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Abstract

This paper addresses the problem of scene categoriza-

tion while arguing that better and more accurate results can

be obtained by endowing the computational process with

perceptual relations between scene categories. We first de-

scribe a psychophysical paradigm that probes human scene

categorization, extracts perceptual relations between scene

categories, and suggests that these perceptual relations do

not always conform the semantic structure between cate-

gories. We then incorporate the obtained perceptual find-

ings into a computational classification scheme, which takes

inter-class relationships into account to obtain better scene

categorization regardless of the particular descriptors with

which scenes are represented. We present such improved

classification results using several popular descriptors, we

discuss why the contribution of inter-class perceptual rela-

tions is particularly pronounced for under-sampled train-

ing sets, and we argue that this mechanism may explain the

ability of the human visual system to perform well under

similar conditions. Finally, we introduce an online exper-

imental system for obtaining perceptual relations for large

collections of scene categories.

1. Introduction

The ability to categorize visual scenes rapidly and accu-

rately is highly constructive for both biological and machine

vision. Following the seminal demonstrations of the abil-

ity of humans to recognize scenes in a fraction of a second

(e.g., [32, 5]), much research has been devoted to under-

standing its underlying visual process [26, 11, 27, 13, 21,

35, 2, 31, 43], which led to much interest in computational

scene categorization as well. Although substantial progress

has been made [29, 38, 27, 28, 41, 12, 44, 8, 18, 44, 30], the

bulk of this visual process remains an open question, both

behaviorally and computationally.

In our paper we follow previous attempts to define the

(somewhat elusive) notion of “visual scene” to consider it

as a semantically coherent, nameable view of a real-world

environment in which humans can act [16, 27]. The scene

category is defined as the basic-level category for a visual

scene [40] and refers to the most common label used to de-

scribe it.

But what characterizes visual processing underlying this

visual labeling process? In this work we focus on one possi-

ble aspect of this question related to prior knowledge about

the perceptual relations between the different scene cate-

gories. To date, computational algorithms for scene cate-

gorization [29, 38, 27, 28, 41, 12, 44, 8, 18] rarely con-

sider the possible effect of such perceptual relations. How-

ever, even intuitively, when our visual system observes a

bedroom scene for a fraction of a second and “deliberates”

how to categorize it, what possibly comes to mind in addi-

tion to “bedroom” are perhaps classes like “living room” or

“kitchen”. It appears as if our visual system does not even

consider possibilities such as “coast” or “highway”, or more

generally, scenes which are perceptually “distant” from the

observable reference class. Put differently, prior knowledge

about the perceptual relations between the different cate-

gories of scenes may help facilitate better, more efficient,

and faster categorization. As we argue later, knowledge of

such relationships could partly explain the fact that humans

are often able to learn and process scene categories from

very few training examples while computational models

usually need at least tens of training examples per-category

before achieving reasonable categorization performance.

Exploring relations between categories is not new and

has been previously explored in the context of object cat-

egorization in different forms. Several methods have been

developed for building image hierarchy based on image fea-

tures [15, 3, 1, 33, 34]. Griffin and Perona [15], for example,

build a tree-like hierarchy of category relations by recur-

sively splitting the set categories into two minimally con-

fused subsets based on the confusion matrix that arise from

the classier output. While the obtained relations seems to

speed-up classification at a small cost of categorization per-

formance, by construction they depend on the classifier and

the selected features. Other methods proposed to incorpo-

rate both semantic and image features information in or-



der to build image hierarchies [19] or to transfer knowledge

from large sample categories to under-sampled categories

by sharing parts or features across categories [4, 10]. The

use of semantic relations between categories was pushed

even further by exploiting WordNet [23] as a semantic sub-

strate for object recognition [22, 37, 14, 9]

Still, semantic relations between categories do not nec-

essarily agree with their perceptual relationship. For exam-

ple, concepts such as “snowy mountains” and “skiing ac-

tivity” are far from each other semantically (e.g., see the

Wordnet hierarchy [23]), while perceptually they are very

much related. This observation is particularly salient in the

context of visual scenes. For example, as we later show in

Sec. 2, even our small experimental setup reveals that the

“highway” category is perceptually closer to “coast” than

to “kitchen”, although semantically the opposite holds [23].

