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Abstract—Visual curve completion is a fundamental perceptual mechanism that completes the missing parts (e.g., due to occlusion)

between observed contour fragments. Previous research into the shape of completed curves has generally followed an “axiomatic”

approach, where desired perceptual/geometrical properties are first defined as axioms, followed by mathematical investigation into

curves that satisfy them. However, determining psychophysically such desired properties is difficult and researchers still debate what

they should be in the first place. Instead, here we exploit the observation that curve completion is an early visual process to formalize

the problem in the unit tangent bundle R2 � S1, which abstracts the primary visual cortex (V1) and facilitates exploration of basic

principles from which perceptual properties are later derived rather than imposed. Exploring here the elementary principle of least

action in V1, we show how the problem becomes one of finding minimum-length admissible curves in R2 � S1. We formalize the

problem in variational terms, we analyze it theoretically, and we formulate practical algorithms for the reconstruction of these

completed curves. We then explore their induced visual properties vis-à-vis popular perceptual axioms and show how our theory

predicts many perceptual properties reported in the corresponding perceptual literature. Finally, we demonstrate a variety of curve

completions and report comparisons to psychophysical data and other completion models.

Index Terms—Visual completion, curve completion, tangent bundle, inpainting.

Ç

1 INTRODUCTION

VISUAL curve completion is a perceptual phenomenon in
which the visual system fills in the missing parts

between boundary fragments to facilitate the perception of
complete objects. When the object is fragmented due to
occlusion (Figs. 1A and 1B), the completion is usually called
amodal [25]. When the object is illusory and its completed
boundary curves are subjective (Fig. 1C), the completion is
known as modal.1 In the latter case, observers typically report
clear intensity edges along the subjective contours and the
perception of an illusory shape that is slightly brighter than
the surrounding regions [8], [25], [37]. In both amodal and
modal completion, a significant part of the process is
considered low-level and local, affected only a little by
context (Fig. 1D) or visual experience (Fig. 1E). Like other
problems of perceptual organization [37], it too has been
studied from different perspectives of the vision sciences,
and in particular by the computational, perceptual, and
neurophysiological communities.

Due to its low-level and local characteristics, studies of
curve completion usually assume that the completed curve
is induced by the two oriented line segments at the point of
occlusion (hereinafter the inducers). Referring to these
inducers, the curve completion problem is typically divided
into two parts. First, the grouping problem deals with the
organization of candidate inducers into pairs that indeed
induce completed curves (see Fig. 2A). The second, the shape
problem, deals with the characterization and reconstruction
of the shape of the completed curve between two given
inducers. In this paper, we focus on the latter problem, with
the goal of formalizing and solving the shape of percep-
tually completed curves between two given inducers.

Suppose we are given an image region where boundaries
are missing (e.g., blue circle in Fig. 1A) and the two
inducers between which the curve is completed (e.g., the
white segments in Fig. 1A). Clearly, there are infinitely
many ways to complete a curve between these two inducers
(some possible completions are shown in yellow in Fig. 1A),
from which our visual system appears to choose a singular
and unique shape (illustrated in magenta in Fig. 1A). This
(somewhat illusive) shape is the objective of computational
curve completion in general and of this paper in particular:

Problem 1. Given the position and orientation of two inducers
p0 ¼ ½x0; y0; �0� and p1 ¼ ½x1; y1; �1� in the image plane, find
the shape of the “correct” perceptual curve that passes between
these inducers.

While we consider as “correct” the completion that agrees
the most with perceptual evidence (see below), the notion of
“correctness” in the context of our completion task is clearly
ill defined. Since formulating visual perception is difficult,
one may consider other alternatives also. Most desirable,
perhaps, is completing the actual shape of the occluded (or
subjective) object at the time the image was captured. But
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1. The term modal is often used in this context to indicate completed
contours which are “phenomenally present with the usual characteristics of
visual modality.” On the other hand, the term amodal completion is used
when the completed structure is “present in the perception but does not
have the phenomenal characteristics of sensory modally.” While both
phenomena have been reported earlier, these descriptions are attributed to
Kanizsa [25, pp. 194-195].

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



clearly, this requires prior knowledge of the occluded shape
(if nothing else, then at least for the evaluation of the
completed shape), which renders the completion task mean-
ingless. Clearly, while guessing the actual shape may be
possible as part of the completion task (can you guess the
shape of the missing boundaries in Fig. 1B?), the apparent
arbitrariness of shapes makes this guess easily tricked (see
Fig. 2B to see if your guess was correct).

Instead of the actual shape, one may seek the “typical” or
likely shape of the occluded part of the object, which is a
weaker but possibly more accessible constraint. Still, this
too requires knowledge of the type and the part of the
occluded object (to allow access to its typical shape in the
occluded part), and hence its recognition or classification
from the image data. Naturally, this conflicts with the early

nature of the completion problem, and its accepted role as
facilitating higher level tasks (like recognition) rather than
being dependent on them (e.g., [27, page 159], [51, page 5],
[56, page 837], or [39, page 47], to name but a few).

Given the observations and inherent difficulties above,
much of the previous computational curve completion
literature has incorporated perceptual considerations, either
explicitly or implicitly (e.g., looking for the curve that is
chosen by the visual system [51, page 1], modeling the shape,
salience, and sharpness of perceived contours [56, page 838],
or seeking the most “pleasing” curve [27, page 161] are just a
few of the stated goals). Since formalizing the visual process
is difficult, most previous studies have addressed the
problem by defining constraints on the “desired” solution
in the image plane. Unfortunately, however, almost all of
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Fig. 1. Phenomenology of visual completion. (A) Curve completion is typically defined as the problem of constructing the single perceptual shape
(magenta) between two given inducing segments (white), out of the infinitely many possible curves which connect these inducers (e.g., in yellow).
(B) Another visual scene with amodal completion. (C) Modal completion that gives rise to an illusory blobby shape. (D) Curve completion is strong
enough to override visual context and explicit knowledge of what the occluded part is. Here, most observers report the completion of a convex shape
behind the occluder, although all contextual cues indicate the presence of a dent. (E) The same phenomenon of “seeing versus thinking” [25] can be
demonstrated with familiar objects in photographs. Covering part of a caravan, the occluder here gives rise to the perception of an excessively long
camel, one that every observer “knows” is impossible. Indeed, curve completion can override life-long visual experience.

Fig. 2. The grouping and shape aspects of the curve completion problem. (A) The grouping phase deals with the grouping of inducers into pairs
between which perceptually completed curves are formed. While in the selected region of this figure (also shown is its edge map) all cyan inducers
are possible candidates for pairing with the red inducer (which leads to the possible completed curves such as those plotted in cyan), it seems that
perceptual completion occurs only with the green inducer (which might produce the completion in green). (B) The shape problem deals with the
inference of the completed shape between a given pair of inducers. As we argue, the “correct” computational completion should match the perceived
one rather than the actual physical shape behind the occluder. Here, the ostrich’s neck is occluded by a leaf and human observers tend to report
completions similar to the one plotted in white. However, the apparent arbitrariness of physical shapes makes this guess easily tricked, as would be
the case if at the moment there was a small piece of food in the ostrich’s throat. Since we cannot predict the exact state of the occluded object, its
actual shape and boundaries at the time the image is captured cannot serve as a measure of correctness for shape completion.



these constraints have been inspired more by intuition and
mathematical elegance, and less by perceptual findings or
neurophysiological principles. In the next section we review
some of the computational models, the axiomatic approach
which often motivates them, and the degree of compatibility
to perceptual and neurophysiological evidence. We then
turn to present a new and rigorous mathematical curve
completion theory which is motivated by the structure of the
visual system and uses a single basic principle of “least
action” in the visual cortical space to provide, among other
things, accurate explanations and predictions for existing
perceptual evidence.

2 PREVIOUS WORK

2.1 Computational Studies

Among the first to address the shape problem (Problem 1)
in a computational framework was Ullman [51], whose
seminal work suggested that completed curves are con-
strained by certain geometrical/perceptual properties:

. Isotropy—The completed curve should be invariant
to rigid transformations.

. Smoothness—The completed curve is analytic (or in
some cases, differentiable once).

. Total minimum curvature—The integral of curvature
along the curve should be as small as possible.

. Extensibility—Any two arbitrary tangent inducers
along a completed curve C should generate the
same shape as the shape of the portion of C
connecting them.

In seeking the curve that uniquely satisfies these axiomatic
properties, Ullman suggested a biarc curve, according to
which the completed shape between two inducers consists
of two circular arcs, each tangent both to an inducer and to
the other arc (Fig. 3A). Since the number of such biarc pairs
is infinite, the selected pair is the one that generates the
minimal total curvature. While the biarc model was
designed to satisfy the four original axioms, it violates
smoothness (in the strict sense, since it is differentiable only
once), it does not minimize total curvature in general (it
does so only within the family of biarc curves), and it was
also shown to violate extensibility in some cases [6]. While
Ullman did not present a closed-form solution to his biarc
model, a mathematical solution based on a one-dimensional
nonlinear optimization was introduced later by Rutkowski
[42] (see Figs. 3D, 3E, 3F, 3G, and 3H for our own
implementation). Importantly, however, Ullman did sug-
gest a solver based on a parallel network of simple
computational nodes, reminiscent of the computational
infrastructure in the primary visual cortex.

