
In the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2011

A fully automated greedy square jigsaw puzzle solver

Dolev Pomeranz Michal Shemesh Ohad Ben-Shahar

dolevp@cs.bgu.ac.il shemeshm@cs.bgu.ac.il ben-shahar@cs.bgu.ac.il

Computer Science Department, Ben-Gurion University of The Negev, Beer Sheva, Israel

Abstract

In the square jigsaw puzzle problem one is required to re-

construct the complete image from a set of non-overlapping,

unordered, square puzzle parts. Here we propose a fully au-

tomatic solver for this problem, where unlike some previous

work, it assumes no clues regarding parts’ location and re-

quires no prior knowledge about the original image or its

simplified (e.g., lower resolution) versions. To do so, we

introduce a greedy solver which combines both informed

piece placement and rearrangement of puzzle segments to

find the final solution. Among our other contributions are

new compatibility metrics which better predict the chances

of two given parts to be neighbors, and a novel estima-

tion measure which evaluates the quality of puzzle solutions

without the need for ground-truth information. Incorporat-

ing these contributions, our approach facilitates solutions

that surpass state-of-the-art solvers on puzzles of size larger

than ever attempted before.

1. Introduction

The popular jigsaw puzzle problem exists for many cen-

turies, long before it was first solved by a computer in

the 20th century. Given n jigsaw puzzle parts of an im-

age, it is required to reconstruct the complete image. Al-

though phrased as a game, this problem, which was proved

to be NP-complete [2, 7], serves a platform for many ap-

plications, e.g. in biological [14], molecular [22], text and

speech [12, 25], archaeological contexts [3, 10], and image

editing [4].

The traditional jigsaw puzzle problem assumes pieces of

various shapes, and indeed earlier computational work con-

sidered the problem in this form. The first jigsaw solver

proposed by Freeman and Garder in 1964 [8] was designed

to solve apictorial puzzles and was able to handle nine-piece

problems. By the end of the century, shaped-based solvers

were already able to reconstruct puzzles of more than 200

pieces [9]. The use of appearance and chromatic informa-

tion began only three decades after the work of Freeman

and Garder (e.g., [11, 6, 21, 24, 23, 13, 15]).

A major building block in most appearance-based puzzle

solvers evaluate the similarity between two parts, and the

strategies for doing so typically divide into two groups. One

approach compares the appearance of the abutting bound-

aries while using a formal distance measure between these

two vectors (e.g., [11, 6, 21, 24, 13, 15]). Alternatively, it

was suggested to use the entire part and measure its statis-

tical properties in order to group similar parts together [15]

or as a means to define pairwise similarity measures [11].

Once the similarity between two parts is estimated, differ-

ent classes of algorithms are employed to solve the puz-

zle, and in particular, previous methods have used greedy

algorithms [7, 15], dynamic programming [1], genetic al-

gorithms [21] and approximation algorithms on graphical

models [5].

Recently, Cho et al. [5] presented a probabilistic solver

which achieves approximated puzzle reconstruction via a

graphical model and a probability function that is maxi-

mized via loopy belief propagation. Since they lack a local

evidence term required for their graphical model, they em-

ployed two strategies that exploit prior knowledge - either

a dense-and-noisy evidence which estimates the low reso-

lution image from a bag of parts, or a sparse-and-accurate

evidence which assumes that a few parts, called “anchor

patches”, are given by an oracle (e.g., a human observer)

at their correct location in the puzzle. While only semi-

automatic, their approach was seminal in its ability to han-

dle puzzles with over 400 pieces.

In this paper we challenge the state-of-the-art in jigsaw

puzzle solving in several ways. We suggest a computational

framework that can handle in reasonable time square jigsaw

puzzles of size larger than ever attempted before. How-

ever, we completely exclude the use of clues, oracles, or

human intervention, as well as any use of prior knowledge

about the original image or simplified (e.g., lower resolu-

tion) versions of it. Despite these significant restrictions,

our approach achieves better than state-of-the-art perfor-

mance, and frequently succeeds in providing completely ac-

curate puzzle solutions.

9

Our puzzle solving framework is based on a greedy

solver, which works in several phases. First a compatibility

function is computed to measure the affinity between two

neighboring parts (as often done in other solvers as well).