Acknowledging that perceptual relations between visual

scene categories may have a central role in the categoriza-

tion process, in this work we propose to infer these relations

directly from human observers and then incorporate them in

the computational model in a way which is independent of

the choice of descriptors and classifier. In particular, our

contributions and course of action is summarized as fol-

lows:

• We introduce an experimental paradigm for obtaining

perceptual data about scene categorization (Sec. 2).

• We leverage the obtained insights to define perceptual

relations between scene categories (Sec. 2.2).

• We extend a known non-parametric classifier

(NBNN [7]) to a new algorithm that exploits inter-

class relations (Sec. 3.2). We stress that similar

extensions could be applied to other classifiers too.

• We combine our obtained perceptual relations be-

tween scene categories and our proposed classifier into

a computational scene categorization framework that

leads to significant improvements in scene categoriza-

tion performance, especially when the number of train-

ing scenes in each category is small (Sec. 4).

• As a critical step toward the extension of our ideas, we

introduce an online experimental system to establish

perceptual relationships for large collections of scene

categories (e.g., [44]) via participants from all over the

world (Sec. 5).

2. Perceptual Relations Between Scene Cate-

gories

How could perceptual relations between scene categories

be measured in a robust and unbiased fashion? Since, to

our best knowledge, current models and empirical data do

not address this issue, we propose a category discrimination

paradigm where we briefly present two natural scene stimuli

simultaneously and ask human observers whether they be-

long to the same scene category or not (i.e., same/different

forced choice task). Doing so serves several goals: first,

as we explain later, the results of such experiment could

give us an empirical evaluation for the perceptual “dis-

tance” between scene categories. Second, by switching

from description-based tasks (where subjects provide free

form descriptions [11, 27]) or detection-based tasks (where

subjects are required to confirm the observation of a given

category [26, 25, 20, 21]), we remove any subjective bias

both in subjects’ response and in the interpretation of the

data. Hence, we argue that a discrimination task is far more

robust and reliable in terms of the results it can provide.

2.1. Experimental Setup and Dataset

The experiment was carried out in a dark room espe-

cially designed for psychophysics experiments, with 79 mo-

tivated undergraduate students having normal or corrected-

to-normal vision. The dataset for the experiment consisted

of 8 scene categories: coast, forest, mountain, highway, tall-

buildings, street, kitchen and bedroom. The selection of

categories was strongly influenced by various earlier stud-

ies [40, 11, 20], and consisted a range of categories as wide

as 8 classes permits (e.g., natural scenes, manmade scenes,

indoor scenes, and outdoor scenes). Scene images were bor-

rowed from the corresponding categories of two published

datasets [27, 12] and adapted in size to 256× 256 pixels.

Fig. 1 depicts the sequence of events in an experimental

trial. Each trial began with the simultaneous presentation

of two images from our dataset for one of 6 different pre-

sentation times (PTs): 27, 40, 53, 80, 107, 1000 ms (all

durations are multiplies of a 75Hz refresh cycle of a com-

puter monitor and were selected randomly with equal prob-

ability). PTs were chosen to span a wide range, from very

short up to a duration sufficient to allow elaborate percep-

tual description [11, 32, 6]. The longest PT was introduced

as control for how well scene categories were defined se-

mantically (since at 1000ms, categorization errors are un-

likely attributed to perceptual confusion).

50% of the trials constituted a pair of images from the

same category while the other 50% used images from dif-

ferent categories. Chance level performance was therefore

50%. After presentation for the selected PT, the two im-

ages were then masked by a pair of masks, each selected

at random from a pool of eight random masks having 1/f
amplitude spectrum [21]. The trial was concluded with a

response cue which remained on screen until subjects’ re-

sponse. Participants pressed Same if they judged the two

images to match in category or Different if not. They were

encouraged to respond according to their first impression

and as quickly and accurately as possible. Before beginning



the experiment, participants completed a category learning

procedure where they viewed 9 images from each of the

8 participating categories so that they could get acquainted

with the scene category labels. Subjects then completed 12

practice trials so they could become familiar with the ex-

perimental task and procedure, after which they started the

336 trial experiment itself. No learning or practice image

was reused in the experiment. Experiments were self-paced

and participants were allowed to take breaks any time. In

practice, the 336 trial experiment took 20 min to complete

on average.

