
ADATO, BEN-SHAHAR : SPECULAR FLOW AND SHAPE IN ONE SHOT 1

Specular Flow and Shape in One Shot
Yair Adato
http://www.cs.bgu.ac.il/~adato

Ohad Ben-Shahar
http://www.cs.bgu.ac.il/~ben-shahar

Department of Computer Science,
Ben-Gurion University of the Negev,
Israel

Abstract
The reconstruction of specular shape from images is a very challenging task, es-

pecially when the illumination environment is unknown. In such cases, the problem
becomes more tractable once the camera observes relative motion between the object
and the environment, which induces a type of optical flow field that has become known
as specular flow. Unfortunately, however, the estimation of specular flow from image
sequences is even more challenging, putting in question the effectiveness of the shape
from specular flow approach as a whole. Here we show that instead of the traditional
(and somewhat futile) process of first estimating the specular flow and then using it for
the recovery of specular shape, an approach that addresses these two inference problems
simultaneously improves the estimation of both structures. We formulate the problem in
a variational setting, we identify and address numerical issues unique to its application
on specular flows, and we employ a polar representation of motion, all to result in the
first ever practical method to compute specular shape from real image sequences under
unknown illumination.

1 Introduction
An image of a purely specular object is just a distortion of its surrounding illumination envi-
ronment, hence one can create any given image from any given specular object by a proper
manipulation of the environment [10]. Therefore, when only little (or nothing) about the
illumination environment is known, inferring the geometrical structure of a specular surface
becomes a hard problem. While most existing algorithms for specular shape reconstruction
indeed assume known or calibrated illumination, recent studies have addressed the prob-
lem without such knowledge by exploiting relative motion between the observed object, the
camera, or the environment. In the image plane such motion induces a specular flow – the
optical flow of observed specular reflections – which has been shown to be independent of
environment content and therefore to facilitate shape reconstruction (e.g.,[1, 2, 9, 17, 22]).

The shape from specular flow (SFSF) approach follows the intuitive hierarchical thinking
that was advocated by Marr [13] and guided generations of researchers of structure from mo-
tion (and others): First, estimate the relevant (specular) flow in the image plane. Next, exploit
it for (specular) shape recovery. Theoretically, this framework allows dense reconstruction
of any general smooth specular object assuming no prior knowledge about the object or the
content of the illumination environment.

Unfortunately, there are severe practical difficulties to this type of approach. The most
critical of which is the ability (of the lack thereof) to reconstruct specular flow reliably from
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image sequences. As argued in the past, specular flows are optical flows by definition and
yet, they possess certain properties that prevent optical flow algorithms from estimating them
reliably or reasonably [3]. It is well known, for example, that specular flows undergo unique
singularities at (or near) the projection of parabolic lines, where reflected features are created
and annihilated in pairs [2, 12, 23]. In practice, this so called parabolic singularity [3] drives
virtually all optical flow algorithms into global qualitative errors across the image plane.
The same problem is revealed in related methods also, and is coped with by assuming no
parabolic regions (e.g., [16, 18]) or by explicit surface modeling (e.g., [15, 17]).

It should be noted that even if the flow is assumed to be known and perfect (that is,
without errors), the reconstruction process itself is not devoid of practical issues, since its
reliance on the solution of partial differential equations requires enough initial conditions.
How to extract these data from the specular flow (or from other image cues) remains an open
question.

In this work we propose an alternative approach that overcomes many of the problems
above. The key element in our proposal is the estimation of specular flow and surface ge-
ometry simultaneously. The rational is simple – each structure incorporates constraints that
could assist in the estimation of its counterpart, thereby limiting the potential deviation of
both from the desired outcome. We show that this strategy becomes possible by endowing
the classical optical flow assumptions for optical flow estimation (e.g., brightness constancy,
piecewise smoothness) with additional constraints that emerge from surface geometry con-
siderations (e.g., object smoothness and expected behavior at surface boundaries) and those
that reflect the imaging model that links the shape to the specular flow. As it turns out, for-
mulating the problem in this way allows us to suggest an algorithm which does not require
any prior initial (shape) conditions. To our best knowledge, the suggested algorithm is the
first to recover general dense specular shape (with no self-reflections), including objects that
contain parabolic lines, directly from image sequences under unknown illumination. We do
note that since the relationship between the flow and the shape suffers an intrinsic ambiguity,
the recovery is only up to a family of surfaces.