Then the solver solves three problems - the placement prob-

lem, the segmentation problem, and the shifting problem.

The placement module places all parts on the board in an in-

formed fashion, the segmentation module identifies regions

which are likely to be assembled correctly, and the shift-

ing module relocates regions and parts to produce the final

result.

Our main contribution is a fully automated solver which

uses no clues, hints, or other prior knowledge whatsoever.

In addition, our contributions also include the proposal of

new and better compatibility metrics, as well as the intro-

duction of the concept of an estimation metric which evalu-

ates the quality of a given solution without any reference to

the original, ground-truth image. As we show, these metrics

become a critical tool that facilitates self evaluation in case

when no clues or prior knowledge are available. In what fol-

lows we first discuss these, as well as the rest of the metrics

involved in the solver.

2. Metrics

2.1. Compatibility Metrics

A compatibility metric is at the foundation of every jig-

saw solver. Given two puzzle parts xi, xj and a possible

spatial relation R between them, the compatibility function

predicts the likelihood that these two parts are indeed placed

as neighbors with relation R in the correct solution. With

R ∈ {l, r, u, d}, we use C(xi, xj , R) to denote the compat-

ibility that part xj is placed on either of the left, right, up,

or down side of part xi, respectively.

Optimally, one would wish to find a metric C such that

C(xi, xj , R) = 1 iff part xj is located to the R side of xi

in the original image and 0 otherwise. If such a function

exists, the jigsaw puzzle problem could be solved in poly-

nomial time by a greedy algorithm [7]. Motivated by the

above, we first discuss how one can measure the accuracy

of a compatibility function and then seek a compatibility

function C which is as accurate and discriminative as pos-

sible.

Measuring Compatibility Accuracy: In order to compare

between compatibility metrics, we denote the classification

criterion as the ratio between correct placements and the to-

tal number of possible placements. Similar to Cho et al. [5],

we define the correct placement of parts xi and xj accord-

ing to the compatibility metric C if part xj is in relation R
to part xi in the original image and if

∀xk ∈ Parts, C(xi, xj , R) ≥ C(xi, xk, R) . (1)

Recently, Cho et al. [5] evaluated five compatibility met-

rics, among which the dissimilarity-based compatibility

metric showed to be the most discriminative. Inspired by

both the dissimilarity-based metric and the characteristics

of natural images, we propose two new types of compatibil-

ity metrics, which will be described shortly after we review

the dissimilarity-based compatibility metric.

Dissimilarity-based Compatibility: The dissimilarity be-

tween two parts xi, xj can be measured by summing up the

squared color differences of the pixels along the parts’ abut-

ting boundaries [5]. For example, if we represent each color

image part in normalized LAB space by a K×K×3 matrix

(where K is the part width/height in pixels) then the dissim-

ilarity between parts xi and xj , where xj is to the right of

xi, can be defined as

D(xi, xj , r) =

K
∑

k=1

3
∑

d=1

(xi(k,K, d)− xj(k, 1, d))
2 . (2)

We do emphasize that dissimilarity is not a distance mea-

sure, i.e., D(xj , xi, R) is not necessarily the same as (and

almost always different than) D(xi, xj , R).
Although the dissimilarity-based metric was shown to be

the most discriminative among the tested metrics in Cho et

al. [5], the observation that it is related to the L2 norm of

the boundaries’ difference vector suggests that other norms

of the same difference vector could behave even better. In-

spired by the use of non Euclidean norms in image opera-

tions such as noise removal [19] or diffusion [20], and by

the observation that the L2 norm penalizes large boundary

differences very severely even though such large differences

do exist in natural images, we evaluated other Lp norms as

well. The average accuracy empirical results for the dis-

similarity metric based on various Lp norms are shown in

Fig. 1 and indicate clearly that the L2 is suboptimal, and

that the best results may be obtained with Lp norms with

p ≈ 0.3. While this is outside the scope of this paper, an

interesting question that emerges from this data is why does

performance break down for small p values, and why does

p ≈ 0.3 appear to provide optimal performance (see the

Discussion and Future Work section).