Figure 1. Experimental trials in our experiment begin with a fixation
point, followed by a brief presentation of two images for PT ms and 1/f
mask patterns for 500 ms. Subjects are then prompted to respond whether
the two images belong to the same category or not.

2.2. Behavioral Results and Observations

How challenging is it to discriminate coast from forest

scenes in a glance? How about a mountain and a bedroom

scenes? Analyzing subjects’ response first in the control

trials with PT = 1000ms reveals that discrimination under

long stimulation yielded near-perfect performance of 96%,

indicating that our scene categories are well-defined seman-

tically. Eliminating this possible confound, we then ex-

plored the perceptual “distance” between all pairs of scene

categories in our dataset by measuring subjects’ accuracy

for each pair over all trials and PTs (except the control tri-

als). Table 1, which we term the Perceptual Data (PD) Ma-

trix, shows the obtained accuracy, averaged over all PTs

(except 1000ms), between all pairs of scene categories in

our dataset. It is evident that subjects did not discriminate

between categories equally accurately (or easily). For ex-

ample, subjects were able to discriminate with much higher

accuracy bedroom from forest (0.85), or mountain from

street (0.84), but this accuracy dropped significantly when

discriminating bedroom from kitchen (0.47), or forest from

mountain (0.59), to name but a few.

Categories that are significantly less accurate to tell apart

in the brief PTs used in our experiments must share enough

perceptual properties to make the discrimination process

more difficult (again, within these short PTs). In other

words, Table 1 depicts the perceptual “distance” between

all pairs categories for the purpose of scene categorization

(e.g., with 0.85 compared to 0.68, the forest and kitchen

are far less perceptually related than the highway and coast

categories, respectively). Note that the results along the di-

agonal of Table 1 represent subjects’ average accuracy in

scenarios where the two presented images come from the

same category, and hence represent a measure of “percep-

tual similarity” within each category, and not a perceptual

distance. Clearly, at the level of category, the perceptual

distance between a category to itself should be zero, and

this is indeed how we define it in the sequel.

Although Table 1 represents the data in full, it may be

useful to use it to organize the explored categories in a “per-

ceptual space” in which the perceptual distance between

class is more comprehensible. One way to carry out such

visualization is Multidimensional Scaling (MDS) – a tech-

nique from statistical inference and data visualization to

embed a set of objects in Euclidean space while preserv-

ing their “distance” as much as possible [36]. As can be

appreciated from the results of such analysis in two dimen-

sional space (Figure 2), the different classes that partici-

pated in our experiment appear to split into general two

groups according to natural (left group) and manmade (right

group) scenes. This intuitive division is also obtained for-

mally once we apply the k-means clustering method to

cluster the scenes to two clusters. The result, coded in

color in Figure 2, shows a clear clustering along the nat-

ural/manmade classification, with one notable exception.

Indeed, the highway category seems (at least marginally)

closer to the natural scenes rather to its semantically related

manmade scenes. Hence, even within this restricted 8-class

experiment, we were able to find perceptual relations that

do not conform to their semantic counterparts.