2 Previous work
Most of the specular shape from motion studies have considered sparse illumination en-
vironments, and quite often just a single light source. When motion is incorporated (e.g.,
by changing the viewpoint or moving the object or the light source) under calibrated illu-
mination, one can track the isolated specular highlights to exploit constrains between the
surface normal, viewing direction, and the illumination direction [7, 23, 25]. This facilitates
shape reconstruction in sparse locations only, a limitation which was initially addressed by
extended motion sequences, object modeling, or deep regularizations (e.g., [12, 14, 19]).

To cope with dense reconstruction of specular shape in unknown natural illumination en-
vironment, a recent line of research has proposed to exploit the specular flow [2, 15, 23].
Perhaps the most rigorous of these recent studies is the Shape-from-Specular-Flow (SFSF)
approach [1, 2, 22], where the authors have derived a system of non-linear PDEs (SFSF
equation) which expresses the relationship between the specular flow, the shape of the spec-
ular object, and its motion relative to the environment. Solving SFSF equation provides the
sought-after shape assuming a particular imaging model and enough initial conditions. In
most cases, however, it is not known how to solve SFSF equation or how to obtain the initial
conditions. Some progress related to the former problem was presented by Canas et al. [9],
who proposed to represent the unknown shape via the field of its reflection vectors, r ∈ S2
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Figure 1: Evaluation of the basic algorithm. (a) The setup: a specular surface is observed
orthographically in a distant unknown illumination environment. (b) A real specular object
with ground truth data from [3]. (c) A sample frame observed from the object. (d) Ground
truth shape data. (e) Estimate shape using our basic algorithm.

(see Fig. 1-a). Interestingly, although this field is a straight forward extension of the sur-
face normal field (when the viewing direction is fixed), this apparently simple change of
representation yields a linear form for the SFSF equation:

(Dr(x))u(x) = ω× r(x), (1)

where Dr(x) , ∂r(x)/∂x is Jacobian of the reflection map, u = (u,v) is the specular flow,
ω is the environment rotation axis. Being linear, this version of the SFSF equation offers
better opportunities for easier solutions in a wider range of cases, although initial conditions
are still needed for each integral curve of the specular flow.

Regardless of which SFSF one attempts to solve, one question remains – how can one
measure or estimate the specular flow reliably and accurately enough from image sequences.
Since specular flows are, by definition, optical flows [11], it was first proposed to employ
optical flow algorithms for this task (e.g., [1, 9]). Unfortunately, however, this is a poor
choice. Indeed, as was argued recently [3], existing optical flow algorithms fail on specular
flow data primarily because their regularization terms misrepresents the parabolic singulari-
ties and the significant variations in the flow magnitude. Alternatively, it was also suggested
to avoid estimating the dense specular flow directly and instead to find a sparse set of cor-
responding reflection points in the image sequence which are far enough from parabolic
singularities [17]. Here, however, not only that finding correspondence between specular re-
flections is difficult, the completion of data between these points requires surface modeling
(e.g., as quadratic forms), which inevitably introduce additional inaccuracies.

As implied above, in this work we suggest to couple the estimation of dense specular
flow and the reconstruction of the corresponding specular shape as tightly as possible in the
same computational framework. The computation of two structures at once as a mean to
exploit additional constraints is a principle that is used occasionally in computer vision, and
it has been employed in the past for inferring structure and motion (e.g., [24]), motion and
depth (e.g., [5]), optical flow and camera calibration (e.g., [21]), etc. In our case, this “one
shot” approach is shown to improve the result of both inference problems, and in particular,
to bring us one step closer to a practical shape from specular flow algorithm even in the
presence of parabolic lines and parabolic singularities and directly from image sequences.

