test cases. Finally,

the minimization of the energy function in Eq. 3 can be

done in a brute force manner due to the small size of the

search window.

Figure 2 demonstrates the effect of our combined

appearance-motion dissimilarity measure in handling

template-like distractions where a tracker without motion

prior fails.

3 A novel adaptive Kalman filtering for visual tracking

During the course of track the object is expected to obtain

appearance changes and can even be occluded for a period

of time. The challenge for a robust tracker is to predict the

target position reliably, during the occlusion period and

recapture the target when it appears again. To this end, we

embed the aforementioned energy minimization model into

a novel Adaptive Kalman Filter (AKF) [12].

3.1 Kalman filter fundamentals

The Kalman filter mathematical model is described in

terms of state-space variables [42]. Suppose: the vector x

2 R
m describes the state of our system, z 2 R

l; l�m is the

measurement, given by our object dissimilarity measure

and w, v are two random variables representing the process

and measurement noise, respectively, or equivalently the

discrepancies from the true values. The Kalman filter

comprises of two stages, prediction and correction. The

prediction is responsible for projecting forward the current

state, obtaining a-priori estimate of the state while the

correction step incorporates an actual measurement

(observation) into the a-priori estimate to yield an

improved a-posteriori evaluation. Assuming a linear model

the state is predicted by the transition matrix A:

xk ¼ Axk�1 þ wk ð4Þ

The measurement z modelled by a linear operator with

additive noise is given by:

zk ¼ Hxk þ vk ð5Þ

Fig. 1 A vector diagram presenting the kinematics of target predic-

tion against measured (observed) values. Note that a(k) indicates

deviation from instantaneous constant velocity pattern

1 Predictions such as vP(k) is part of our modified Kalman filtering

approach discussed in Sect. 3 and at this point assume it is provided

by an external oracle.
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where H is called the measurement matrix. Let us refer to

the prediction and measurement noise covariance matrices

Q and R, respectively, as the uncertainties in these two

processes. Commonly Q, R are assumed to be constant.

However, in an adaptive Kalman filter these terms are

controlled and varied in time [30].

The Kalman filter estimates the state x at time k and

corrects the prediction after each step of measurement by

the following recursive stages [12, 40]:

Time update (prediction)

x̂k ¼ Axk�1 ð6Þ

P̂k ¼ APk�1A
T þ Qk ð7Þ

Measurement update (correction):

Kk ¼ P̂kH
T HP̂kH

T þ Rk

� ��1 ð8Þ

xk ¼ x̂k þ Kk zk � Hx̂kð Þ ð9Þ

Pk ¼ I � KkHð ÞP̂k ð10Þ

where Kk is the Kalman gain, Pk is the state error

covariance matrix and the values indicated with hat are

a-priori estimates. The difference zk � Hx̂kð Þ in Eq. 9 is

called measurement innovation or the residual, indicating

the discrepancy between the actual measurement and

estimates, calculated by prediction. The prediction-

correction steps are repeated recursively in time till

convergence.2 The gain Kk is a key parameter in Kalman

filtering and presents the relative weight between the

prediction and residual at each time step.

Assuming the statistical independence of the error (noise)

associated with the state variables yields diagonal covari-

ance matrices. Considering a unit time step (without loss of

generality) allows us to have a single value diagonal entry for

each covariance matrix, rp
2, rm

2 for Q, R, respectively,

presenting the variance of the error distribution in terms of

squared pixels. As observed in Eq. 8, when themeasurement

uncertainty rm
2 goes to zero, the gain Kk increases and

weights the residual in Eq. 9 more heavily. Specifically:

lim
r2m!0

Kk ¼ H�1 , lim
r2m!0

xk ¼ zk: ð11Þ

i.e., the state vector converges to the measurement. On the

other hand, increase in the measurement uncertainty is

reflected by the growth of Rk yielding

lim
r2m!1

Kk ¼ ½0� , lim
r2m!1

xk ¼ x̂k: ð12Þ

while the left equation indicates convergence of Kk to Null

matrix. The prediction is now highly trusted (in comparison

to the measurement) resulting the convergence of the state

vector to the predicted estimates (i.e. Pk ¼ P̂k in Eq. 10).