3. Small Sample Scene Categorization with

Perceptual Relations

With perceptual relations established via proper experi-

mental analysis as above (see Sec. 5 for discussion about

handling larger collections of categories), we turn to dis-

cuss how they may be exploited for scene categorization,

especially when only few labeled examples are available for

each class. Indeed, in their recent attempt to provide a scene

understanding database that “encompasses the richness and

varieties of environmental scenes”, Xiao et al. [44] reported

that the majority of their 899 scene categories yielded only

few image samples via Internet search. Consequently, their

experiments excluded more than half of these categories and

focused on those with at least 100 samples. Clearly, the re-

quirement of well-sampled classes for satisfactory learning

of scene categories may prove a critical obstacle vis-a-vis



Bedroom Kitchen Street Tall-building Highway Coast Forest Mountain

Bedroom 0.70 0.47 0.68 0.71 0.82 0.83 0.85 0.83

Kitchen - 0.69 0.61 0.64 0.75 0.85 0.85 0.83

Street - - 0.74 0.58 0.55 0.81 0.82 0.84

Tall-building - - - 0.81 0.82 0.83 0.81 0.82

Highway - - - - 0.62 0.68 0.80 0.78

Coast - - - - - 0.60 0.74 0.68

Forest - - - - - - 0.71 0.59

Mountain - - - - - - - 0.69

Table 1. The Perceptual Data Matrix obtained by measuring subjects’ average accuracy between all pairs of scene categories in our dataset. The results

along the diagonal represent subjects’ average accuracy in scenarios where the two presented images come from the same category, and hence represent a

measure of “perceptual similarity” within each category. All other entries represent the perceptual “distance” between their corresponding categories for the

purpose of scene categorization.

Figure 2. Applying MDS analysis on the perceptual distances obtained
in our experiment, and visualizing the results as points in a 2D perceptual
space, reveal a configuration which clusters natural scenes separately from
manmade scenes (both intuitively and formally via k-means, the latter de-
picted with color). Interestingly, the clustering algorithm groups the high-
way category with the natural scenes, indicating that it is more perceptually
related to the natural categories rather than to the manmade categories.

the frequency of under-sampled categories, a problem that

is further increased by the high visual complexity of scenes,

the rich and high dimensional representations that are typ-

ically used to capture that complexity, and the perceptual

diversity within many known categories.

In contrast to existing computational algorithms, our

everyday experience indicates that humans can learn new

scene categories from only few examples, so it seems un-

likely that a large set of training examples per-category is

a necessity. In this paper we suggest that the solution re-

sides in leveraging perceptual relations between categories

in order to characterize each scene category in a more infor-

mative way.

To introduce the idea, consider that after learning few

examples from each category, we are given a query scene

and asked to decide whether or not it belongs to one of the

categories, say “coast”. Due to the visual complexity of

real-scenes and the high visual variability within each scene

category, it seems practically impossible that the few train-

ing coast examples would contain all the perceptual prop-

erties of a characteristic coast scene. However, additional

perceptual properties of such scenes may possibly be ob-

tained from training examples of other, perceptually related

categories, e.g., the “highway” category (cf. the perceptual

distance matrix in Table 1). Still, while doing so, highway

examples should be considered as making smaller contri-

bution compared to coast examples. More generally, we

suggest that the perceptual properties of the given category

can be learned or inferred not only from its designated ex-

emplars, but also from all training examples that belong to

other perceptually related categories, weighted according to

their perceptual distance to the given category. In effect,

such strategy increases the pool of useful training examples

manyfold, thus facilitating categorization performance sim-

ilar to well-sampled classes.

In what follows we develop this idea more formally and

incorporate perceptual distance into a practical classifier.

Although this can be done with almost any classifier, here

we chose the Naive-Bayes Nearest-Neighbor (NBNN) al-

gorithm [7] due to its excellent trade off between simplicity

(or complexity) and performance. In particular, we extend

the NBNN algorithm to incorporate inter-category relations

and show how it provides a platform for coping with under-

sampled categories.

3.1. Overview of NBNN

The NBNN algorithm due to Boiman et al. [7] is a non-

parametric image classifier that employs ‘Image-to-Class’

(and not Image-to-Image) distances in the space of the lo-

cal image descriptors. Additionally, it avoids descriptor

quantization in order to cope with the large intra-category

diversity within scene categories. Given a class Cj , j ∈
{1, 2, ..., t} and query image Q with its corresponding local

image descriptors d1, d2, ...dn, the distance between Q and

class Cj is defined as follows:

D(Q,Cj) =
∑

i

NNCj
(di) (1)



where NNCj
(di) is approximation of p(di|Cj) obtained by

the distance between di and its nearest neighbor in class Cj ,

i.e.,

NNCj
(di) = min

{

d(di, d
Cj

k )
}

, k ∈ {1, 2, ..., L} (2)

where d
Cj

1
,..,d

Cj

L denote all the descriptors obtained from

all the images contained in class Cj . Then, the classifica-

tion of Q is done according the class Cj which minimizes

d(Q,Cj), i.e.,

Ĉ = argminCj
(D(Q,Cj)) , j ∈ {1, 2, ..., t} (3)

In their work, Boiman et al. [7] showed that the NBNN al-

gorithm accurately approximates the theoretically optimal

image classifier under the Naive-Bayes assumption (i.e.,

image descriptors are i.i.d given image class).