3 Simultaneous specular flow and surface estimation
Consider the now classical variational approach for optic flow (e.g. [6, 8, 11]) but incorpo-
rate into the energy functional constraints between the sought-after specular flow and the
unknown surface that gives rise to it. Formally, we proposed to consider an energy mini-
mization problem of the following type

Citation
Citation
{Adato, Zickler, and Ben-Shahar} 2010{}

Citation
Citation
{Horn and Schunck} 1981

Citation
Citation
{Adato, Vasilyev, Ben-Shahar, and Zickler} 2007

Citation
Citation
{Canas, Vasilyev, Adato, Zickler, Gortler, and Ben-Shahar} 2009

Citation
Citation
{Adato, Zickler, and Ben-Shahar} 2010{}

Citation
Citation
{Sankaranarayanan, Veeraraghavan, Tuzel, and Agrawal} 2010

Citation
Citation
{Wedel, Cremers, Pock, and Bischof} 2009

Citation
Citation
{Basha, Moses, and Kiryati} 2010

Citation
Citation
{Valgaerts, Bruhn, and Weickert} 2008

Citation
Citation
{Black and Anandan} 1991

Citation
Citation
{Brox, Bruhn, Papenberg, and Weickert} 2004

Citation
Citation
{Horn and Schunck} 1981



4 ADATO, BEN-SHAHAR : SPECULAR FLOW AND SHAPE IN ONE SHOT

argmin
u,r

E(u,r) = argmin
u,r

∫
Ω

E f low(dI,u)+Esur f ace(u,r)dx (2)

where Ω is the image domain, dI represents image derivatives (at any desired order), and u
and r are the sought-after specular flow and specular surface, respectively. In order to formu-
late the constraints between the unknown surface and flow, one should choose an imaging
model. We follow the model proposed in the SFSF literature [1, 2, 9, 22], to enjoy the
advantages of the linear SFSF equation (Eq. 1).

3.1 The basic energy functional
Let us now develop the E f low and Esur f ace components for Eq. 2. Clearly, the specular
flow, being an optical flow, should satisfy the popular brightness constancy assumption
(BCA) [11]. As a regularization, let us also apply the standard piecewise smoothness con-
straint 1. Additionally, let both these constraints considered under a robust panelizer function
ψ to better handle outliers and permit discontinuities in the flow [6]. We obtain:

EBCA = ψ((I(x+u,y+ v, t +1)− I(x,y, t))2) Esmooth f = ψ(‖∇u‖2 +‖∇v‖2) . (3)

Moving on to consider the surface, the basic constraint here is derived from the linear SFSF
equation [9] which expresses the relation between the flow, the axis rotation ω = (ω1,ω2,ω3)
and the surface. By manipulating Eq. 1 and using robust function ψ we obtain

Ere f =ψ((∇ra ·u−ω3rb+ω2rc)2)+ψ((∇rb ·u+ω3ra−ω1rc)2)+ψ((∇rc ·u−ω2ra+ω1rb)2) . (4)

where r = (ra,rb,rc) is the reflection vector field expressed by its three coordinates at each
point. Next, we apply similar regularization to the surface by minimizing either its first or
second derivatives. We also remember that r must be unit length, one can regularize by

Esmoothr = ψ(‖∆r‖2) Ecoherencer = (‖r‖2−1)2 . (5)

Note that no robust function is incorporated into Ecoherencer since no slack is desired in
satisfying the unit length constraint.

Finally, the surface boundaries can also be exploited since the geometry of specular re-
flection dictates that under orthographic projection the reflection vectors along the occluding
boundary must be (0,0,−1). Putting it all together we obtain the following problem

argmin
u,r

E(u,r) = argmin
u,r

∫
Ω

EBCA +α1Esmooth f +β (Ere f +α2 Esmoothr )+Ecoherencer dx

s.t. r(x) = (0,0,−1) ∀x ∈ ∂r .
(6)

In this equation, the parameters αi control how deep would be the flow and surface regu-
larizations while β represents the confident in the reconstructed surface (which can change
over the time course of the computation).

Concluding this discussion, solving Eq. 6 is the heart of our proposed approach. Al-
though this appears to be a complicated exercise, we soon demonstrate how it can be done in
ways similar to previous methods from the optical flow literature (e.g., [8]), with complexity
different only by a constant factor.