This perspective taken by Ullman triggered a wealth of
computational curve completion research which follow
what we call the axiomatic approach—a quest for the unique
completed curve that satisfies a specified set of predefined
desired characteristics. Indeed, subsequent studies have
suggested a variety of other desired axioms, such as

. Scale invariance—the completed shape should be
independent of the viewing distance.

. Roundedness—the shape of a completed curve in-
duced by two cocircular inducers should be a circle.
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Fig. 3. Previous computational studies on curve completion. (A) The biarc curve (in black) connecting two inducers (in magenta) consists of two
circular arcs (one in green and one in red) that are tangent both to an inducer and to each other. (B) Serving as inspiration for elastica models, a flat
mechanical spline used by draftsmen in older days was used to determine the “smoothest” possible shape. The spline is fixed in two (or more)
positions on the plate, in which it can be constrained to specific orientations as well (as in this illustration). Under these conditions, the spline takes a
shape in which its total bending energy is minimal. Since the bending energy at each point is proportional to the squared curvature of the spline at
that point, the shape of the spline is that of the elastica. (C) An example of an Euler spiral curve, whose curvature changes linearly with arclength,
i.e., �ðsÞ ¼ a � sþ b, for some constants a and b. (D)-(H) Results of our own MATLAB implementation to previous popular curve completion
algorithms, given the position and orientation of two inducers: The Biarc model [42], [51] is plotted in green, the Cubic interpolation model [6] is
plotted in red, the Elastica model [21] is plotted in blue, and the Euler spiral model [27] is plotted in cyan. Please use the electronic version to zoom in
for a better view.



. Total minimum change of curvature—integral of the
derivative of curvature along the curve should be as
small as possible.

However, since some of the suggested axioms conflict with
each other, the axiomatic approach has invigorated a
continuous debate on the scope of each axiom and the
“correct” set of perceptual axioms to be used in the first
place. Part of our contribution in this paper is to show that
perceptual properties of completed curves can be derived
(rather than imposed) by applying basic principles in the
computational space in which the completion is computed.

Perhaps the most studied axiom since Ullman’s work is
the axiom of total minimum curvature. Inspired by the
shape of mechanical splines (see Fig. 3B) and centuries-long
work done by mathematicians (see [32] for a mathematical
historical account), the planar “curve of least energy” is
known to minimize the total bending energy:Z

aþ b �ðsÞ2ds; ð1Þ

where a and b are some constants. This family of curves,
known as “elastica,” defies known analytical solutions, but
its appealing geometrical properties have inspired poly-
nomial approximations first in drafting [44] and computer
aided geometric design [22], and later in typography [28],
and visual curve completion [6]. Although they enjoy
simplicity, closed-form formulation, and computational
efficiency, these (cubic) polynomials deviate significantly
from elastica in many cases (see Fig. 3), a fact that led to
more rigorous investigation of elastica by Horn [21] and
later Mumford [35]. Slightly different than the original
elastica formulation, however, in the context of curve
completion between two inducers, they sought the curva-
ture-minimizing curve with unrestricted length that mini-
mizes (1) (for a ¼ 0, b ¼ 1) and satisfies the boundary
conditions of the two inducers as defined in Problem 1. The
Euler-Lagrange equation applied to this functional leads to
a differential equation that the solution must satisfy, which
in arclength parameterization takes the form

d�

ds

� �2

¼ 1

c
sinð�þ �Þ; ð2Þ

where � is the tangential angle of the curve at each position
[21]. To use this equation for solving the elastica problem
one needs to resolve the two parameters c and �. Since no
closed-form analytical solution is known, Horn suggested a
solution using elliptic integrals [21] while Mumford did so
based on theta functions [35].

Although in many cases the elastica solution deviates
only slightly from the biarc model ([21] and Fig. 3),
theoretically it conflicts with both the scale-invariance and
the roundedness properties. Hence, subsequent attempts to
model curve completion have modified the axiom of total
minimum curvature to address additional properties as
well. In particular, Weiss [53] suggested a scale invariant
elastica model that minimizes the functional L

R 1
0 �

2ds,
where L is the (unspecified) length of the curve. While
Weiss could not find a closed-form analytical solution to
this problem, closed-form approximations for both the
elastica and the scale-invariant elastica were derived by
Sharon et al. [46]. Since the latter associates energy not only

to total curvature but also to length, the results tend to be
“flatter” than the original elastica shape. At the same time,
scale invariant elastica complies with roundedness but still
violates the axiom of extensibility.

In an attempt to incorporate as many axioms as possible
into a single computational model that prioritizes the
roundedness property, Kimia et al. [27] have suggested
replacing the minimum total curvature axiom with the
minimization of total change in curvature. This property is
captured by the minimization of the functional

R
ðd�dsÞ

2ds
subject to the boundary conditions ½x0; y0; �0� and ½x1; y1; �1�.
This model immediately entails a class of curves in which
the curvature changes linearly, often known in the
mathematical literature as Euler spirals [33]. Yet, since there
could be many Euler spirals connecting two inducers,
Kimia et al. [27] disambiguated the solution by picking the
shortest possible Euler spiral as the completed curve (see
Fig. 3 for examples). In addition to the roundedness and
smoothness that this model satisfies by construction, the
Euler spiral model also complies with the axioms of
extensibility and scale invariance. Unfortunately, however,
the roundedness and scale invariance axioms were refuted
psychophysically in recent perceptual literature (see below),
a fact that undermines the validity of the Euler spiral as an
appropriate completion model.

Given the dominance of axiomatic models to curve
completion, it should be mentioned that a somewhat
different, nonaxiomatic approach was taken by Williams
and Jacobs [56] in their stochastic model to curve
completion, which employs assumptions on the generation
process rather than on the desired final shape. Indeed,
although it was not verified against perceptual findings, in
their work they have argued that the completed curve is
the most likely random walk in a 3D discrete lattice of
positions and orientations. Still different, though similarly
nonaxiomatic (in the perceptual sense), are other ap-
proaches that model the generation process as a variational
segmentation procedure (e.g., [43], [24]). Although our
theory differs from all these previous nonaxiomatic
approaches in all of the theory, the assumptions, and the
implications, it does share the same philosophy that shape
constraints can be derived from more basic principles rather
than imposed as axioms. Unlike all of these nonaxiomatic
models, however, we will also show that our theory entails
completed shapes that agree and predict recent perceptual
and psychophysical findings.

With the variety of curve completion axioms and curve
completion models, the question of what the “correct”
model is and what the “right” axioms to employ are still
remains unanswered.2 Surely addressing this question
requires extensive psychophysical research. But since the
different predictions by the different models are often
(though not always) small (see Figs. 3D, 3E, 3F, 3G, and 3H)
and since it is difficult to measure the exact shape of modally
or amodally completed perceptual curves, psychologists
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2. It should be mentioned that in addition to the explicit research on
curve completion, other relevant work comes from the problem of curve
integration and detection, and in particular, from the ecological investiga-
tion of curvilinear continuity in natural images (e.g., [14], [13], [9]).
However, the frequent relation of these data to physical (rather than
perceptual or illusory) contours, the common application of axiomatic
visual properties that derive from this fact (e.g., scale invariance in [39]),
and the relevance of such data mainly to short range interactions all make
the ecological and statistical approach less constructive in our context.



have been focusing on other ways to characterize them,
typically qualitatively rather than quantitatively. Some of
these findings are reviewed in the next section.

2.2 Perceptual and Psychophysical Insights

The phenomenon of visual completion had been first
reported more than a century ago by Schumann [45], and
later gained much interest due to the extensive contribu-
tions and striking demonstrations by Kanizsa [25]. Tradi-
tionally, both modal and amodal completion are considered
a result of the same visual mechanisms, or what has become
known as the identity hypothesis. Advocated strongly by
Kellman and Shipley [26] (who showed how modal
configurations can be often reduced to amodal configura-
tions), the identity hypothesis continues to be debated to
this day (e.g., [47]). In this paper, we assume that both
completion phenomena are a product of the same process,
but we do note that there is nothing intrinsic in our theory
that prevents their future separation.

Most of the perceptual research on curve completion, from
Kanizsa and until recent years, has focused on the grouping
problem (see Section 1). One popular theory in this context is
the relatability theory [26], which suggests that two inducers
could be part of the same completed contour if their linear
extensions intersect in an acute outer angle. This condition
was later shown to reflect the existence of a smooth curve
with no inflection points connecting the two inducers [49].