3.2. NBNN with Inter­Class Relations (NBNN­ICR)

Although the NBNN is quite effective for image classi-

fication, it treats each class independently and in isolation,

and like most classifiers, it ignores possible relations be-

tween classes. But suppose that some relationship between

classes is both meaningful and given, i.e., let Dc(Ci, Cj)
be a cost measure (or “distance”) between classes Ci and

Cj , as given by an outside source (e.g., Table 1). We as-

sert that a simple extension to non parametric classifiers like

NBNN can consider such information to enhance their per-

formance. In particular, we suggest that searching for the

nearest neighbor of di in class Cj should consider not only

class Cj but all classes (i.e., Cz, z ∈ 1, 2, ..., t) while taking

into account the distance measure Dc(Cj , Cz). Formally,

we suggest replacing Eq. 2 with the following computation

NNCj
(di) = min

{

d(di, d
Cz

k ) + α ∗Dc(Cj , Cz)
}

,

k ∈ {1, 2, ..., L} ; z ∈ {1, 2, ..., t}
(4)

where dCz

1
,..,dCz

L denote all the descriptors obtained from

all the images contained in class Cz and α is a weight pa-

rameter. Note that when α → ∞, one is unable to find the

nearest neighbor NNCj
(di) of di in class other than Cj .

Hence, NBNN can be considered a special case of NBNN-

ICR.

What are the benefits of using Eq. 4 rather than Eq. 2?

From a theoretical point of view, Eq. 2 will approximate

p(di|Cj) more accurately as the number of training exam-

ples per class approaches infinity [7]. However, as argued

in the beginning of Sec. 3, in many practical cases, the

number of training examples per class is very small com-

pared to the class complexity, which renders the practical

results by Eq. 2 depart significantly from the theoretical op-

timum. Eq. 4 attempts to alleviate this situation by exploit-

ing relations between classes and employing information

from all training examples, not necessarily from class Cj

only. As we later show in 4, the fewer labeled class samples

available, the more significant the improvement obtained by

Eq. 4 over Eq. 2.

4. Experimental evaluation

4.1. Experimental Setup

Following the discussion above, we can now combine

our measured perceptual relations and the NBNN-ICR clas-

sifier into a computational scene categorization framework.

For that, we define the distance between any two scene

classes Ci and Cj to be the measured distance from Table 1,

i.e., we set Dc(Ci, Cj) = PD(Ci, Cj). (Recall that by con-

struction PD(Ci, Ci) = 0.) The resultant classifier, termed

here as NBNN-PR, is then compared to NBNN to show how

the use of the measured perceptual relations facilitates sig-

nificant improvements in scene categorization performance,

especially when the number of training scenes in each cat-

egory is small. We also show that this improvement does

not result from the mere inclusion of any class relations, but

from the very particular relations that were inferred experi-

mentally and reflect human perception. Toward this end we

compared performance to instances of NBNN-ICR where

the inter-class relations Dc(Ci, Cj) for i 6= j are selected

randomly (abbreviated as NBNN-Rand), or are estimated

computationally from a trained classifier confronted with

the same experimental procedure as described for humans

in Sec. 2.1 (abbreviated as NBNN-CR).

The dataset for the experiment consisted of the same

scene categories described in Sec. 2.1: coast (360 images),

forest (328 images), mountain (374 images), highway (260

images), tall-building (356 images), street (292 images),

kitchen (151 images) and bedroom (177 images). In all

cases we randomly split each category to disjoint training

and testing sets, with ntraining = 1, 2, 4, 8, 16, 32, 64, 128.

The same sets where then used with the four algorithms

(i.e., NBNN-PR, NBNN , NBNN-Rand, NBNN-CR) and

repeated 20 times (to control for the random selection). Per-

class categorization rates were then pooled across repeti-

tions to produce average results.