3.2 The Adaptive Kalman filter model

Let us define our state-space vector by xk ¼ pk pk�1 vk½ �T :
We include the lagged position vector in the state-space, to

allow for recursive update of the target velocity. Considering

a unit time step, yields the velocity prediction as the dis-

placement between the last two positions of the target

(divided by unit time interval). The following prediction and

measurement model are, therefore, formed (see Eqs. 4, 5):

xk ¼
1 0 1

1 0 0

0 0 1

2
64

3
75xk�1 þ wk;

zk ¼
1 0 0

0 1 0

1 �1 0

2
64

3
75xk þ vk

ð13Þ

Note the notation abuse in Eq. 13 for compact represen-

tation. The transition and measurement matrices are prac-

tically 6 9 6. This relation expresses a constant velocity

model between each two consecutive frames.

Fig. 2 Handling distractions by motion prior. a Demonstration of

tracking failure due to a distracter, appearing in the search window.

While tracking was supposed to follow the tip of the pen, a specular

highlight made the real target less similar to the initial template,

distorted by a peripheral target-like pattern. Tracking location is

marked with a circled plus sign. b Successful tracking is obtained

once motion prior is incorporated. c A colour-coded similarity map

based on appearance. Note the global minimum at a false location,

corresponding to a. d The new similarity map with the motion prior

incorporated resulting a minimum correctly positioned at the real

target, as indicated in b

2 The interested reader is referred to [40] for more details on Kalman

filter model.
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Variation in the motion and appearance of the target

affects the prediction and measurement reliability.

Between the two extreme cases of perfect appearance

match and occlusion lies a continuous domain (e.g. partial

occlusion) where the decrease of confidence in the mea-

surement should be compensated by prediction. We adjust

our Kalman filter adaptively by controlling rm
2 in time,

while keeping the prediction covariance rp
2 constant. Since

the appearance is a strong feature for visibility of the

target, we use the appearance dissimilarity metric cr as a

confidence measure for control of the Kalman filter. An

admissible function for the controller rm
2 (cr) must fulfill the

following set of conditions:

r2m : cr 2 ½0; 1� ! R
þ ð14Þ

lim
cr!0

r2m ¼ 0 ð15Þ

lim
cr!1

r2m ¼ 1 ð16Þ

r2mðxÞ� r2mðyÞ; 8x[ y ð17Þ

r2m 2 C0½0; 1� ð18Þ

The first term in Eq. 14 assures non-negativity for the

uncertainty measure rm
2 . The second and third requirements

specified in Eqs. 15–16 comply with Eqs. 11–12 implying

that low dissimilarity in the appearance (cr ! 0) yields

state estimations based mainly on the measurement while

for high dissimilarity scores (cr ! 1), the tracking is

dominated by prediction. The next constraint in Eq. 17

requires the control function to be monotonically

increasing, since loss of confidence in the appearance

match should be compensated by higher uncertainty in the

measurement and vice versa. The last condition in Eq. 18

demands for continuity, since between the stage of

appearance and full occlusion lies a continuous domain,

where, for instance partial occlusion can be characterized

by an intermediate confidence measure. Note that

previously used binary functions [14, 19, 41] do not obey

this condition, often resulting in unstable controllers (as

will be demonstrated in the experimental tests).

Obviously the stated constraints still allow for a large

space of admissible functions. Setting of additional con-

straints depends on definition of the optimal control func-

tion and is application-dependent. Here we approach this

problem empirically and suggest the following function

satisfying the stated requirements (14–18):

r2m ¼

0\k1 � 1 0� cr � c1
linear c1\cr � c2
exponential c2\cr � c3
k2 � 1 cr [ c3

8>><
>>:

ð19Þ

where k1, k2 and c1, c2, c3 are constants. The suggested

function, depicted in Fig. 3 consists of four domains.

According to Eq. 19, low dissimilarity values 0 B cr B c1,
are associated with decreased uncertainty in the measure-

ment, while at high dissimilarity region c3\ cr\ 1, the

controller commands a high value (a practical bound) for

measurement uncertainty. Note that the two constant

branches determined by k1, k2 are set to avoid numerical

instability. As for the central region one may choose an

exponential function (i.e. linear in logarithmic scale).