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8 X: 0.3
Y: 0.8648

p−Value

C
la

s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

Figure 1. Comparing dissimilarity-based metrics using different

Lp norms. For this test we used a database of 20 test images [5],

and analyzed each for the portion of correct part pairs that received

the highest compatibility score among other candidates. The plot

depicts the average classification accuracy of 20 images and shows

how performance peaks at p ≈ 0.3, with a value of 86%.

(Lp)
q Compatibility: As mentioned before, the optimal

10

compatibility function should also be as discriminative as
possible. In order to reflect the scattering of the dissimilar-
ity values when obtaining their compatibility measures,we
also experimented with different powers q of the Lp norms.
For example, the (Lp)

q compatibility for parts xi, xj where
xj is to the right of xi is defined as:

Dp,q(xi, xj , r) =

(

K
∑

k=1

3
∑

d=1

(|xi(k,K, d)− xj(k, 1, d)|)
p

)

q

p

.

(3)

Having these dissimilarity values, we also propose to ob-

tain its compatibility measure slightly differently than done

previously. In particular, we define

C(xi, xj , R) ∝ exp

(

−
Dp,q(xi, xj , R)

quartile(i, R)

)

, (4)

where quartile(i,R) is the quartile of the dissimilarity be-

tween all other parts in relation R to part xi. The quartile

normalization gives us valuable information about the scat-

tering of the compatibility function values, and in particular

emphasizes discriminative scattering.
Although the value of q does not affect the dissimilarity

classification accuracy, it does have a significant effect on
our solver’s performance. While Cho et al. [5] used p = 2
and q = 2 in their dissimilarity metric (Eq. 2), we found that
optimal results are achieved with power value q = 1/16 and

hence prefer to use a (Lp=3/10)
q=1/16, i.e.,

Dp,q(xi, xj , r) =

(

K
∑

k=1

3
∑

d=1

(|xi(k,K, d)− xj(k, 1, d)|)
3

10

)
5

24

.

(5)

Prediction-based Compatibility: While dissimilarity-

based metrics may be improved greatly by employing (Lp)
q

affinities, other possibilities may be promising as well. In

particular, as opposed to measure differences, one may at-

tempt to quantify how well one can predict the boundary

content of one part based on the boundary content of the

other. The better the prediction, the higher the compatibil-

ity of the two parts, a measure we call a Prediction-based

Compatibility.
Naturally, predictions over the boundaries can be made

using Taylor’s expansion. A first order prediction would
need an estimation of the derivative of each part at its
boundary, a computation that can be done numerically in
one of several ways. For example, employing backward
differences estimation using the last two pixels in each row
near the boundary, one can obtain a prediction of the first
pixel in the neighboring part. The quality of this prediction
can then be verified against the actual pixel value from the
second part by using any desired norm, and in general, us-
ing (Lp)

q for preselected p and q as discussed above in the
dissimilarity measure. Importantly, we repeat this computa-
tion for both parts in a symmetric fashion. For example, the
prediction metric for two parts xi, xj with relation r when

using (Lp)
q with p = 3/10 and q = 1/16 can be expressed

by the following expression

Pred(xi, xj , r) =
∑K

k=1

∑

3

d=1
[

([2xi(k,K, d)− xi(k,K − 1, d)]− xj(k, 1, d))
3

10+

([2xj(k, 1, d)− xj(k, 2, d)]− xi(k,K, d))
3

10

] 5

24

(6)

and obtain its compatibility measure as in Eq. 4.

Comparison of Compatibility Metrics: Fig. 2 shows

the comparison between compatibility metrics’ accuracy

on three different databases. Note that even though

dissimilarity-based and (Lp)
q metrics are directly related

in definition, (L3/10)
1/16 has achieved a significant im-

provement of 7% over the dissimilarity metric (86% vs.

79%). As shown, the prediction-based compatibility per-

forms very similarly, but further evaluation on additional

puzzle databases (see Sec 4) clearly indicates its superior-

ity.

78% 86% 86% 76% 85% 88% 74% 84% 86%
0.6

0.8

1
Compatibility Metric Types

432 parts 540 parts 805 parts

C
la

s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

Dissimilarity−based

(L
3/10

)
1/16

Prediction−based

Figure 2. Comparing compatibility metrics’ accuracy. For each

image in the test sets consisting of 20 images each, we find the

portion of correct part pairs that received the highest compatibility

score among other candidates. We show the average classification

accuracy of 20 images for each test set. Note how the (L3/10)
1/16

and the prediction-based compatibilities perform better than the

dissimilarity-based compatibility in all three sets.