In recent years, however, perceptual and psychophysical
research on the shape problem has become increasingly more
dominant, and in particular, some work has been focusing
on measuring and characterizing geometrical features of
visually completed curves using different experimental
paradigms. For example, the dot localization paradigm (e.g.,
[18], [50], [15]) is a method where observers are asked to
localize a point (or line) probe either inside or outside an
amodally or modally completed boundary (Fig. 4A), and
the distribution of responses is used to determine the likely
completed shape. Often in these experiments the inducers
are placed symmetrically in a cocircular configuration,
which could be used to very explicitly examine the validity
of the roundedness axiom. Somewhat surprisingly, and
despite the popularity and the intuitive appeal of this
axiom, recent results show that visually completed curves
are somewhat flatter than circular arcs [18], [11], thus
putting in doubt the validity of the biarc [51], the Euler

spiral [27], and the scale-invariant elastica [46] models. It
should be mentioned that in these experiments the
distribution of results was similar for modal and amodal
completions, hence supporting the identity hypothesis. It
was further shown that the completed contour is perceived
(i.e., constructed) as quickly as 120 msec, a result indicative
of a preattentive early visual process.

In an alternative experimental paradigm, the oriented
probe localization method [48], [11], [12], observers view a
curve completion scene and are asked to localize the position
and orientation of a probe to match the perceived completed
contour (see Fig. 4B). Recent studies that employed either
oriented probe localization, dot localization, or other
paradigms have demonstrated that the perceptually com-
pleted curve becomes flatter as the distance between the
inducers increases [15], [48], [11], [47, page 457], a
dependency on scale that violates the scale invariance
property that is a basic axiom in several of the completion
models discussed above.

While even the most updated perceptual and psycho-
physical findings are still partial, they do indicate that none
of the existing axiomatic models is valid vis-à-vis the
operation of the human visual system. Since accurate
perceptual data may be difficult to measure and quantify
accurately (e.g., while scale dependency was demonstrated,
the precision of present-day experimental paradigms is
unlikely to resolve this dependency in quantitative terms),
these studies also question the utility of the axiomatic
approach as a whole. In this work, we therefore suggest
focusing on theories in which perceptual properties of
completed curves are derived from more basic (and
nonperceptual) principles, rather than being imposed as
axioms. In particular, while here we focus on the computa-
tional aspects of such a theory (and keep the full-fledged
perceptual validation for future work), we do show how it
qualitatively predicts these very same perceptual findings
that existing models fail to replicate correctly.

2.3 Neurophysiological Insights

Since curve completion is a perceptual task performed by the
visual system, it is worth reviewing basic neurophysiologi-
cal aspects of the latter. The short time in which completed
curves are constructed (e.g., [18], [40]) is indicative of an
early vision process that takes place as early as the primary
visual cortex (V1). Some properties of this cortical area
indeed motivate much of our proposed theory.

The primary visual cortex (or V1) is one of the most
intensively studied areas in the brain. The seminal work by
Hubel and Wiesel [23] has indicated that V1 constitutes of
orientation selective cells at all orientations (and at various
scales) for all retinal positions, i.e., for each “pixel” in the
visual field (see Fig. 5). This was captured by the so-called
ice cube model, suggesting that V1 is continuously divided
into full-range orientation hypercolumns, each associated
with a different image (or retinal) position [23]. Hence, an
image contour is represented in V1 as an activation pattern
of all those cells that correspond to the oriented tangents
along the curve’s arclength (Fig. 5B). Subsequent work has
shown that orientation selective neurons in two hypercol-
umns are able to interact via long range horizontal connections
[41], [16], [5] to facilitate contextual computations that could
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Fig. 4. Perceptual experimental studies on curve completion. (A) The dot
localization paradigm (after [18]). A point probe (in red, numbered by the
order of appearance) is presented for a short time on top of a modally or
amodally completed figure. Observers are asked whether this point is
localized either inside or outside the completed boundary and the
distribution of responses is used to determine the likely completed
shape. (B) The oriented probe localization method (after [11]).
Observers view a completion scene and are asked to position and
orient a segment probe in a narrow slit in the occluder.



provide local geometrical properties (e.g., curvature) of
visual curves (e.g., [3]).

The participation of early visual neurons in the repre-
sentation of curves is not limited to viewable curves only,
and was shown to extend to completed or illusory curves as
well. Among the first to show this were von der Heydt et al.
[52], who have examined the activity of cells in the visual
cortex of Macaque monkeys during presentation of modally
completed shapes. They have found that approximately a
third of the orientation selective cells in V2 (which are similar
in structure to those in V1) fire when illusory contours move
across their receptive field, and that many of these cells
respond nearly the same to real and subjective contours.
More recent studies by Grosof et al. [17] and Lee and Nguyen
[31] have further extended these findings to area V1. All this
evidence further supports the conclusion that curve comple-
tion is predominantly an early visual process that takes place
as early as the primary visual cortex.

3 CURVE COMPLETION IN THE TANGENT

BUNDLE R2 � S1

The basic neurophysiological findings mentioned above
suggest that in the limit we can abstract orientation
hypercolumn as infinitesimally thick “fibers,” and place
each of them at the position in the image plane that is
associated with the hypercolumn. Doing so, one obtains an
abstraction of V1 by the space R2 � S1, as illustrated in Fig. 5.
This space is an instance of a fundamental construct in
modern differential geometry, the unit tangent bundle [36]
associated with R2. A tangent bundle of a manifold S is the
union of all tangent spaces at all points of S [36]. Similarly, a
unit tangent bundle is the union of unit tangent spaces at all
points of S, where each of these spaces constitutes unit
tangent vectors only. In our case, it therefore holds [36] that:

Definition 1. Let I ¼ R2 the image plane. T ðIÞ ¼4 R2 � S1 is
the unit tangent bundle of I.

Recall our observation from Section 2.3 that an image
contour is represented in V1 as an activation pattern of all
those cells that correspond to the oriented tangents along
the curve’s arclength. Indeed, V1 represents image curves in

a “lifted” fashion where both position and tangent orienta-
tion are represented explicitly along the path [20]. Given the
R2 � S1 continuous abstraction and remembering that the
tangent orientation of a regular curve is a continuous
function, we immediately observe that a regular image
curve �ðtÞ is represented as another regular curve �ðtÞ in
T ðIÞ (Figs. 5B and 5C).

The last observation leads us to our main idea: If curve
completion (like many other visual processes) is mostly an
early visual process in V1 (cf., Section 2.3), and if V1 can
be abstracted as the space T ðIÞ, then perhaps the
completion process should be investigated in this space,
rather than in the image plane I. In this paper, we offer
such a mathematical investigation whereby curve comple-
tion is carried out in T ðIÞ, followed by projection to I.
Part of our motivation for this idea is that unlike the
debatable perceptual axioms in the image plane, the T ðIÞ
space, as an abstraction of the cortical machinery, may
offer more basic (and not necessarily perceptual) comple-
tion principles from which perceptual properties emerge
as a consequence.

It should be mentioned that in addition to Williams and
Jacobs [56] mentioned above, the space of positions and
orientations in vision was already used in several cases for
tasks such as curve integration, texture processing, curve
completion, and image inpainting (e.g., [1], [2], [38], [7], [4],
[19]). As will be discussed later, our contribution is quite
different than the previous attempts to address visual
completion in the roto-translational or the unit tangent
bundle spaces—it is a variational approach rather than one
based on diffusion [7], it provides simpler and more direct
mathematical insights and facilitates the analysis of
perceptual properties (unlike in [38], [7]), and it is unique
in incorporating a relative scaling between the spatial and
angular dimensions, a critical act for making these dimen-
sions commensurable (unlike in [38], [7], [4]). All these
issues are further elaborated in the rest of the paper.

3.1 Admissibility in T ðIÞ
At first sight, curve completion in T ðIÞ may not be that
different than curve completion in the image plane I, except,
possibly, for the higher dimension involved. This intuition,
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Fig. 5. The unit tangent bundle as an abstraction for the organization and mechanisms of the primary visual cortex. (A) Orientation selective cells in
V1 have receptive fields of different scales and orientation tuning. (Shown here is the even-symmetric type only, coded by intensity.) (B) The primary
visual cortex is organized in orientation hypercolumns [23], which implies that every retinal position is covered by neurons of all orientations. Thus,
for each “pixel” p in the visual field we can think of a vertical array of orientation-selective cells extending over p and respond selectively (shown in
red) according to the stimulus that falls on that “pixel.” (C) The organization of V1 implies it can be abstracted as the unit tangent bundle R2 � S1,
where vertical fibers are orientation hypercolumns, and the activation pattern to image curve � (in blue) becomes “lifted” curve � (in red) such that
�ðtÞ and �ðtÞ are linked by the admissibility constraint in (3). The only aspect of R2 � S1 not captured in this sketch is the periodicity of its orientation
dimension. Thus, the reader should think of the plotted space as quotient space [55] R3= � , where the equivalence structure is such that
ðx1; y1; z1Þ � ðx2; y2; z2Þ if and only if x1 ¼ x2, y1 ¼ y2, and jz1 � z2j ¼ �. (D) Not every curve in R2 � S1 is admissible and, in particular, linear curves
(e.g., in red) are usually inadmissible since their linear progression of the orientation (i.e., height) contradicts the “straightness” of the projected curve
in the image plane (in blue).



unfortunately, is incorrect. We first observe that when
switching to T ðIÞ, the curve completion problem (see
Section 1) becomes a problem of curve construction between
boundary points (e.g., as shown in green in Fig. 6), rather
than between oriented inducers (as illustrated in cyan in
Fig. 6). More importantly, as we now discuss, the completed
curves in T ðIÞ cannot be arbitrary. In fact, the class of curves
that we can consider in the first place is quite constrained.