Although such function showed high performance in our

tests it was found that a small linear region near cr & c1
attenuates the rapid exponential change and yields more

robust results. To present the practical advantage of the

above approach, we use a constant set of parameters

showing the robustness of this setting to various scenarios.

4 Computational complexity

Considering M as the size of the ROI search window, the

complexities involved with each stage (per-frame) are

1. Template matching.

2. Rectification of NCC.

3. Calculation of the motion prior.

4. Determination of the measurement uncertainty.

5. The Kalman Filter computation.

Steps 1–4 are carried out at OðMÞ operations while step 5

requires number of operations proportional to the size of

the state vector (6 in this work) and therefore is Oð1Þ in

complexity. The computational complexity of our method

is dominated by step 1, namely template matching. Pixel-

by-pixel template matching can be very time-consuming.

For a template of size N in a search window of size M the

computational complexity is OðMNÞ: However, this can be

reduced to OðMÞ via efficient algorithms and, therefore,

become invariant to the template size [36]. Since our

search window is linearly related to the template size, the

total complexity per frame is, therefore, OðNÞ; i.e. linear in
the number of pixels in the template. Experimental results

Fig. 3 Variation of the measurement covariance as the function of

appearance (dissimilarity) measure. Note that the plot is semi-

logarithmic
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show that the constant associated with this linear order is

low enough to provide a high frame rate performance that

significantly outperforms present trackers.

5 Experimental results

In this section we assess the performance of our tracker on

challenging image sequences in different environments and

applications. The test set includes real sequences from

public data as well as out-of-the-lab video clips captured by

a off-the-shelf webcam. Our lab video clips introduce

tracking hazards such as specular highlights, global colour

transformations and narrow occlusions.

To gauge absolute performance, the tracking results are

also compared with those produced by popular trackers—a

colour based mean-shift approach [15], a window-match-

ing technique with Kalman filtering [19] and an advanced

histogram-based approach [4]. Furthermore, the validity of

two main contributions in this paper, i.e the motion prior

and the continuous appearance-based KF, are

demonstrated.

The test sets chosen for our evaluation were selected for

their challenging characteristics, among which are

1. Illumination variation and specular highlights that

entail significant appearance changes.

2. Presence of similar nearby objects (namely

distractions).

3. Geometric transformations (including high scale

variations).

4. Partial, full or narrow occlusions.

5. Severe noise.

6. Single- and Multi-Object tracking.

Parameter setting: In general, we use a fixed parameter

setting with a single user parameter, including the ratio

between the template size and search window. Note that in

Multi-object tracking we use the same ratio for all the

targets. Variation of this value in a small range of [2, 4]

was found to be sufficient to fit the parameter setting to all

of our tested scenarios. However, in cases without occlu-

sions, execution with constant covariance matrices can

yield improved results. This allows a higher tolerance to

appearance changes, a property of one of our test cases (see

in Sect. 5.3). Otherwise, in such case, high manoeuvres

involved with extended appearance change may cause

track loss since changes in appearance result in higher

measurement covariance, which further leads to increased

prediction weights in the KF correction equation.

The parameters in our test bed were assigned the fol-

lowing values: b = 0.75 (Eq. 3), k1 = 10-3, k2 = 105,

c1 = 0.2, c2 = 0.3, c3 = 0.7 (Eq. 19) and the prediction

uncertainty measure was set to rp
2 = 2. This parameter

setting mostly related to our adaptive KF function were

obtained by first choosing an anchor point such as cr = 0.3

and fixing its mapped value to rm
2 = 4, according to a

reasonable ratio of rm
2 /rp

2 = 2. From this point one can

follow the narrative explained in Sect. 3 to reach the

aforementioned parameter values.

5.1 Single object tracking

In this section we present the results for scenarios where a

single object is tracked. The results for our first four

experiments are presented in Fig. 4, showing three repre-

sentative snapshots of the sequence along with the corre-

sponding plots of the control function rm, as evaluated by

our method. The first (top) test case in Fig. 4 is a 200-frame

sequence captured by a common 480 9 640 pixel web-

cam. This sequence exhibits significant variations in target

appearance. Note, for example, the effect of highlights in

the target’s image shown in the second snapshot and global

colour variations in the frames, caused by the camera

imperfections. This scenario additionally demonstrates a

case with presence of a distraction (i.e., target-like

regions). Despite these confounds, tracking is successful.