Before we proceed to describe our jigsaw solver, we dis-

cuss two additional types of metrics. The first, the per-

formance metric, evaluates the performance of an approx-

imated solution by comparison to the ground truth [5]. The

second, a novel metric which we term the estimation metric,

evaluates the quality of an approximated solution without

prior knowledge about the original image. The motivation

for this kind of metric is driven from the need to assess the

quality of an approximated solution in the process of com-

puting it, when no access to ground-truth solution is avail-

able.

2.2. Performance Metrics

Performance metrics are used to evaluate the perfor-

mance accuracy of an approximated solution by comparison

to the correct (i.e., desired) solution. Cho et al. [5] intro-

duced three performance metrics, two of which are relevant

to our algorithm and are reviewed below.

11

Direct Comparison Metric: The direct comparison met-

ric calculates the ratio between the number of parts in the

approximated solution which are placed in their correct lo-

cation and the total number of parts [5].

Neighbor Comparison Metric: The neighbor comparison

metric calculates the ratio between the number of correct

neighbors placement for each part and the total number of

neighbors [5].

By construction, the direct comparison metric does not

tolerate parts which are not placed in their correct location,

and hence grants lower scores even to solutions that are as-

sembled correctly but are slightly shifted. Performance met-

rics’ accuracy results of Cho et al. and our solver are shown

in Fig. 3.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Diriect Comparison

Image Number

R
e
c
o
n
s
tr

u
c
ti
o
n
 A

c
c
u
ra

c
y

Cho etal

Our solver

5 10 15 20
0

0.2

0.4

0.6

0.8

1

Neighbor Comparison

Image Number

R
e
c
o
n
s
tr

u
c
ti
o
n
 A

c
c
u
ra

c
y

Cho etal

Our solver

Figure 3. Performance metrics’ accuracy comparison. We com-

pare our results with those reported by Cho et al. [5] in both the

direct measure (upper graph) and neighbor measure (lower graph).

Under the direct comparison measure Cho et al. average recon-

struction accuracy is lower than 10% while ours is 94%. Under

the neighbor comparison measure Cho et al. average reconstruc-

tion accuracy is 55% while ours is 95%.

2.3. Estimation Metrics

While the performance metrics evaluate the quality of

solutions in the presence of a ground truth image, the es-

timation metric is designed to provide such quality scores

without knowing the correct solution whatsoever. Given the

fact that we use no clues or prior information about the orig-

inal image, this is an essential tool which can be used during

the reconstruction process in order to improve the solver’s

final approximated solution. In this paper we introduce this

notion and suggest one estimation metric that is put to use

in our proposed puzzle solver.

The “Best Buddies” metric: Two parts xi, xj , their rela-

tion R1 and opposite relation R2 are said to be best buddies

iff the following holds:

∀xk ∈ Parts, C(xi, xj , R1) ≥ C(xi, xk, R1)

and

∀xp ∈ Parts, C(xj , xi, R2) ≥ C(xj , xp, R2) .

(7)

Intuitively, two parts are best buddies if both “agree” that

the other part is their most likely neighbor in a certain spa-

tial relation. The best buddies metric for a given approxi-

mated solution represents the ratio between the number of

neighbors who are said to be best buddies and the total num-

ber of neighbors.

Testing the correlation between the best buddies estima-

tion metric and the performance metrics reveals no correla-

tion to the direct performance metric (which is not based on

pairwise similarities) but a strong correlation to the neigh-

bor performance metric. Fig.4 depicts this relationship as

a scatter plot of the best buddies estimation metric vs. the

neighbor performance metric. Every dot in the graph repre-

sent a single puzzle solver solution, where the x-coordinates

and the y-coordinate denote the performance accuracy and

estimation accuracy, respectively. Each image in the set was

tested 10 times, totaling 200 sample points.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

neighbor comparison performance metric
b
e
s
t
b
u
d
d
ie

s
 e

s
ti
m

a
ti
o
n
 m

e
tr

ic

Figure 4. Correlation between the best buddies estimation met-

ric and the neighbor comparison performance metric. Every dot

in this 200 point graph represents a single puzzle solver solution,

where the x and y coordinates denote its performance value and

estimation value, respectively.