Let �ðtÞ ¼ ½xðtÞ; yðtÞ� be a regular curve in I. Its
associated curve in T ðIÞ is created by lifting � to R2 � S1,
yielding a curve �ðtÞ ¼ ½xðtÞ; yðtÞ; �ðtÞ�, which satisfies
(using Newton’s notation for differentiation)

tan �ðtÞ ¼ _yðtÞ
_xðtÞ ; where _xðtÞ � dx

dt
; _yðtÞ � dy

dt
: ð3Þ

We emphasize that �ðtÞ and �ðtÞ are intimately linked by (3)
(which is sometimes referred to as the Frobenious integrability
condition), and that � is the projection of � back to I. An
example of such corresponding curves is shown in Fig. 5C.

One can immediately notice that while every image
curve can be lifted to T ðIÞ, not all curves in T ðIÞ are lifted
versions of some image curve. We therefore define:

Definition 2. A curve �ðtÞ ¼ ½xðtÞ; yðtÞ; �ðtÞ� 2 T ðIÞ is called
admissible if and only if 9�ðtÞ ¼ ½xðtÞ; yðtÞ� such that (3) is
satisfied.

There are more inadmissible curves in T ðIÞ than
admissible ones and examples for both admissible and
inadmissible curves are shown in Figs. 5C and 5D. We also
note that if we consider (3) as a differential equation, a
curve is admissible if and only if it is an integral curve of
this equation. Therefore, any completion mechanism in T ðIÞ
is restricted to admissible curves only, and we shall refer to
(3) accordingly as the admissibility constraint.

3.2 “Minimum Action” Completion in T ðIÞ
What curve completion principles could we adopt in T ðIÞ?
In general, since both are vector spaces, any principle that
one could use in I is a candidate principle for completion in
T ðIÞ also, subject to the admissibility constraint. However,
when we recall that T ðIÞ is an abstraction of V1, first
candidates for completion principle should perhaps attempt
to capture likely behavior of neuron populations rather than

axiomatic perceptual criteria. Perhaps the simplest of such
principles is a “minimum energy consumption” or “mini-
mum action” principles, according to which the cortical
tissue would attempt to link two boundary points (i.e.,
active cells) with the minimum number of additional active
(i.e., energy consuming) cells that give rise to the completed
curve. In the abstract this becomes the case of the shortest
admissible path in T ðIÞ connecting two endpoints ½x0; y0; �0�
and ½x1; y1; �1� (where admissibility must apply all along the
curve, including its endpoints). Note that while such a
shortest curve in I is necessarily a straight line, most linear
curves in T ðIÞ are “inadmissible” in the sense of Defini-
tion 2. Since the shortest admissible curve in T ðIÞ has a
nontrivial projection in the image plane, we hypothesize
that the “minimum action” principle in T ðIÞ corresponds to
the visually completed curve. The geometrical and percep-
tual properties of this curve can then be induced from this
first principle rather than imposed as axioms. In the bulk of
our paper we develop this theory in a rigorous manner, and
we examine its entailed perceptual properties.

4 MINIMUM LENGTH CURVE IN THE TANGENT

BUNDLE

Given the motivation, arguments, and insights above, we
are now able to define our curve completion problem
formally. Let p0 and p1 be two given endpoints in T ðIÞ
which represent two oriented inducers in the image plane I.
We seek the shortest admissible path in T ðIÞ between these
two given endpoints, i.e., the curve that minimizes

L ¼
Z p1

p0

ffiffiffiffiffiffiffiffiffiffiffi
_�ðtÞ2

q
dt ¼

Z p1

p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xðtÞ2 þ _yðtÞ2 þ _�ðtÞ2

q
dt; ð4Þ

subject to the admissibility constraint.
While this initial objective function employs a euclidean

metric for R2 � S1, a natural question that arises relates to
the units and relative scale of the different dimensions in
this space. Indeed, while x and y are measured in meters (or
other length units), � is measured in radians. Furthermore,
the hypercolumnar organization of V1 suggests that the
“cost” (or cortical distance) for moving one orientation unit
is not necessarily similar to moving one spatial unit. Hence,
to balance dimensions in the arclength integral and to
facilitate relative scale between the spatial and angular
coordinates, a proportionality constant �h in units of meters

radians
should be incorporated in (4) (in a manner reminiscent of
many physical proportionality constants such as the
reduced Planck constant, which proportions the energy of
a photon and the angular frequency of its associated
electromagnetic wave). We thus generalize the distance
measure between points in T ðIÞ and formulate our curve
completion problem as follows:

Problem 2. Given two endpoints p0 ¼ ½x0; y0; �0� and p1 ¼
½x1; y1; �1� in T ðIÞ, find the curve �ðtÞ ¼ ½xðtÞ; yðtÞ; �ðtÞ� that
minimizes the functional

Lð�Þ ¼
Z t1

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2 þ �h2 _�2

q
dt; ð5Þ

while satisfying the boundary conditions �ðt0Þ ¼ p0 and
�ðt1Þ ¼ p1 and the admissibility constraint from (3).
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Fig. 6. Curve completion in the tangent bundle. When switching to T ðIÞ,
the curve completion problem becomes a problem of curve construction
between boundary points (represented by the green cells) rather than
between oriented inducers (plotted here in cyan). Similar to the problem
in the image plane, in the tangent bundle there is also an infinite number
of curves connecting two given endpoints (some of them are plotted
here in red, while their projections to I are plotted in blue). Thus, as
before, we will need additional constraints or principles to narrow down
the set of solutions.



The rest of our paper is devoted to solving this problem
formally and to analyzing the properties of the solution.
Before we do so, we note that there were few previous
independent attempts to address the curve completion
problem in roto-translational spaces. For example, it was
suggested by Petitot [38] that perceptually completed
curves may be modeled as “geodesics contours” in V1,
which he suggested to consider as the shortest path in the
jet space R2 � P , where P is the real line of tanð�Þ, the
tangent of orientation angles. Like Horn [21], Petitot
suggested (but did not present) a solution based on elliptic
integrals (whose practicality is questionable), and offered
no evaluation vis-à-vis perceptual findings. A different
approach by Citti and Sarti [7] considered the curve
completion problem via the reconstruction of minimal
surfaces in R2 � S1 by means of a diffusion-based iterative
procedure that attempts to group pairs of inducers and find
the completed shape between them, all at the same time.
Unfortunately, this ad hoc treatment of the grouping phase
(c.f., Fig. 2A) is prone to yielding erroneous results and it
completely ignores the rich literature on the grouping
process and its relationship to other (possibly higher level)
visual mechanisms. In addition, and beyond being less
biologically plausible, this approach cannot be applied
when the completion scene does not involve regions (as in
Fig. 1D), it does not address the need to make the spatial
and angular dimensions commensurable, and no attempt
was made to relate it to perceptual findings. Compared to
these few previous studies, our curve completion theory
yields a completely different mathematical analysis using
different mathematical tools, which not only yields clear,
replicable, and easily implementable solution, but also
facilitates a full examination of perceptual properties
(Section 4.4) and extensive experimental validation.

Finally, Ben-Yosef and Ben-Shahar [4] have recently
addressed a preliminary and simpler version of Problem 2
where the objective functional lacks the square root and a
proportionality constant, i.e.,

Lð�Þ ¼
Z t1

t0

½ _x2 þ _y2 þ _�2�dt: ð6Þ

Unfortunately, in addition to deviating from the minimum
action principle as a guiding rule,3 the functional in (6) is
also nonintrinsic, i.e., its value depends on the particular
parameterization of the curve. Clearly, both of these
properties are undesired.

Unlike the above previous studies, here we address the
general curve completion problem by 1) making the spatial
and angular dimensions commensurable and scaled prop-
erly, and 2) applying the minimum action principle in the
unit tangent bundle genuinely and directly. We offer a
rigorous variational analysis in the continuous domain in a
manner that facilitates not only a simple and complete
solutions to Problem 2, but an extensive analysis of
perceptual properties as well (unlike in, e.g., [38], [7]).
Our analysis facilitates a numerical solution which is
replicable and easily implementable, from which experi-
mental results are easy to produce for future validation
against perceptual and psychophysical data.