Note how the tracking without motion prior fails on the

very same sequence.

Our second case (in the second row of the figure) is a

typical human tracking scenario from the public PETS data

base.3 The target is successfully tracked along a dynamic

scene and is not lost despite its occlusion behind the green

sign.

The third, semi synthetic, test case in Fig. 4 presents a

scenario with repetitive occlusion a.k.a narrow occlusion.

Here a toy car accelerates and decelerates behind a syn-

thetic fence. Again, the target is successfully tracked along

the entire sequence overcoming this periodic (partial)

occlusion, varying velocities and motion blur (as observed

in the target instantaneous appearance at the top right

corner).

In the next experiment we examine our method on the

Distracted Pen sequence while contaminated with severe

noise (with Gaussian distribution). The results show that

despite this high level of noise the object is tracked suc-

cessfully. For full video clip results we refer the reader to

the project page at [3]. The last column in Fig. 4 shows the

control function (measurement covariance) and the

appearance similarity measure. Note the correlation

between the two, corresponding to events in the sequence,

e.g., occlusion, abrupt appearance changes, etc.

Next, in Fig. 5, we present the results of our method on

three longer sequences (230–1,500 frames long), all

involving tracking a ground vehicle, either from stationary

3 Publicly available at http://www.cvg.rdg.ac.uk/PETS2009/a.html.
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or airborne controlled cameras. The first video is from the

Next Generation Simulation (NGSIM) Peachtree street.4

In this case the target is just 24 9 16 pixels in size and it

undergoes occlusion, deceleration to full stop and initiating

motion again.

The second video is extracted from YouTube named

Dallas Police Chase5 to describe an aerial car chase,

where the target is in low contrast and passes through

multiple long occlusions. One can observe the smooth

transitions between visible and occlusion domains in the

video result [3].

Finally, the third successfully tracked target is embed-

ded in a 1,500 frames (352 9 240) long video of the

DARPA Vehicle captured by a camera from an aerial

carrier6 (third row in Fig 5). Here, significant changes in

velocity, scale (up to factor 5), and view angle are

observed. The zooming effect introduces a rapid change in

the target appearance noticeable in Fig. 5.

Fig. 4 Single object tracking. The inset in the left column shows the

first frame with the enlarged target appearance superimposed on the

top right corner. The second and third columns show an intermediate

and the last frame. Note the correct target labelling despite various

confounds. The last column presents the plot of log-uncertainty and

the appearance dissimilarity measure. Note their correlation and the

dynamic ranges. The occlusion responses are clearly seen in the plots.

First row: Distracted Pen - Indoor scenario captured by a standard

web cam. Frames #1,105, 200 are shown. Note the high appearance

variations due to specular highlight, and global colour variations.

Second row: Crowd from the public data base PETS 2009. Frames

#445, 479, 513 are shown. Note the pose change and occlusion. Third

row: Narrow Occl: A semi-synthetic test of a narrow occlusion

scenario. Frames #1, 28, 50 are shown. Note the periodic partial

occlusion, motion blur and accelerated motion validated by the

yellow circles plotted at a constant time interval. Fourth row: Test

under severe noise: contaminated with i.i.d Gaussian noise of zero

mean and 25 intensity level STD. The resulting clips are available at

[3]

4 Used to be at http://ngsim.fhwa.dot.gov.
5 Available at http://www.youtube.com/watch?v=omI094GcZcw

&feature=related.