3. A greedy puzzle solver

Equipped with the different types of metrics discussed

above, we are now ready to describe our puzzle solver. At

its higher level, this solver divides the puzzle reconstruction

problem into three subproblems, and solves each of them

separately.

• The placement problem: Given a single part or a partial

constructed puzzle, find the position of the remaining

parts on the board.

• The segmentation problem: Given a placement of all

parts on the board, i.e. an approximated solution, di-

vide it to segments which are estimated to be assem-

bled correctly, disregarding their absolute location.

• The shifting problem: Given a set of puzzle segments,

relocate both segments and individual parts on the

board such that a better approximated solution is ob-

tained.

In what follows we describe algorithms for all these prob-

lems.

12

3.1. The Placer

As the first solver module, the placer is a greedy algo-

rithm that is given a single part or a partially constructed

puzzle, and places the remaining parts on the board in an

informed fashion. More specifically, given a greedy crite-

rion and a “seed” part (or a partial constructed seed puzzle),

the placer reconstructs the remaining puzzle parts around

the seed by iteratively applying the greedy criterion. Such

greedy criteria are discussed below.

Technically, the greedy procedure is affected by the

board’s dimensions such that piece placement is not allowed

to exceed the puzzle’s width or height. Furthermore, our

greedy criteria are also endowed with the heuristics that

empty puzzle slots with a larger number of occupied slots

(i.e., slots in which parts had been allocated), are more

informative, and hence should be allocated a puzzle part

sooner than others. Note that using this heuristic while

starting from a single seed part limits empty slots to have

at most two occupied neighbor slots, and hence that the

evolving constructed puzzle will preserve a roughly rect-

angular shape. If the seed is a partially constructed puzzle,

the placer would first complete it to a rectangular shape by

placing new parts in empty slots with more than two occu-

pied neighbor slots.

What greedy criteria can one use for placing parts in

slots? Given the potential of the best buddies estimation

metric (see Sec. 2.3), we propose to use it as a greedy place-

ment criterion as well. By using it, in each step the placer

chooses the empty slot and unallocated part which “agree”

to be best buddies among all empty slots and remaining un-

allocated parts. If there is more than one possibility, or none

at all, the algorithm then chooses the part with the highest

compatibility metric to its candidate neighbors1.

The results of using the best buddies metric as a greedy

criterion for the placer is shown in Figs. 5a and 7a and

clearly demonstrate that placements tend to contain regions

which are assembled correctly, but are often misplaced rel-

ative to each other. This is expected, since a compatibil-

ity function can only predict the likelihood of immediate

neighbors, rather than global arrangements or true locations

on the puzzle. This is also the motivation for the two subse-

quent phases of our solver, as described next.

Before we move to do so, one more comment is in place.

As opposed to previous work, our placement procedure is

guaranteed to place each puzzle part exactly once, rather

than more than once or even not at all, as could happen in

Cho et al. [5]. This is due to the fact that in their graphi-

cal model the exclusion term in the maximized probability

discourages parts from being used more than once, but does

not prevent that entirely, therefore allowing the repetition or

1In this case, if a candidate part is considered to an empty slot with

more than one allocated neighbor, its compatibility is computed by aver-

aging its individual compatibilities to each of these neighbors.

the complete dropping of some of the parts.

3.2. The Segmenter

Given a complete placement of all parts by the placer, we

are now looking for regions which are assembled correctly,

which we denote as segments. Clearly, although this would

be easier if the ground truth solution image was available,

here we care to consider again the stricter version of the

problem where no such solution is available for inspection.

Under such conditions we attempt to find these segments us-

ing a region growing segmentation algorithm [17] with ran-

dom seeds and a segmentation predicate based on the best

buddies metric (cf. Sec. 2.2). This means that two neighbor

parts will be in the same segment only if they are best bud-

dies. We have tested the segments defined by the segmenter

and found that 99.7% of the neighbors in each segment are

genuine neighbors in the original image. The results of this

second solver module, the segmenter, are shown in Figs. 5b

and 7b.