3.2 Optimization and implementation
Recall that our goal is to find u and r that minimize Eq. 6 when the input includes two con-
secutive image frames (induced by a known rotation vector ω). The standard way of doing

1At this point this is a deliberate act of compromise, since it was already argued in the past that such a regularizer
models parabolic singularities very poorly [3]. We return to this issue in Sec. 5.
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so is solving the corresponding Euler Lagrange (EL) equations that describe the necessary
conditions for an extremum of the functional. For better readability, we assuming that ψ in
Ere f is quadratic, and we can write the EL equations of Eq. 6 as follows

ψ ′(I2
u )IxIu +β (|rx|2 u+ rx · ryv+ζ (x))−α1div(ψ ′(|∇u|2 + |∇v|2) ·∇u) = 0

ψ ′(I2
u )IyIu +β (

∣∣ry
∣∣2 v+ rx · ryu+ζ (y))−α1div(ψ ′(|∇u|2 + |∇v|2) ·∇v) = 0

−ω3ρb +ω2ρc− (ρau)x− (ρav)y +2ra(|r|2−1)−α2div(ψ ′(|∇r|2) ·∇ra) = 0
ω3ρa−ω1ρc− (ρbu)x− (ρbv)y +2rb(|r|2−1)−α2div(ψ ′(|∇r|2) ·∇rb) = 0
−ω2ρa +ω1ρb− (ρcu)x− (ρcv)y +2rc(|r|2−1)−α2div(ψ ′(|∇r|2) ·∇rc) = 0

(7)

where ζ (∗) = (ω3rb−ω2rc)ra
∗+(ω1rc−ω3ra)rb

∗+(ω2ra−ω1rb)rc
∗ , ∗ ∈ x,y

I∗ = ∂∗I(x+u,y+ v, t +1), Iu = I(x+u,y+ v, t +1)− I(x,y, t)
ρa = ∇ra ·u−ω3rb +ω2rc, ρb = ∇rb ·u+ω3ra−ω1rc, ρc = ∇rc ·u−ω2ra +ω1rb

As can be suspected, solving these equations as is may be too complicated and numeri-
cally sensitive. We therefore propose to solve them using a dual fixed point iteration. More
precisely, we suggest to iterate over two computations - one in which we fix the reflection
vectors (i.e., the description of the surface) while estimating the flow, and another where we
fix the flow while estimating the reflection vectors. While this stabilizes the computation, it
does not deal with the non convexity of the problem and hence, similar to previous optical
flow algorithms (i.e., [8]), we employ a multi-scale approach to avoid local minima. In each
scale the EL equation is linearized, represented as a sparse matrix, and solved efficiently
using iterative linear solvers. Note that in the worst case the size of this matrix can be (3N)2

where N is the number of pixels. This size is only a constant factor larger than the (2N)2 size
in [8] and the numbers of non zero entries is also larger by a constant factor. Empirically,
the time spent on the computation is not significantly different either, despite the apparently
more complex expressions.

Like all fixed point iterations, initial guess must be provided to jump-start the computa-
tion. Fortunately, the multi-scale approach allows very rough initial guesses. In our imple-
mentation, we set the initial specular flow field u simply to zero. The initial guess for the
reflection field r is a set to those vectors induced by a bounding sphere to the shape to be
recovered. Indeed, different initial spheres might result in different recovered specular ob-
jects, as would be expected from the ambiguity of solutions up to a certain family of surfaces
(see Sec. 6). Finally, incorporating the boundary constraints, we simply set all reflection
vectors along the boundary points to (0,0,−1) at each scale of the pyramid. Note that unlike
previous algorithms for shape from specular flow (cf. [1, 9]), our suggested algorithm does
not require any initial conditions for the unknown specular shape.

4 The challenge of parabolic singularities
Our evaluation shows that the basic algorithm suggested above successfully estimates the
flow and recovers the surface’s structure, as long as the latter does not contain parabolic
lines (see Figs. 1 and 3). When the surface in question does contain parabolic curves,
and the corresponding specular flow exhibits parabolic singularities, the suggested method
perform poorly, similar to the application of any of the original SFSF algorithms [1, 2, 9, 22]
on specular flows measured with any available optical flow algorithm. Two reasons stand out
for this failure. The first is the effect of standard optical flow regularizations and the second
being the destructive influence of the standard application of the multi-grid approach.