4.1 Theoretical Differential Analysis

Let �ðsÞ ¼ ½xðsÞ; yðsÞ� be an image curve given in an
arclength parameterization, whose corresponding lifted
curve in T ðIÞ is

�ðsÞ ¼ ½xðsÞ; yðsÞ; �ðsÞ�: ð7Þ

Representing all admissible curves in T ðIÞ in this form, the
functional L from (5) becomes

Lð�Þ ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xðsÞ2 þ _yðsÞ2 þ �h2 _�ðsÞ2

q
ds; ð8Þ

where l is the total length of �ðsÞ and the admissibility
constraint (3) can be written as

cos �ðsÞ ¼ _xðsÞ;
sin �ðsÞ ¼ _yðsÞ:

ð9Þ

Given these observations, the following is our main
theoretical result:

Theorem 1. Of all admissible curves in T ðIÞ, those that minimize
the functional in (8) belong to a two parameter family ðc; �Þ,
which is defined by the following differential equation:

�h
d�

ds

� �2

¼ c2

sin2ð�þ �Þ
� 1: ð10Þ

Proof. Observe first that l in (8) is unknown. To facilitate the
application of the calculus of variation to our problem
we therefore begin by slightly changing the representa-
tion of this equation. Let �ðsÞ ¼ _�ðsÞ be the curvature of �
and let RðsÞ ¼4 1

j�ðsÞj be its corresponding radius of
curvature at each point along its arclength. At this stage,
assume also that � is a monotonic function of s (this
assumption, which amounts to � having no inflection
points, will be removed later) and hence that it can be
used to parameterize the curve. Let the constant � 2
f�1; 1g be the sign of curvature. Since d�

ds ¼ � 1
R , it follows

that ds ¼ �Rd�, which allows us to rephrase the
admissibility constraint in (9) as follows:

dx ¼ cos �ds ¼ �R cos �d�;

dy ¼ sin �ds ¼ �R sin �d�:
ð11Þ

Substituting (11) into (8) we get

Lð�Þ ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

ds

� �2

þ dy

ds

� �2

þ�h2 d�

ds

� �2
s

ds

¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2R2 cos2ð�Þd�2

ds2
þ �

2R2 sin2ð�Þd�2

ds2
þ �h2�2

d�2

ds2

s
ds;

from which we immediately obtain the following new
objective function for our minimization problem, this
time in terms of the tangential orientation � of the curve:

Lð�Þ ¼ �
Z �1

�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð�Þ2 þ �h2

q
d�: ð12Þ

By using this form to describe the curve, we are at risk of
ignoring the boundary conditions on positions ½x0; y0�
and ½x1; y1� that must be introduced back into the
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3. Note that without the square root, the functional in (6) no longer
represents length in R2 � S1.



problem.4 This can be done by adding certain constraints
that force the projection of the induced curve to pass
through these two end points. For that, note that one can
derive the following identities for the spans �x and �y
of the end points:

�x ¼4 x1 � x0 ¼
Z l

0

_x ¼
Z �1

�0

�R cos �d�;

�y ¼4 y1 � y0 ¼
Z l

0

_y ¼
Z �1

�0

�R sin �d�;

from which we can rewrite the following integral
constraints on the desired R and � functions:Z �1

�0

�R cos ���x

��

� �
d� ¼ 0;

Z �1

�0

�R sin ���y

��

� �
d� ¼ 0;

where �� ¼ �1 � �0. These additional constraints can now
be incorporated into our new functional in (12) using two
arbitrary Lagrange multipliers 	x and 	y. The result is the
following minimization problem in terms of �:

Lð�Þ ¼ �
Z �1

�0

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �h2

p
þ 	x R cos �� �x

���

� �

þ 	y R sin �� �y

���

� �#
d�:

ð13Þ

Note that although � is measured in radians, tan � ¼ _y
_x ,

cos �, and sin � are dimensionless and therefore do not
unbalance the units in the functional.

With (13) representing the variational problem to be
solved, the corresponding Euler-Lagrange equation
becomes

d

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �h2

p
þ 	x R cos �� �x

���

� ��

þ	y R sin �� �y

���

� ��
¼ 0;

which can be further simplified to

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �h2

p þ 	x cos �þ 	y sin � ¼ 0: ð14Þ

Renaming our free parameters more conveniently by
	x ¼ 1

c sin� and 	y ¼ 1
c cos�, we can further simplify (14)

as follows:

Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ �h2

p ¼ � 1

c
sin ð�þ �Þ: ð15Þ

Finally, taking the square of both sides of (15) and
remembering that R ¼ 1= _�, we obtain the desired (10).

To generalize the proof to inflectional curves as well,
assume that the shortest admissible path between two
endpoints p0 and pn in R2 � S1 is (at least) twice
continuously differentiable and has a finite number of

n� 1 inflection points p1; p2; . . . ; pn�1. (This is a reason-
able assumption since we do not expect the optimal
curve to wiggle too much, let alone an infinite number of
times.) The curve is thus a union of n noninflectional
curve segments, each of which is described by R from
(14), with a possible change of sign between them.
Hence, the behavior of R2 (and therefore of _�2) is valid to
all curve segments and thus to the entire length of the
inflectional curve as a whole. tu

4.2 Analytical Solution via Elliptic Integrals

The similarity of (10) to the elastica equation (cf., (2)) and

the Elastica-Pendulum equation [32] suggests that a closed-

form analytic solution is unlikely. However, a solution

based on elliptic integrals has been offered to the Elastica

problem [21], [32], and it is therefore reasonable to suspect

that elliptic integrals may fit in our case as well. Indeed, in

our second theoretical result in this paper we show how

noninflectional curves from Theorem 1 and (10) can be

expressed in terms of elliptic integrals.

Theorem 2. Let �ð�Þ ¼ ½xð�Þ; yð�Þ� be the image projection of a

curve � in T ðIÞ that belongs to the family of (10). Suppose � is

noninflectional and thus it can be parameterized by its

tangential angle �. Then,

xð�Þ ¼ x0 � �h cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �

� c�h sin� E
1

c2
; �þ �

� �
� E 1

c2
; �0 þ �

� ��

� F 1

c2
; �þ �

� �
þ F 1

c2
; �0 þ �

� ��
;

yð�Þ ¼ y0 � �h sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �

� c�h cos� E
1

c2
; �þ �

� �
� E 1

c2
; �0 þ �

� ��

� F 1

c2
; �þ �

� �
þ F 1

c2
; �0 þ �

� ��
;

ð16Þ

where F;E are the incomplete elliptic integrals of the first and

second kinds.

Proof. We start with the observation that

d�

dx
¼ d�
ds

. dx
ds
;

in which d�
ds can be expressed directly in terms of (10).

When the sign of curvature is fixed (wlog, positive) and s

is the arclength (such that dx
ds ¼ cos �), the above term

amounts to

d�

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q
�h sinð�þ �Þ � 1

cos �
: ð17Þ

By rearranging (17) and integrating we get

xð�sÞ ¼
Z xs

0

dx ¼ Ix ¼4 �h

Z �s

�0

cos � sinð�þ �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q d�; ð18Þ
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4. Note that the initial conditions on the orientation of the two inducers
become very explicit in this form and are embedded directly in the limits of
the integral in (12).



where for the convenience of reading we denote the
tangential angle of the curve as �s and we save � to
denote the parameter of integration. (We also assume
that x0 ¼ 0; otherwise x0 should simply be added to Ix.)
To solve Ix we first substitute 
 ¼ �þ �, such that
d� ¼ d
. We thus get

Ix ¼ �h

Z �sþ�

�0þ�

cosð
� �Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d
 ð19Þ

or

Ix ¼ �h cos�

Z �sþ�

�0þ�

cos
 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d


þ �h sin�

Z �sþ�

�0þ�

sin2 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d
:

Consider the two addends of the last expression and call
their corresponding integrals I1 and I2 for the left and
right terms, respectively. The solution for I1 is simple:

I1 ¼
Z �sþ�

�0þ�

cos
 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d
 ¼
���sþ�
�0þ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


q
; ð20Þ

while I2 can be solved via elliptic integrals

I2 ¼
Z �sþ�

�0þ�

sin2 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d
 ¼ �c
Z �sþ�

�0þ�

� 1
c2 sin2 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
c2 sin2 


q d


¼ �c
Z �sþ�

�0þ�

1� 1
c2 sin2 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
c2 sin2 


q � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2 sin2 

q

0
B@

1
CAd


or

I2 ¼ �c
Z �sþ�

�0þ�
d


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
sin2 


r
þ c

Z �sþ�

�0þ�

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2 sin2 

q :

ð21Þ

Fortunately, the first addend in (21) is the incomplete
elliptic integral of the second kind (usually denoted as
E), and the second addend in (21) is the incomplete
elliptic integral of the first kind (usually denoted as F ).
Thus, we get

xð�sÞ ¼ ��h cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�s þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �

� c�h sin� E
1

c2
; �s þ �

� �
� E 1

c2
; �0 þ �

� ��

� F 1

c2
; �s þ �

� �
þ F 1

c2
; �0 þ �

� ��
:

ð22Þ

(Note that (10) implies that c2 > 1, which makes the
parameter 1

c2 of the elliptic integrals smaller than 1.)
The entire derivation thus far can be repeated in a

similar way to find yð�sÞ, for which we apply (10) to the
identity

d�

dy
¼ d�
ds

. dy
ds
:

Again, when the sign of curvature is fixed, and s denotes
arclength (such that dy

ds ¼ sin �), the above term becomes

d�

dy
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q
�h sinð�þ �Þ � 1

sin �
: ð23Þ

Again, by rearranging (23) and integrating we get

yð�sÞ ¼
Z ys

0

dy ¼ Iy ¼4 �h

Z �s

�0

sin � sinð�þ �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q d�; ð24Þ

and by using the same substitution 
 ¼ �þ � we
eventually obtain

Iy ¼ �h cos�

Z �sþ�

�0þ�

sin2 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d


� �h sin�

Z �sþ�

�0þ�

cos
 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2 


p d
:

ð25Þ

This term involves the same integrals I2 and I1 that we
have solved previously. Thus,

yð�sÞ ¼ �c�h cos� E
1

c2
; �s þ �

� �
�E 1

c2
; �0 þ �

� ��

� F 1

c2
; �s þ �

� �
þ F 1

c2
; �0 þ �

� ��

� �h sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�s þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �
:

ð26Þ

tu

4.3 Numerical Solution

The analysis shown in Sections 4.1 and 4.2 is still short of
resolving the parameters c; � of the specific curve from the
family of (10) which passes through the given tangent
bundle boundary points p0 and p1. Apparently, these
parameters can be solved by applying the end point
constraint to (16), i.e., by solving

xð�1Þ ¼ x1;

yð�1Þ ¼ y1;
ð27Þ

which become the following pair of equations in the two
unknowns c and � (note that all other parts are known):

x1 ¼ x0 � �h cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�1 þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �

� c�h sin� E
1

c2
; �1 þ �

� �
� E 1

c2
; �0 þ �

� ��

� F 1

c2
; �1 þ �

� �
þ F 1

c2
; �0 þ �

� ��
;

y1 ¼ y0 � �h sin�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�1 þ �Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�0 þ �Þ

q� �

� c�h cos� E
1

c2
; �1 þ �

� �
� E 1

c2
; �0 þ �

� ��

� F 1

c2
; �1 þ �

� �
þ F 1

c2
; �0 þ �

� ��
:

ð28Þ
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Unfortunately, given the severely nonlinear nature of this
system it seems unlikely that an analytical solution is viable.
Since we must resort to numerical methods, however, it
seems reasonable to extend the scope of our sought after
solutions to general (i.e., possibly inflectional) curves, rather
than noninflectional curves only,5 a limitation that is
intrinsic to (28).

To find a numerical solution in the general case, we
therefore abandon (28) and turn to formulating an ODE-
based solution with boundary conditions. To begin, we
notice that to facilitate the computation of inflectional
curves, it is preferable to solve the second order ODE that is
obtained by differentiating (10):

�h2 d
2�

ds2
¼ � c

2 cosð�þ �Þ
sin3ð�þ �Þ

: ð29Þ

This way we avoid determination of the sign of the square
root when it is applied to (10). Still, at first sight, this
approach is problematic since it appears that the number of
constraints in our problems is smaller than its degrees of
freedom (or free parameters). Indeed, (29) represents a
family of planar curves in Whewell form (i.e., an equation
that relates the tangential angle of the curve with its
arclength), which induces an image parametric curve via
the following integrations:

xðsÞ ¼ x0 þ
Z s

0

cos �ð~sÞd~s;

yðsÞ ¼ y0 þ
Z s

0

sin �ð~sÞd~s:

ð30Þ

Thus, a single and unique curve from our family of solutions
is determined by 7 degrees of freedom: �0, _�0 (or put
differently, the curvature �0 at p0), �, and c are needed to
resolve a unique �ðsÞ function via (29), and x0, y0, and l are
then needed to determine the curve’s coordinate functions
xðsÞ and yðsÞ from the first to the second inducer via (30). At
the same time, the curve completion problem provides only
six constraints expressed by the two given inducers:

xð0Þ ¼ x0 yð0Þ ¼ y0 �ð0Þ ¼ �0

xðlÞ ¼ x1 yðlÞ ¼ y1 �ðlÞ ¼ �1:

Fortunately, this initial observation does not imply that
our problem is underdetermined (and therefore lacks
unique solutions) since it turns out that c can be expressed
in terms of �0 and �0. To do so we evaluate (10) at �0:

�h
d�

ds

����
�0

 !2

¼ c2

sin2ð�0 þ �Þ
� 1;

which results in the following identity:

c2 ¼ ð�h2�0
2 þ 1Þ � sin2ð�0 þ �Þ: ð31Þ

Substituting (31) in (29) we now obtain

€� ¼
�ð�0

2 þ 1
�h2Þ � sin2ð�0 þ �Þ cosð�þ �Þ

sin3ð�þ �Þ
; ð32Þ

in which c no longer participates.
Following these algebraic manipulations, we therefore

assert that our curve completion problem can be answered
by solving (32), and then use the resolved parameters to
construct the completed curve with (30). One standard
numerical technique for solving such ODE is based on
nonlinear optimization that seeks the values of the equation
parameters that satisfy the given boundary conditions. In
our case, this entails the following general algorithm:

1. Make an initial guess regarding the values of the
parameters �0, �, and l.

2. Construct a curve of length l starting from p0 ¼
½x0; y0; �0� in a way that obeys (32).

3. Evaluate the correctness of the parameters by
assessing the error between the obtained end point
of the constructed curve (i.e., the point ½xðlÞ; yðlÞ;
�ðlÞ�) and the desired end point (p1 ¼ ½x1; y1; �1�).

4. Use the error Eð�0; �; lÞ between these two tangent
bundle points to update the parameters before
iterating back to step 2.

More specifically, for each iteration i with a given
starting point p0 and parameter values �0 and � we first
solve the differential equation (32) via Euler’s method
(though more sophisticated methods could be used too, of
course). Initializing arclength s0 ¼ 0 at the beginning of
each iteration we compute

snþ1 ¼4 sn þ h;

�nþ1 ¼4 �ðsnþ1Þ ¼ �ðsn þ hÞ � �ðsnÞ þ h � €�ðsnÞ

¼ �n þ h �
�ð�0

2 þ 1
�h2Þ � sin2ð�0 þ �Þ cosð�n þ �Þ

sin3ð�n þ �Þ
;

�nþ1 ¼4 �ðsnþ1Þ ¼ �ðsn þ hÞ � �ðsnÞ þ h � �ðsnÞ
¼ �n þ h � �n;

ynþ1 ¼4 yðsnþ1Þ � yðsnÞ þ h � _yðsnÞ
¼ yn þ h � sin �n;

xnþ1 ¼4 xðsnþ1Þ � xðsnÞ þ h � _xðsnÞ
¼ xn þ h � cos �n;

where h is a preselected step size and the error is of order
OðhÞ. The curve �ðsiÞ ¼ ½xðsiÞ; yðsiÞ; �ðsiÞ� computed by this
step is then evaluated at sn ¼ l (i.e., at step n ¼ l=h) to
obtain the point ½xend; yend; �end� ¼ ½xðlÞ; yðlÞ; �ðlÞ� and the
error Eð�0; �; lÞ associated with the current value of the
parameters is computed by

Eð�0; �; lÞ ¼ k½x1; y1; �1� � ½xend; yend; �end�k:

The new values for �0, �, and l are then computed by
gradient descent on Eð�0; �; lÞ. A demonstration of a
minimum curve (and its image projection) that is generated
by this procedure is shown in Fig. 7A. Also, to validate our
numerical process we compared curves from different
models according to their length in T ðIÞ, length in I, and
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5. Indeed, much of the perceptual curve completion literature suggests
that perceptually completed curves are unlikely to incorporate inflections
points (e.g., [26], [49], [11], c.f. Section 2.2). However, following recent
psychophysical work (e.g., [11], [49]), we argue that the discrimination
between these perceptual states is not dichotomous but rather graded, and
that inflectional completed curves are indeed occasionally perceived (as
may be experienced for certain boundary conditions; see Fig. 9 for several
examples), albeit with possibly smaller perceptual strength.



total (squared) curvature in I. Naturally, this evaluation
should show that our model possesses the smallest length
in T ðIÞ, while the elastica model produces the smallest
total curvature in I. These expectations are indeed
confirmed in the results of this quantitative evaluation,
which we show in Fig. 7B.

To conclude this section we note that in certain cases the
numerical optimization process can be simplified signifi-
cantly, as expressed in the following proposition:

Theorem 3. If the sought-after solution is limited to curves �ðsÞ
whose image projection �ðsÞ is noninflectional, then the
number of free parameters that should be determined via
optimization is reduced from three (�0, �, and l) to two (�0

and �) only.