6 Used to be at http://www.vividevaluation.ri.cmu.edu/datasets/

datasets.html.
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5.2 Quantitative performance

In this section we compare our approach to three other

methods. Our metric is the fraction of the video sequence

in which the target was tracked successfully, i.e., the ratio

of the number of successfully tracked frames to the total

number of frames. Tracking is considered to be lost at a

point where a drift is observed and the evaluated target

location missed the true position by a distance of at least

one template size. Using this criterion, we quantitatively

compare our method by the sequences presented in Figs. 4

and 5. In particular, the tracking results were compared

with a colour mean shift tracker7 in [15] (without occlusion

handling capability), FragTrack8 that uses an advanced

histogram-based matching with image fragments [4] and

the Kalman filter-based method of [19]. The FragTrack

considers grey level sequences and has been shown to be

very efficient in [4, 5]. Partial occlusions are handled here

by patch-based matching.

The comparison is further elaborated by two variants of

our approach, one with disabled motion prior and another

where the continuous adaptive KF is replaced with a binary

controller. The results of this performance assessment are

summarized in Table 1. For fair comparison the Mean-

Shift comparison is conducted on the non-occluding

sequences. However, the FragTrack approach [4] proposes

a partial occlusion capability and, therefore, participates

also in the Narrow occlusion comparison. Note that the

approach in [19] is an occlusion handling method as well as

the variants of our proposed method.

As can be seen, the proposed tracker exhibits the best

results with flawless tracking record in all the test

sequences while failures are observed in the compared

trackers. Considering just the non-occluding scenarios, the

mean-shift tracker still exhibits poor performance in all test

cases due to intolerance to dynamic appearances and noise.

Although Flavio et al. [19] make use of Kalman filter,

it still obtains inferior performance due to poor robustness

of the SSD similarity measure used for appearance

matching, and lack of a prior to regularize the energy

space. The binary adaptive control in [19] further yields

track losses, particularly under occlusions. The FragTrack

[4] shows improved results with respect to aforementioned

Fig. 5 Single object tracking. Second test set including car tracking

scenarios involving a long sequence, background clutter, accelerating

targets and long occlusions. Inset in the first (left) frame shows the

reference model (top right corner). Other columns depict intermediate

and the last frame along with the instantaneous target instance at the

top right. First row: NGSIM sequence, 230 frames long. Frames

#1,12,25,230 are shown. The superimposed curve in the last frame

shows the tracked path (circles plotted at 5 frame intervals). Second

row: Dallas Police Chase, aerial sequence. 298 frames long,

acquired from YouTube. Frames #1, 266, 279, 298 are shown. Note

the long occlusions and low target contrast. Third row:

DARPA Vehicle, aerial sequence, 1,500 frames long. Frames #1,

500, 1,300, 1,500 are shown. Note the drastic changes in scale and

viewing angles

7 Code used to be at http://www.cs.bilkent.edu.tr/ismaila/MUSCLE/

MSTracker.htm.
8 Code available at http://www.cs.technion.ac.il/*amita/fragtrack/

fragtrack.htm.
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methods. However, while this tracker well succeeds in

human surveillance and copes with appearance changes

(e.g., in DARPA data set), it tends to fail in other scenarios.

Failures of this tracker are caused due to comparably small

size of the target, lacking sufficient statistics, overlook of

colour information and sensitivity to noise (see Noised

Dist. Pen example in Table 1).

Our partial method with binary KF control fully suc-

ceeds in 3 out of 7 scenarios, with failures predominantly

occurring in the NGSIM and the DARPA sequences.

Removing the motion prior component from our method

(but keeping the KF) yields failures in 4 sequences. The

results in Table 1 show, therefore, the stabilizing influence

of our motion prior on the KF while coping with chal-

lenging tracking scenarios.

5.3 Multi-object tracking

Whilst the system we describe was intended for single

object tracking. The low computational load involved with

our method can be exploited to track multiple objects

simultaneously. In this section we demonstrate this

capacity and present a quantitative analysis for scenarios

that incorporate several objects interacting and overlapping

in the field of view. Fig. 6 shows sample results for three

publicly available data sets: one from CAVIAR data set9

another from PETS 200910 and a test set called Town

Center11 recently introduced in [7].

Consider first the sequence at the two top rows in

Fig. 6, describing two women walking down a corridor

while a third person passes through, occluding each in

turn. The second sequence runs multiple-object tracking

on the example discussed in Sect. 5.1 from PETS 2009.

In this case the three pedestrians are successfully tracked

through the sequence (as always, tracked templates are

extracted from the first frame and kept constant).