4.2. Implementation

Since our approach is independent of the specific image

descriptor used, the choice of the descriptor used is some-

what arbitrary for the purposes of this study. We selected

two well known image descriptors that are potentially use-

ful for scene classification (GIST and LBP) and also a trivial

descriptor for baseline comparisons.

The GIST descriptor was proposed specifically for scene

recognition tasks by Oliva and Torralba [27] and is based on

the output energy of a bank of 32 Gabor-like filters tuned to

8 orientations at 4 different scales. Originally, the image re-



gion was divided to a 4× 4 grid (e.g., 64× 64 pixel patches

for 256×256 image) where the squared output of each filter

was averaged. However, to achieve greater discriminative

power via higher feature dimensionality [7] we carried the

same averaging operation on a 16 × 16 grid (i.e., 16 × 16
pixel patches for 256 × 256 image). Using the code pro-

vided by the authors [27] we therefore obtained 256 local

descriptors of 32 dimensions for each given scene.

Since scene recognition may be regarded as texture clas-

sification [43], the LBP image-texture descriptor [24] was

selected as our second descriptor. The LBP produces bi-

nary code for each pixel by comparing the pixel value to

those values of pixels distributed uniformly around it. Then,

a histogram measuring the frequency of each binary code is

computed over a grid of non-overlapping regions. Again,

using publically available code [44] we obtained 256 local

descriptors (i.e., 16 × 16 grid) of 256 dimensions (i.e., 28

different binary patterns) for each given scene.

Thirdly, as a naive baseline, we also implemented a triv-

ial image descriptor where the intensity values of the image

are stacked and normalized over 16× 16 patch grid to yield

256 local descriptors of 256 dimensions.

Since all variants of NBNN-ICR required setting value

for α, a 2-fold cross-validation procedure was applied

within the training set to select the optimal α for each run

(except for runs with ntraining = 1, where we selected the

α that gave us the best performance over the test set). The

search of α was restricted to the range α ∈ [0.05, 1] (in

0.05 step quantization) since an empirical test confirmed

that α ≈ 1 is big enough to effectively nullify the effect

of inter-class relations. We also note that the inter-class re-

lations for the NBNN-CR classifier (see Sec. 4.1) were de-

vised from a SVM classifier which was trained using the

image descriptors defined above with 9 training images per-

category.

4.3. Results

A performance comparison of NBNN, NBNN-PR,

NBNN-Rand, and NBNN-CR is shown in Fig. 3 for all 3

descriptors. Table 2 shows the percentage improvement ob-

tained by the NBNN-PR over the NBNN for the 3 different

descriptors. As the results show, the use of the perceptual

relations improves classification performance in all cases

and all training set sizes, but is particularly significant when

the number of training samples is relatively small. The

graphs also show that the inter-class relations used cannot

be arbitrary but rather they must reflect the true perceptual

relations. Indeed, when fictitious relationships are used (as

in NBNN-Rand1), the cross-validation procedure (which

selects the best α) typically selected α ≈ 1 which effec-

tively nullified the use of these relations and provided re-

sults similar to those of NBNN. Moreover, when forcing the

use of these random relationships by using the same optimal

α from NBNN-PR (as in NBNN-Rand2), performance of

the NBNN-Rand has dropped severely even below NBNN,

let alone compared to NBNN-PR. Finally, while using inter-

class relations that are based on a particular choice of clas-

sifier and descriptor may improve performance compared

to NBNN (cf. NBNN-CR), the use of perceptual relations

which is independent of the choice of descriptor and classi-

fier yields significantly better classification performance.

5. Learning Perceptual Relations for Many

Scene Categories

One cannot avoid noticing that our experimental eval-

uation was limited to 8 scene categories, a fact that at first

sight is inconsistent with the availability of much larger col-

lections [44] of the standards that the image classification

community has become used to, especially for object recog-

nition [14, 15]. The reason for this is not computational,

however. Rather, it is unfortunately very difficult to obtain

reliable perceptual data for many scene categories while us-

ing controlled lab procedures like those described in Sec. 2.