Proof. If �ðsÞ is restricted to be noninflectional, its sign of
curvature must be constant (wlog, positive) along its
entire length. Hence, we can safely take the square root
of (10) to write the curvature as follows:

� ¼ d�
ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � sin2ð�þ �Þ

q
�h sinð�þ �Þ : ð33Þ

Integrating (33) we get

Z �1

�0

�h
sinð�þ �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � sin2ð�þ �Þ
q

2
64

3
75d� ¼ Z l

0

ds;

or

I0 ¼ �h

Z �1

�0

sinð�þ �Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1þ cos2ð�þ �Þ

p
" #

d� ¼ l:

To evaluate the integral I0 we substitute

z ¼ cosð�þ �Þ;

such that dz ¼ �sinð�þ �Þd�, and obtain

I0 ¼ �h

Z �1

�0

�dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1þ z2
p :

Remembering that c2 > 1, we substitute a2 ¼ c2 � 1 >
0 and get

I0 ¼ ��h

Z �1

�0

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z2
p ¼ ��h

���1

�0
ln
��zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ a2
p ��: ð34Þ

Finally, we obtain the following:

l ¼ �hðln j cosð�0 þ �Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð�0 þ �Þ þ c2 � 1

p
j

� ln j cosð�1 þ �Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ð�1 þ �Þ þ c2 � 1

p
jÞ;

ð35Þ

which expresses l in terms of c and �, and by application

of (31), in terms of �0 and � (the other two free parameters

in the optimization process). tu
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Fig. 7. (A) The curve of minimum length in the tangent bundle as computed by our numerical procedure in Section 4.3. The shortest admissible path

in T ðIÞ between points (marked here in green) p0 ¼ ½0; 0; 45	� and p1 ¼ ½0; 2; 150	� for �h ¼ 1 is shown in red, and its projection to I is shown in blue.

(B) Comparison between computationally completed curves according to their length in Ið
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x2 þ _y2
p

dtÞ, total curvature squared in Ið
R

_�2dtÞ, and

length in T ðIÞð
R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_x2 þ _y2 þ �h2 _�2

q
dtÞ for �h ¼ 1, for various boundary conditions. See corresponding plots in Figs. 3E, 3F, 3G, and 3H.



4.4 Dependency on Scale and Other Visual
Properties

Our discussion so far illustrates how the problem of curve
completion can be formulated and solved in the space that
abstracts the early visual cortical regions where this
perceptual process is likely to occur. Since the theory, and
the single principle of “minimum action” that guides this
solution, are “nonperceptual,” it is important to understand
what perceptual properties they entail, and how these
predictions correspond to existing perceptual findings and
the geometrical axioms reviewed earlier. This section
studies this question in a rigorous manner.

As suggested in the beginning of this section, the value of
the �h constant could have a significant influence over the
shape of curves of minimum length in the tangent bundle,
as it implicitly controls the relative contribution of total
length in I versus total curvature in I during the
minimization process,6 or put differently, the relative scale
ratio (i.e., the proportion between units of measurement) of
the length and orientation axes in the unit tangent bundle.
In this context, the behavior at the limits of �h provides
important qualitative insights regarding its effect. On one
hand, if �h is very small, the minimization process becomes
similar to minimization of length in I (subject to boundary
conditions) and we therefore expect the resultant curve to
straighten (or “flatten”). On the other hand, when �h is very
large, the minimization process is dominated by the
minimization of orientation derivative (again, subject to
boundary conditions), a condition that resembles (qualita-
tively) the classical elastica and converges to a particular
shape. To show these properties formally, we rewrite (10) as

d�

ds

� �2

¼ c2

�h2 sin2ð�þ �Þ
� 1

�h2
¼ ~c

sin2ð�þ �Þ
� 1

�h2
; ð36Þ

where ~c ¼ c
�h is a renaming of the constant that fits the

boundary conditions. Using this representation we now
observe that when �h!1, (36) converges to

d�

ds

� �2

¼ ~c

sin2ð�þ �Þ
: ð37Þ

(Note that in such case c can also be very large and thus
balance �h in ~c ¼ c

�h .) The shape of the curve described by this
expression can be shown experimentally to be rather
rounded, although it does not describe a circular arc (see
Fig. 8A for an example using particular initial conditions).
To examine the curve behavior when �h! 0, we return to
(10), which now becomes

0 ¼ c2

sin2ð�þ �Þ
� 1

or

sinð�þ �Þ ¼ 
c: ð38Þ

Hence, since in the limit sinð�ðsÞ þ �Þ must be constant for
all s, �ðsÞ becomes constant also, which implies a linear

curve. A demonstration of several curves for the same
inducer pair but different values of �h is shown in Fig. 8A.

Intuitively, changing �h amounts to changing the viewing
scale of a particular completion task, i.e., applying a global
scale transform on the initial conditions. Indeed, viewing
distance affects the projected distance between the inducers
on the retina (i.e., the image plane) and hence the cortical
distance between the hypercolumns of the inducing
neurons in V1 (i.e., the tangent bundle). Hence, one could
expect that the effect of scaling on the resultant minimum
length curve would be similar to changing �h, or in other
words, that minimum length in the tangent bundle does not
provide scale independence. To show this formally, we first
observe that any (i.e., not necessarily minimal) image curve
�Lð~tÞ traveling from p0 ¼ ½0; 0; �0� to p1 ¼ ½L; 0; �1� can be
written as a scaled version of some other curve �1ðtÞ
traveling from ½0; 0; �0� to ½1; 0; �1�:

�LðtÞ ¼ L � �1ðtÞ ¼ ½L � xðtÞ; L � yðtÞ�; t 2 ½t0; t1�;

where

�1ðtÞ ¼ ½xðtÞ; yðtÞ� t 2 ½t0; t1� and xðt0Þ ¼ 0; xðt1Þ ¼ 1:

Hence, the lifted T ðIÞ curve �LðtÞ that corresponds to �LðtÞ
becomes

�LðtÞ ¼ L � x; L � y; tan�1 L � _y

L � _x

� �� �
¼ ½L � xðtÞ; L � yðtÞ; �ðtÞÞ� t 2 ½t0; t1�;

where ½xðtÞ; yðtÞ; �ðtÞ� is the tangent bundle curve that
corresponds to�1ðtÞ. Note now that the total arclength of�L is

Lð�LÞ ¼
Z t1

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ð _x2 þ _y2Þ þ �h2 _�2

q
dx

¼ L �
Z t1

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2 þ �h

L

� �2

_�2

s
dx: ð39Þ

The identity in (39) indicates that one could minimize
either functional to obtain the desired result. However,
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Fig. 8. Minimum length tangent bundle curves at different scales (or
“viewing distances”) and different �h values. (A) Effect of �h. Shown here
are examples for two fixed inducers (½0; 0; 45	� and ½0; 8;�45	�) and
different values of �h. Note the convergence of the limiting shape for large
�h. (B) Effect of viewing scale. Shown here are examples for a fixed �h ¼ 1
and different scale values. To obtain this graph we have positioned the
two inducers at ½0; 0; 45	� and ½0; L;�45	�, with L ¼ 0:5; 1; 2; 4; 8,
computed the optimal curve, and then scaled each of them by a factor
of 8=L so their shape can be compared on the same plot. Note the
“flattening” with increased scale and the identical results to decreasing
�h. For comparison, we also plotted the corresponding elastica and
circular curves (in red and green, respectively), the latter also
demonstrating the deviation of our model from roundedness.

6. Note that since
R t1
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2

p
dt amounts to total length in the image

plane while
R t1
t0

ffiffiffiffiffi
_�2

p
dt represents total curvature in the image plane, �h in (5)

can be interpreted as balancing between these two terms.



notice that the left functional reflects the scaling up of the
visual input by L, while the right functional represents the
scaling down of �h by L. Hence, we conclude that changing
global scale has an effect inverse to changing �h. We
therefore expect a correspondence between L! 0 and
�h!1, and vice versa. The two panels of Fig. 8
demonstrate this correspondence experimentally, using
two symmetric inducers as initial conditions.

In addition to scaling issues, several properties of our
model can be pointed out regarding the six axioms of curve
completion mentioned in Section 2.1. First, since our
solution is not linked to any specific frame, it is trivially
isotropic. Note that since the rotated minimum length curve
also satisfies (10) (for ~c ¼ c and ~� ¼ �þ �, where � is the
angle of rotation), the solution is invariant under rotations.
Second, since the solution minimizes total arclength in T ðIÞ,
it must be extensible in that space and hence in the image
plane also. Third, since the completed curves can be
described by a differential equation (10), they clearly satisfy
the axiom of smoothness.

Obviously, the analysis of scale that was discussed
above indicates that our theory generates scale variant
solutions or, put differently, it does not satisfy the axiom of
scale invariance. Another axiom where our model departs
from prior solutions is the axiom of roundedness, since it is
easy to confirm that the case of constant curvature
(d�ds ¼ const) does not satisfy (10). At first sight these two
properties could undermine the utility of our model, but
given the refutation of both scale invariance and round-
edness at the perceptual and psychophysical level (as
discussed in Section 2.2), we consider these properties an
important advantage of our theory rather than a limitation.
That these properties were derived as emergent properties
rather than imposed as axioms is yet another benefit of our
approach as a whole.