3.3. The Shifter

Once coherent solution segments are computed, we fi-

nally relocate the parts on the board such that a better puz-

zle solution is reconstructed. Towards that goal, the shifter

iteratively repeats the following steps:

1. It uses the current largest segment (Smax) in the most

recent reconstructed puzzle as a new seed while exe-

cuting the greedy placer once again. Note that since

the puzzle grows around the seed with no reference to

a particular position, this is equivalent to shifting Smax

to some better place as determined by the greedy place-

ment procedure.

2. Once the placer completes a new puzzle reconstruc-

tion, it performs the segmentation again.

This loop is repeated until the evaluation of the best buddies

metric reaches a local maximum.

4. Experimental Results

The following benchmark shows our solver performance

results. To obtain truly comparative results to the state-of-

the-art, we used the same database of 20 images from Cho et

al. [5], where each puzzle problem consists of 432 parts of

28×28 pixels. For these experiments we used a solver with

the prediction-based compatibility metric. For each puzzle

problem the solver is executed 10 times, each with a random

seed, and the solution selected is the one having the highest

best buddies estimation metric score. The average perfor-

mance metrics accuracy results for all 20 images are 94%
accuracy under the Direct comparison, and 95% under the

Neighbor comparison, which is a significant improvement

over past methods (lower than 10% and 55%, respectively,

13

placer results segmenter results final solution

(2-a) (2-b) (2-c)

(3-a) (3-b) (3-c)

Original Image

Image 2

Image 3

Figure 5. Examples of results of our solver with the same images used by Cho et al. [5]. For each image i (as numbered in the original

collection), panel i− a shows the initial placement results of the greedy placer. Panel i− b shows the segments of panels i− a (depicted

by different colors). Panel i− c shows the final result of the shifter. In both cases the results are similar to the original image (shown on the

right). Image 2 direct and neighbor reconstruction accuracy are 82% and 81%, respectively. Image 3 was constructed with 100% accuracy.

in Cho et al. [5]). Importantly, we were able to obtain 100%
accurate solutions for 65% of the images, as can be seen in

the supplementary material. The contribution of the shift-

ing module was significant, since the direct and neighbor

accuracy scores were 35% and 74% after the placer’s initial

reconstruction and prior to the shifting phase. On average,

it took the solver roughly 1.2 minutes (on a desktop with a

3.20 GHz CPU with 4 GB RAM) and 6 iterations to gen-

erate a solution. Fig. 5 shows our solver’s results for two

images. In addition to the final result, this figure also shows

the results of the initial placement by the placer, the initial

segmentation by the segmenter, and the final result after the

shifter.

As shown in Fig. 6, the final results of our solver are

superior to the state-of-the-art (Cho et al. [5]) even though

it never uses externally provided clues. Note in particular

how some puzzle problems are not solved perfectly by pre-

vious methods even after being provided with 10 anchors,

while our approach does so successfully with no externally

provided prior whatsoever. Clearly, comparing these two

methods on equal grounds (shown in columns a,d of Fig. 6)

shows significant qualitative improvement.

Fig. 7 shows our solver’s results on puzzle problems of

various part numbers, including sizes never attempted be-

fore. We used two additional databases of 20 images, each

divided to parts of size 28×28 pixels each. The first, divided

to 540 parts, was taken from McGill image database [16].

The second, divided to 805 parts, was self created (all im-

ages can be inspected in the supplementary material). The

average reconstruction accuracy for the direct and neigh-

bor comparison is 83% and 91% respectively for the 540

parts database, while 50% of the images are constructed

with 100% accuracy. Here it took an average of 1.9 minutes

and 6.5 iterations to generate a solution. The average recon-

struction accuracy for the direct and neighbor comparison is

80% and 90% respectively for the 805 parts database, while

35% of the images are constructed with 100% accuracy. In

this case solutions were generated on average after 5.1 min-

utes and 8 iterations. While performance is expectedly de-

creasing, note how it surpasses previously reported perfor-

mance (e.g., [5]) for problem size as large as 432 parts. In

addition, Fig. 7 shows two examples of puzzles whose size

is an order of magnitude larger. An exhaustive set of results

is shown in the supplementary material and we note that the

jigsaw solver code and images are available for the use of

the community [18].