Another scenario deals with human surveillance from a

stationary HD (1,920 9 1,080/25 fps) camera viewing on

a crowded street. In here, we track six individuals

through 300 frames while a bird flying before the camera

imposes a large occlusion. The results in Fig. 6 show the

tracker recovery from the occlusion as well as coping

with the varying view angle and scale, as the labelled

targets pass from far field to near field camera position.

In all cases tracking is sustained, despite occlusion,

proximity of similar targets and high variation in

appearance.

Three additional scenarios serve our quantitative track-

ing assessment. These multiple-object tracking sequences

are shown by representative snapshots in Fig. 7. The first

test from CAVIAR data set demonstrates simultaneous

tracking of 8 individuals along 281 frames. This video

sequence has been used as a benchmark in previous studies,

including those that employ computationally expensive

approaches such as [23]. Our tracker succeeds in tracking 7

out of the 8 targets throughout the entire sequence while

encountering a single identity switch in this test. Despite

the lower computational complexity, this performance is

not inferior to the result reported in [23]. The second case

involves two separate partial sequences, examined in [6],

with 10–13 ping-pong balls entering and exiting the field of

view (FOV). The balls were manually labelled on the

entrance and removed as they exit the FOV. These two

sequences incorporate several close passes and mutual

impacts between the visually similar balls, raising a

tracking challenge, particularly in respect of identity

switches. The results reveal that the suggested tracker

copes reasonably with these confounds (see clips at [3] and

quantitative measures in Table 2), successfully tracking the

balls. Despite the extreme and sudden motions, violating

our KF model the track is sustained (see frame 55 at ping-

pong balls 732-835).

Table 1 Quantitative performance comparison with different trackers determined by the percentage of successfully tracked frames in the

sequence

Sequence Mean-shift Flavio [19] FragTrack [4] Binary control Without prior Our method

Distracted pen 43 18 53 100 55 100

Crowd—PETS 2009 - 47 100 100 100 100

Narrow Occl. - 100 30 100 100 100

NGSIM - 11 - 35 6 100

Dallas police chase - 84 - 94 13 100

DARPA vehicle 20 20 100 66 27 100

Noised dist. pen 15 14 12 68 100 100

Note that among this comparison the indicated Mean-Shift method lacks occlusion handling while FragTrack [4] is capable of handling partial

occlusions. For fair comparison, scenarios where track failure are caused due to lack of capability are assigned by dash

9 Publicly available at http://homepages.inf.ed.ac.uk/rbf/CAVIAR

DATA1/.
10 Publicly available at http://www.cvg.rdg.ac.uk/PETS2009/a.html.
11 Publicly available at http://www.robots.ox.ac.uk/ActiveVision/

Research/Projects/2009bbenfold_headpose/project.html#datasets.
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The last scenario is 783 frames long from YouTube,

presenting a car race as viewed from a stationary camera.

The video captures 27 vehicles successively entering the

frame on top right corner and exiting on the low left. Since

targets has not gone under occlusion, fixed covariance

values (namely non-adaptive KF) was set to maximize

performance. This allows a higher tolerance to appearance

changes as this appears extensively here. Despite the sig-

nificant change in the viewing angles and scale, the tracker

succeeds to follow all the vehicles, except one, along the

course (see movie at [3]). Note that since there is no

template updating in our tracker, the appearance changes in

Fig. 6 Multi object tracking. Top: CAVIAR Enter Exit. Middle: PETS Crowd. Down: Town Center from [7]: Six individuals are tracked

along 300 frames, incorporating a severe occlusion where a bird is blocking the line of sight, see movie and more results at [3]

Fig. 7 Snaphots of the sequences used for MOTA assessment. From left to right: CAVIAR One Stop Move, Pingpong balls (two sequences)

from [6] and Monterey Car Race from YouTube
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the view angle cause the designated patch on some targets

to move on the object. Evidently, the most similar patch, in

terms of our new measure, still designates the target (see

results at [3]). Small targets are more vulnerable to this

effect than larger templates. Indeed, re-execution choosing

small patches for all the targets resulted a 2 % decrease in

the corresponding MOTA measure.