There are two main reasons for this. First, since subjects

need to remember the scene categories that participate in the

experiment in order to facilitate their “same” or “different”

decision, they fail to do so when the number of categories

exceeds some memory threshold. Second, the number of

trials in such an experiment grows quadratically with the

number of participating categories, and reaches quickly the

capacity of normal human subject. A pilot experiment with

15 categories already exhibited both of these problems and

prevented us from presenting corresponding results.

As a result of the above, it is clear that the data collection

procedure must be amended to facilitate the acquisition of

perceptual relationships between many categories, with the

ambitious goal may be one that targets the SUN database of

899 categories [44]. One way to achieve this is by repeating

numerous times the experiment from Sec. 2, each time for

a small number of categories selected randomly from the

large database. Pooling data from a huge number of par-

ticipants may then overcome both limitations and provide

the knowledge base to construct the perceptual relations be-

tween all categories in the database. Toward the goal above,

we have developed an online experimental system that har-

nesses the power of the web to facilitate such data collec-

tion. Relying on the collective effort of a large population

of users had already proved successful (e.g., [42, 39]) and

we hope it could prove constructive in our case also.

Our web system is a Silverlight application that allows

users from all over the world to participate in our experi-

ment [17]. This application executes an experiment identi-

cal to the one described in Sec. 4.1, but in a form of a game

that motivates users to participate in it.

In the beginning of each experiment participants are

shown the instructions while the system randomly selects
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Figure 3. Performance of all discussed classifiers (NBNN, NBNN-PR, and all other variants of NBNN-ICR), based on all three tested descriptors, as the
number of training examples is increased.

Number of training examples per category

Descriptor 1 2 4 8 16 32 64 128

GIST 16.2 11 4.2 2.5 2.2 2 1.3 1

LBP 21 11.3 5.1 2.7 3 2.4 2.3 2.1

Intensity 14.7 35 33.8 23.3 27.9 28.9 25.6 19.5

Table 2. Performance improvement (in percentages) obtained by NBNN-

PR over NBNN for the three different descriptors tested, all as a function of

training set size. The performance improvement is calculated as the differ-

ence between the average performance of the NBNN-PR and the NBNN,

divided by the value of the latter.

few different categories out of the many categories of the

SUN database [44]. Participants then need to complete a

category learning procedure and a short practice session so

that they could get acquainted with the scene category la-

bels and the experimental procedure and task. The real ex-

periment follows these steps and consists trials of the form

discussed in Sec. 2.

Unlike in the lab, using web application suffers from

the inability to control several experimental parameters, the

most critical of which are presentation times. Very short

presentation times are excluded for inability to ensure small

relative error in their value when executed on unknown

computer platform and display device. Hence, we currently

limit PTs to 50, 100, and 200 ms, using the latter as “catch

trials” to validate subject’s awareness (High error rates in

this PT would indicate unreliable subject). Except as noted,

the sequence of events in an experimental trial are identi-

cally to those of 4.1.

With this online experimental system, we believe that the

perceptual relations between many categories in the SUN

database [44] could be established in reasonable period, and

we call upon the community to participate in this experi-

ment.

6. Summary and Future Work

In this work we argue that prior knowledge about the

perceptual relations between different scene categories may

help facilitating better and more accurate computational

framework for the purpose of scene categorization. We

first introduced an experimental procedure whose goal is

to gain new insights on the visual process underlying hu-

man scene categorization. Then, we leverage the obtained

insights to define perceptual relations between scene cate-

gories. While such inter-class relations could benefit many

classifiers, we introduce an extension to the NBNN classi-

fier and show how it significantly improves its performance,

especially when supervised categories are under-sampled.

Furthermore, we show that this improvement does not re-

sult from the mere inclusion of arbitrary inter-class relations

but rather from from the very particular relations that were

inferred experimentally and reflect human perception. Fi-

nally, seeking to apply this theory on large collections of

scene categories, we introduce an online experimental sys-

tem for mass acquisition of perceptual relations. We call

upon the community to help collecting this data and we

hope it would facilitate more accurate computational frame-

works for learning hundreds of scene categories from only

few-examples.
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