5. Discussion and Future Work

We presented a new greedy solver for the (square) jig-

saw puzzle problem by employing part placement, region

segmentation, and shifting phases, all informed by a novel

part compatibility and solution estimation measures. Un-

like previous work, our solver uses no clues or priors about

the original image or the problem solution, and it requires

no manual interaction, yet it still exhibits much improved

results compared to the state-of-the-art. Arguably, the abil-

ity of our solver to provide successful solutions for puz-

zles whose size is an order of magnitude larger than ever

attempted before despite using no clues, hints, or other pri-

ors, implies that this problem may be simpler than previ-

ously thought.

Several main issues still deserve further investigation in

the context of our solver and jigsaw puzzle solving in gen-

eral. For example, formulating compatibility metrics that

14

dense-and-noisy sparse-and-accurate sparse-and-accurate Our solver Original Image

no anchors 2 anchors 100% accuracy

(8-a) (8-b) (8-c) (8-d) Image 8

(20-a) (20-b) (20-c) (20-d) Image 20

sparse-and-accurate sparse-and-accurate sparse-and-accurate Our solver Original Image

no anchors 2 anchors 10 anchors 100% accuracy

(18-a) (18-b) (18-c) (18-d) Image 18

Figure 6. Comparison of our results to the state-of-the-art. Shown are the results of Cho et al. [5] for both their dense-and-noisy local

evidence, and sparse-and-accurate local evidence with various numbers of anchors. Note that in some cases, even 10 anchors provide

inferior results to those obtained by our solver (with no externally provided prior whatsoever). Clearly, comparing these two methods on

equal grounds (i.e., with no externally provided clues, shown in columns a,d), demonstrates significant qualitative improvement.

can generalize compatibilities to failure cases (e.g., around

roughly homogeneous image regions; see supplementary

material) would clearly achieve improved results. Further-

more, a critical issue for consideration is the choice of initial

seed, which has great effect over the final solution. Identi-

fying a criteria that successfully predict a good seed (as op-

posed to repeated random selections) could help reduce the

solver’s computational cost. Finally, while the degradation

effect of increasing the number of parts has been explored

empirically in the puzzle solving community, much less in-

sight has been obtained about the effect of part size, or how

uncertainty regarding parts’ appearance could affect the so-

lution. We believe that studying such issues will improve

solvers’ accuracy significantly, and will contribute greatly

to the problem of jigsaw puzzles in general.

Acknowledgments

This work was funded in part by the US Air Force European Office of

Aerospace Research and Development grant number FA8655-09-1-3016,

the Israel Science Foundation (ISF) grant No. 1245/08 and the European

Commission in the 7th Framework Programme (CROPS GA no 246252).

We also thank the generous support of the Frankel fund, the Paul Ivanier

center for Robotics Research and the Zlotowski Center for Neuroscience

at Ben-Gurion University.

References

[1] N. Alajlan. Solving square jigsaw puzzles using dynamic

programming and the hungarian procedure. American Jour-

nal of Applied Sciences, 11:1942–1948, 6 2009. 9

[2] T. Altman. Solving the jigsaw puzzle problem in linear time.

Applied Artificial Intelligence, 3(4):453–462, 1990. 9

[3] B. J. Brown, C. Toler-Franklin, D. Nehab, M. Burns,

D. Dobkin, A. Vlachopoulos, C. Doumas, S. Rusinkiewicz,

and T. Weyrich. A system for high-volume acquisition and

matching of fresco fragments: Reassembling Theran wall

paintings. ACM Transactions on Graphics, 27(3), 2008. 9

[4] T. S. Cho, S. Avidan, and W. T. Freeman. The patch trans-

form. IEEE Trans. Pattern Anal. Mach. Intell., 32(8):1489–

1501, 2010. 9

[5] T. S. Cho, S. Avidan, and W. T. Freeman. A probabilistic

image jigsaw puzzle solver. In Proc. CVPR, pages 183–190,

2010. 9, 10, 11, 12, 13, 14, 15

[6] M. G. Chung, M. M. Fleck, and D. A. Forsyth. Jigsaw puz-

zle solver using shape and color. In In Proceedings of the

International Conference on Signal Processing, 1998. 9

[7] E. Demaine and M. Demaine. Jigsaw puzzles, edge match-

ing, and polyomino packing: Connections and complexity.