Next, we assess the performance of the suggested

tracker in terms of MOTA (Multiple Object Tracking

Accuracy) measure [8]. This is a combined measure which

takes into account false positives, false negatives and

identity switches (see [8] for details). Table 2 contains the

the corresponding MOTA measures along with the figures

obtained from two comparing methods of Flavio et al. [19]

and a variant of our approach without the motion prior. The

results show the improvement associated with our scheme

as well as the positive impact of the motion prior, partic-

ularly restricting identity switches.

Although not targeted for multi-object tracking since

multi-object interactions are ignored (in opposed to e.g.,

[28]) the obtained MOTA figures demonstrate the high

capability of the suggested approach.

5.4 Runtime

Execution time is an important property of practical

tracking applications and also a motivation for our pro-

posed approach. A key contributor to our high frame rate is

the computational efficiency expressed in the linear com-

plexity (w.r.t the template size). We hereby compare our

runtime with figures reported on several recently published

methods. Prior to detail on the runtime figures the corre-

sponding complexities of these methods are described:

Mean shift: The classic mean shift algorithm is time

intensive, associated with time complexity given byOðTn2Þ

where T is the number of iterations and n is the number of

data points.

Adaptive mean shift [38]: The complexity here is

dominated by the mean shift approach (see above) and

computational complexity of particle filters, scaling expo-

nentially with the number of particles.

Graph cuts [31]: In graph cuts the complexity is typi-

cally Oðn2mÞ with n being the no. of nodes, here pixels,

and m the no. of edges.

Cascade particle filters [23]: The complexity is domi-

nated by the Particle Filters growing exponentially with the

number of particles.

Gaussian approximation [28]: Addresses the problem

of interactions between multiple objects. The complexity is

dominated by calculations running over all pair of inter-

acting objects.

Novel Prob. observation [24]: This method is based on a

probabilistic model. The computational cost is mainly

spent in computing colour histograms on 400 particles,

although this is a linear complexity but with a large

constant.

FragTrack [4]: This method is based on histogram

comparison on several sub-patches of the template. The

histogram distances are based on Earth Mover Distance

(EMD) having a super-cubic complexity.

For the sake of comparison we collect in in Table 3 the

run-time of several state-of-the-art methods with the exe-

cuting platforms, as reported in each manuscript. Note that

the comparison for the mean-shift and FragTrack methods

are computed here on the same platform. The results show

that while the mean-shift obtains the highest frame rate, it

is associated with relatively poor results. The FragTrack,

on the other hand, shows improved tracking results in

expense of higher computational cost, while the proposed

method is shown to be superior than FragTrack in both

accuracy and computational speed.

Although the computation speeds correspond to non-

identical platforms, the devices in Table 3 are mostly

similar. Furthermore, our results on Pentium 1.86 GHz

shows a high frame rate on a device inferior to most of the

others. The results show speed ups of 94 - 945

(excluding the naı̈ve mean-shift approach with highly

inferior performance—cf. Table 1). This observation is

reinforced by the above complexity analysis.

The suggested tracker, therefore, runs in a high frame

rate mainly due to its low complexity (see Sect. 4). Typical

performance averages over 160–180 frames per second for

template size of 20 9 20 pixels and search window of

60 9 60. These template and search window sizes were

Table 2 Examples of MOTA tracking performance for our approach

and two comparing methods of [19] and a variant of ours without the

motion prior

Sequence Flavio

(%)

Without prior

(%)

Our approach

(%)

CAVIAR one stop

move

71.7 82.2 91.5

Ping-pong balls (435-

593)

67.5 91.6 99.1

Ping-pong balls (732-

835)

92.4 92.4 92.4

Monterey car race 85.6 88.9 98.0*

* This result corresponds to constant (non-adaptive) covariance

matrices. Execution with standard adaptive KF yields 90.6 % MOTA

measure
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found to be sufficient for a stable track in all of our test

cases. These frame rates correspond to a naı̈ve C/C??

implementation based on the OpenCV open source library

(Version 1.1) and it excludes image acquisition time and

frame decompression where applicable. Frame rates in

Table 3 relate to plugging OpenCV with IPP, gaining

speed-up of 20 %. Therefore, The suggested tracker highly

scores with respect to robustness-speed performance.