4.5 Experimental Results

While this paper is primarily theoretical and while the full
utility of our proposed new theory requires psychophy-
sical verification (which is part of our short-term future
research), here we have experimented with our results by

applying them to selected instances of curve completion
problems. Some results are shown in Figs. 9, 10, and 11
and demonstrate that the completed curves correspond
well with the perceptual outcome (and, as is evident, with
the physical occluded curve as well). Clearly, determina-
tion of the “correct” �h is a matter of perceptual calibration
or anatomical and physiological considerations,7 both of
which are outside the scope of this theoretical and
computational paper. For the demonstrated examples we
have calibrated �h manually after setting the scale (i.e.,
pixel size in length units) arbitrarily. Inducer orientation
was measured manually from the images and all initial
data were fed to the numerical algorithm from Section 4.3.
In all results the parameters �0, �, and l were optimized
up to an error Eð�0; �; lÞ � 10�5. The resultant curves of
minimum arclength in T ðIÞ were then projected to the
image plane I and plotted on the missing parts of the
image. In several cases we also show a comparison to
other common models, such as the biarc, the cubic
interpolation, the elastica, and the Euler spiral models.

It should be emphasized that results such as those

shown in Figs. 9, 10, and 11, as good as they appear, do

not necessarily indicate that a certain model is better than

others. Indeed, until a comprehensive evaluation is carried

out against perceptual findings, no such conclusion can be

made. However, the presented results do suggest quanti-

tative methods to assess completions by computer vision

systems. In particular, the use of synthetic occluders (as in

Fig. 10) on a large collection of objects may facilitate an

evaluation of completion results against the statistics of

natural image contours. More importantly, quantitative

validation against perceptual findings (in the spirit of
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Fig. 9. Examples of curve completion via minimum length in the tangent bundle applied in different amodal and modal settings. Magenta completions
reflect �h ¼ 2 and pixel size (i.e., viewing scale) of 0.01 in all cases.

7. We stress that �h is not a free parameter of the theory that needs to be
fitted to each image, stimulus, or viewing condition. This constant needs to
be determined only once via psychophysical experiments (perhaps using
paradigms like those shown in Fig. 4). One may also reason about the value
of �h based on anatomical and physiological data. Although a nontrivial task,
this may be done by considering the density of neurons in the primary
visual cortex and their columnar and hypercolumnar layout, as well as
other anatomical parameters such as the cortical magnification factor,
magnification scaling, eccentricity, and the cortical extent of horizontal
connections neurons.



Fig. 11) could provide comparative evaluation of different

models vis-à-vis the goal of finding the “correct” percep-

tual completions (please refer again to Section 1 for the

discussion about the notion of “correctness” in this

context).

5 DISCUSSION AND FUTURE DIRECTIONS

This paper proposes a new theory of curve completion in
the unit tangent bundle, the latter being the space which
abstracts the early areas in the visual cortex where much
of the curve completion process presumably occurs.
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Fig. 10. Curve completion via minimum length in the tangent bundle (shown in magenta) applied in different natural scenes with synthetic occluders.
Pixel size in all examples was set to 0.01 and �h was set to 2. To compare our results to various curve completion algorithms we also present the
completions due to the biarc (green), cubic interpolation (red), elastica (blue), and Euler spiral (cyan) models for the same pixel size (note that in
some cases different models overlap and occlude each other). Please zoom in using the digital version to observe the differences better.

Fig. 11. Comparison to psychophysics. Completion as the curve of minimum length in the tangent bundle is shown (magenta) for four pairs of
symmetric inducers with boundary orientation � and ��, where � ¼ 20	; 30	; 40	; 50	 (ordered from left to right panel, top to bottom). Mode outputs are
plotted on top of the average of repeated completions by one human observer (reproduced from Fulvio et al. [11], their Fig. 4, observer 1). The
proportionality constant �h was set to 1.5 (for pixel size of 0.01) after it was calibrated to match the perceptual evidence in the first three cases. It was
then tested on the fourth (rightmost) case and compared to other models (biarc, cubic interpolation, elastica, and Euler spiral) for the same viewing
scale (i.e., pixel size). While this is by no means an exhaustive perceptual verification, it does emphasize that different models could make
significantly different predictions, especially when the orientation difference between the inducers increases.



Employing a universal principle of “minimum action”
which strives to minimize neural energy consumption, we
have shown that curve completion amounts to finding the
shortest admissible path in R2 � S1. We have proven
differential properties of this path, solved it analytically in
terms of elliptic integrals, showed how it can be found
numerically, and derived its perceptual properties.

As we have shown, the basic principle of minimal neural
energy consumption entails parametric-free completions8

that minimize a combination of both total curvature and
total length in the image plane (see Section 4). In this sense
our model naturally expresses two basic Gestalt principles
[54]. The first, the principle of good continuation, is often
formalized as minimization of curvature [51]. The second,
the principle of proximity, is naturally formulated as
minimization of total length. While such combinations have
been explored in both the perceptual literature (e.g., [10])
and the computational community (e.g., [53], [46], [56]), our
theory does so as a result of minimizing a single basic (and
nonvisual) principle, from which perceptual insights are
derived rather than imposed.

Since the tangent bundle is a natural space for examining
combinations of image plane properties (as we also discussed
in Section 4.4), it is natural to test additional completion
principles in T ðIÞ and explore their implications. For
example, one could attempt to study the “tangent bundle
curve of least energy” as a direct extension to the curve of least
energy (i.e., the elastica) in the image plane (e.g., [21]). Such a
criterion may reflect a biological mechanism which attempts
to minimize properties of the connections between neurons,
rather than the mere number of activated cells that represent
the completed curve. It could also relate to the curvature-
related fashion by which cells link to their neighbors [3]. In
either case, the fact that the medium in which our curves are
embedded is three-dimensional implies that their energy
might consist not only a bending energy but also a twisting
energy [30], [34]. Abstracting an infinitesimally thick rod in
3D space, a curve � would therefore be associated with an
energy described more formally by

Eð�Þ ¼ EBð�Þ þ ET ð�Þ ¼
Z
½a��ðsÞ2 þ b��ðsÞ2�ds; ð40Þ

where a; b are the elasticity coefficients of the rod, �� is the
curvature of � such that �2

� is proportional to the bending
energy EB, and �� is the torsion of � such that �2

� is
proportional to the twisting energy ET [30], [34]. Considered
in the image plane (i.e., in terms of the projected curve �),
(40) would amount to exploring a certain combination of
both total curvature of � and total change of curvature of � (as
would happen if one were to combine elastica [21], [35] and
the Euler spiral [27] in one model). Interestingly enough,
our early exploration of such directions indicates that a
unique solution to this problem requires boundary condi-
tions that include not only inducer position and orientation,
but also their curvatures, a type of condition that has been
speculated also in the perceptual literature [50], [49], [48]. A
full and rigorous investigation of such a theory is currently
underway as a part of our short term future research.

As illustrated in Figs. 9, 10, and 11, the completions that
are generated by our tangent bundle model often match the
desired perceptual outcome and the behavior of natural
image contours. Obviously, it is not expected that all curves
in natural images would belong to this family of curves (cf.,
Fig. 2B). Our results do suggest, however, that an examina-
tion of natural contour statistics in the context of curve
completion is an important topic. Following up on recent
initial work on this issue (e.g., [13]), this is another goal of
our short term future research.

One aspect of the curve completion problem that has
gained interest in recent studies is the “strength of the
perceptual completion” between two given inducers [26],
[11], [12]. Highly related to the grouping problem (cf.
Section 2.2), this topic too may be informed by our tangent
bundle theory. Since the total length of admissible curves in
the unit tangent bundle R2 � S1 represents the number of
active cells in V1 and since each neural computation carries
some measure of uncertainty, it may be possible to associate
each completed curve with a measure of total uncertainty
that is proportional to the arclength L in (5). We hypothesize
that the perceptual strength of a completed curve (in terms
of accuracy and consistency with human performance [11],
[12]) decreases with growing uncertainty, i.e., decreases
with the number of active cells. In other words, perceptual
strength is inversely related to L. Unlike the binary measure
of relatability [26], this proposed type of perceptual strength
is a graded and continuous geometrical measure for grouping
(cf. Section 2.2)) and it may be used to resolve grouping
decisions when multiple combinations are possible (as is the
case of most nontrivial completion scenes).

Finally, it is interesting to reflect on the link between our
work and early ideas of the Gestalt movement, and in
particular their notion of “tendency toward minimum
energy.” Inspired by Euler, Lagrange, Hamilton, and others,
who have shown that the central equations of mechanics
can be derived by a tendency toward minimum energy (or a
stationary state), Gestatalists like Kohler (e.g., [29]) hypothe-
sized that the principles of perception are also the outcome of
a “development in the direction of minimum energy” [29,
page 52], or what was encapsulated in the German word
Pragnänz, which sometimes is translated as “good form.” In
this paper we too have formulated a classical perceptual
organization problem in terms of a tendency toward
minimum energy. Unlike previous energy minimization
formulations of the same problem, however, we have done
so by an abstraction of what may be considered as the
“true” energy of a visual completed curve, namely, the
number of active orientation-selective cells in the primary
visual cortex. Whether or not this really is the appropriate
energy to use is left here as an open question, with the
observation that the tangent bundle framework offers many
interesting and more elaborate alternatives to explore the
curve completion problem.
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8. We reemphasize that �h is not a free parameter one needs to fit for each
image or viewing conditions. Rather, it is a constant that remains fixed (per
observer or even within a species) and therefore needs to be calibrated only
once.
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