Graphs and Combinatorics, 23:195–208, 2007. 9, 10

[8] H. Freeman and L. Garder. Apictorial jigsaw puzzles: the

computer solution of a problem in pattern recognition. Elec-

15

placer results segmenter results final solution

(7-a) (7-b) (7-c)

(a) (b) (c)

(a) (b) (c)

Original Image

Image 15 (805 parts)

Image 1 (2360 parts)

Image 1 (3300 parts)

Figure 7. Selected results of our solver for larger puzzle problems. The first row shows a result for a puzzle containing 805 parts, solved

with 100% accuracy. Please refer to the text for average solution performance on the entire database of 540 and 805 parts puzzles. The

second and third examples show a single solution for puzzle of 2360 and 3300 parts, respectively, (each 28 × 28 pixels in size), where

performance was 0.21% and 95% accurate in terms of the direct and neighbor metrics for the second example and 100% for the third.

tronic Computers, IEEE Transactions on, 13:118–127, 1964.

9

[9] D. Goldberg, C. Malon, and M. W. Bern. A global approach

to automatic solution of jigsaw puzzles. In Symposium on

Computational Geometry, pages 82–87, 2002. 9

[10] D. Koller and M. Levoy. Computer-aided reconstruction and

new matches in the forma urbis romae. Bullettino Della

Commissione Archeologica Comunale di Roma, 15:103–

125, 2006. 9

[11] D. Kosiba, P. Devaux, S. Balasubramanian, T. Gandhi, and

K. Kasturi. An automatic jigsaw puzzle solver. In Pattern

Recognition, volume 1, pages 616–618, 1994. 9

[12] M. Levison. The computer in literary studies. In A. D. Booth,

editor, Machine Translation, pages 173–194, 1967. 9

[13] M. Makridis and N. Papamarkos. A new technique for solv-

ing a jigsaw puzzle. In ICIP, pages 2001–2004, 2006. 9

[14] W. Marande and G. Burger. Mitochondrial dna as a genomic

jigsaw puzzle. In Science, volume 318, page 415, 2007. 9

[15] T. R. Nielsen, P. Drewsen, and K. Hansen. Solving jigsaw

puzzles using image features. Pattern Recognition Letters,

29(14):1924–1933, 2008. 9

[16] A. Olmos and F. A. A. Kingdom. McGill calibrated colour

image database. http://tabby.vision.mcgill.ca., 2005. 14

[17] I. Pitas. Digital Image Processing Algorithms and Applica-

tions. John Wiley and sons, INC., 2000. 13

[18] D. Pomeranz, M. Shemesh, and O. Ben-

Shahar. A fully automated greedy square jig-

saw puzzle solver MATLAB code and images.

https://sites.google.com/site/greedyjigsawsolver/home,

2011. 14

[19] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation

based boise removal algorithms. Physica D, 60:259–268,

1992. 10

[20] B. Tang, G. Sapiro, and V. Caselles. Diffusion of general

data on non-flat manifolds via harmonic maps theory: The

direction diffusion case. Int. J. Comput. Vision, 36(2):149–

161, 2000. 10

[21] F. Toyama, Y. Fujiki, K. Shoji, and J. Miyamichi. Assembly

of puzzles using a genetic algorithm. In ICPR, pages 389–

392, 2002. 9

[22] C.-S. E. Wang. Determining molecular conformation from

distance or density data. PhD thesis, MIT, 2000. 9

[23] M. Weiss-Cohen and Y. Halevi. Knowledge retrieval for au-

tomatic solving of jigsaw puzzles. In Computational Intel-

ligence for Modelling, Control and Automation, 2005 and

International Conference on Intelligent Agents, Web Tech-

nologies and Internet Commerce, International Conference

on, volume 2, pages 379–383, 2005. 9

[24] F.-H. Yao and G.-F. Shao. A shape and image merging tech-

nique to solve jigsaw puzzles. Pattern Recognition Letters,

24(12):1819–1835, 2003. 9

[25] Y.-X. Zhao, M.-C. Su, Z.-L. Chou, and J. Lee. A puz-

zle solver and its application in speech descrambling. In

Proceedings of the 2007 annual Conference on Interna-

tional Conference on Computer Engineering and Applica-

tions, pages 171–176, 2007. 9

16