6 Summary and discussion

This paper presents a robust yet fast object tracking method

for colour video sequences. The first novel feature of our

tracker explicitly incorporates the motion with the

appearance, yielding a measure, tolerant to target colour

variations, background clutter, noise and distractions

appearing in the course of track. The kinematic prior yields

a smoother cost function for similarity measure tending to

peak on the target location. This gamut is a key factor in

our method allowing for a small patch of the target to be

distinguishable and successfully tracked with a very low

computational cost.

Our tracker is further endowed with an adaptive Kalman

filter to handle partial and full occlusions and to cope with

noise. The new adaptive KF is controlled by a mapping of

the appearance similarity score considered as a strong

measure for visibility. We analyse the requirements from a

general adaptive KF control function when used for

tracking and infer a set of constraints for the controller.

One important constraint is the continuity of this function

coping successfully with the failure prone to the transition

domain, between visibility and occlusion. Upon these

constraints a control function is suggested that yields

improved results. We further demonstrate the validity of

this conclusion by several tests.

The resultant tracker is demonstrated on various sce-

narios and target types. While the traditional mean-shift

approach is superior in run-time, it exhibits a very low

robustness. When compared with two additional tracking

methods, the suggested approach showed improved results

in stability, attainability as well as computational effi-

ciency. These performances were obtained without being

tailored to any specific application. Experimental tests

from celebrated data sets as well downloaded YouTube

videos show that our method well handles common

tracking confounds such as varying appearance, dynamic

backgrounds, changes in scale and view point, as well as

partial and full occlusions. The robustness of our tracker is

further emphasized by tolerance to severe image noise.

We show that tracking remains successful without the

need for a template updating scheme, even in relatively

long sequences. This can also fit into a paradigm where

template updates are performed on temporally distant

frames to lower the chance for drift. However, this should

not obscure the fact that our tracking performance depends

on the choice of a rather distinguishable template. While

being capable to cope with common tracking confounds,

failure reasons remain as drifting, abrupt appearance

changes or severe accelerations, particularly before the KF

stabilization (i.e. near the entrance to the FOV). These

conclusions reflect our idea that common tracking scenar-

ios contain a limited range of hazards, thus allowing for our

relatively robust and highly efficient method yield satis-

factory results.

A direction for improvement is to consider a dynamic

search window. One can vary the size of the search domain

according to the uncertainly, reflected in the adaptive

measurement covariance. The impact of this enhancement

on the tracking success is yet to be analysed, considering

the fact that larger search window adds to the chance for

false positives.

The linear complexity of the suggested method along

with the allowed small size of the reference template in our

approach creates a high computational efficiency. The

resulting tracker runs, therefore, in excess of 180 frames

per seconds (fps) on a standard CPU. In spite the high-

speed performance on a single core, our method can

Table 3 computation frame rate as reported by the authors of each method

Sequence Image size fps Platform

Adaptive mean-shift [38] 640 9 480 24 Intel Centrino 1.6 GHz laptop, 1GB RAM

Graph cuts [31] 360 9 300 4 Standard PC

Cascade particle filters [23] 320 9 240 30 Intel PentiumD 2.8 GHz

Gaussian approximation [28] 720 9 576 43 Intel PentiumD 3 GHz, 2GB RAM

Novel Prob. observation [24] 320 9 480 30–40 Intel Pentium IV 3.2 GHz, 512MB RAM

Mean-shift [15] 1,000

FragTrack [4] 640 9 480 1 Intel PentiumR 1.86 GHz, 1.5GB RAM

Our approach 165

Our approach 1,920 9 1,080 180 Intel PentiumD 3.4 GHz, 3GB RAM

J Real-Time Image Proc (2016) 11:271–285 283

123



leverage a multi-core or GPU implementation in two sen-

ses:: one speeding up the single object track via distributing

the computation of NCC and the other, in parallel com-

putation of multi-object tracking.

The suggested method is also easy to implement with

common toolboxes (e.g., OpenCV or MATLAB). In prac-

tice, the reported computational speeds were obtained by a

naı̈ve C/C?? implementation, using standard OpenCV

functions.
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