As already discussed recently in [3], the piecewise smoothness assumption used so often
in the optical flow literature conflicts the nature of the specular flow. Indeed, while the for-
mer prefers smooth behavior and slow variations almost everywhere, specular singularities
exhibits dramatic growth in flow magnitude combined with a sudden 180 degree orientation
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change. As a result, most optical flow algorithms tend to underestimate the flow’s magnitude
in these regions, and frequently damps it to zero in order to generate a consistent solution
(according to the model). This results in global and qualitative distortions in flow estimations
which entail severe shape estimation in subsequent SFSF algorithms. In our case, these two
interdependent effects manifest themselves at the same time in the same algorithm.

In addition to the effect of bad regularization, the implementation using multi-scale ap-
proach confounds the computation further. To understand this, consider the flow structure
along a curve crossing a parabolic singularity. The flow components, u and v, are grow-
ing fast along this curve till the curve is crossing the parabolic region. At that point, the
sign of each component is flipped. In the sampled discrete flow this induces some unknown
large discontinuity in each component. Consider now the interpolation of flow vectors when
moving between different levels of the multi-scale pyramid. Clearly, flow samples across
the singularity will cancel out in the interpolation and yield small values for the next level.
Hence, at end in the proximity of the parabolic singularity, flow vectors will be rather small
instead of representing the genuine structure. Needless to say that these errors propagate
even more powerfully to the computation of flow derivatives around parabolic singularities,
which inject additional noise and instabilities to the numerical calculations.

5 An enhanced one-shot algorithm
As may be observed from the description above, much of our problems with the basic algo-
rithm relate to the magnitude and orientation aspects of the flow. This suggests that perhaps
the thinking of the flow in the traditional Cartesian representation is wrong, where a shift in
representation may solve some of the problems. Recently, we have advocated such a shift
in the representation of motion from Cartesian to the polar coordinate system [4]. We have
demonstrated its advantages especially when the estimated motion vector field is relatively
complex, as indeed is the case with specular flows. Furthermore, we have argued that the po-
lar representation preserves the independence of the magnitude and orientation components
more naturally. We have also demonstrated that the statistical and physical properties of the
flow field can be integrated into the energy functional more directly in the polar representa-
tion. Hence this approach allows handling motion fields of different nature much more easily
and accurately. In the following we exploit these advances to propose an enhanced one-shot
algorithm that estimates specular flow and specular shape simultaneously while addressing
the two problems from Sec. 4, i.e., even if the shape contains parabolic lines and the flow
includes parabolic singularities.

Once a specular flow is represented in polar coordinates, it is possible to see from the
statistics of its two components (i.e., magnitude and orientation) that their derivatives behave
differently and hence deserve different penalizer functions and regularizations [4]. At the
same time, the polar representation makes the use of such different functions quite straight
forward. Here we take advantage of these possibilities by regularizing the flow’s orientation
to a typical piecewise smooth behavior and hence using its first derivative. At the same time,
we would like to permit the flow’s magnitude much greater variations (or else parabolic sin-
gularities are inhibited and distorted) and hence would prefer to regularize it via its second
derivative. We therefore reformulate the classical Horn and Schunck [11] optical flow func-
tional using polar coordinates and according to the observations just made. We obtain [4]

E(θ(x,y),m(x,y)) =
∫

Ω
ψ(I(x+mcosθ ,y+msinθ , t +1)− I(x,y, t))
+αθ ψ(∇‖θ‖2)+αmψm(‖∆m‖2)dx such that m > 0

(8)

where θ(x,y) and m(x,y) are the orientation and magnitude of the flow, respectively, ψθ

and ψm are robust penalty functions (which could be different due to the prior statistics)
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and αθ and αm are weight parameters that control the desired regularization strength in
each components. To simplify the optimization of Eq. 8, we farther define the following
equivalence relation ∼ over the values of m and θ . Moreover, to avoid the problems due to
the periodic nature of θ we further re-formulate Eq. 8 by over parameterizing the orientation
component with two auxiliary projections that must remain coupled via an additional flow
coherence (coherence f ) constraint:

s(x,y) = sinθ(x,y)
c(x,y) = cosθ(x,y)

}
subject to s2 + c2 = 1 (m,θ)∼

{
(m,θ) m≥ 0
(−m,θ +π) m < 0

Now we can re-write Eq. 8 as a minimization problem:
E f lowp =

∫
Ω

ψ(I(x+mcosθ ,y+msinθ , t +1)− I(x,y, t))
+αθ ψ(‖∇θ‖2)+αmψm(‖∆m‖2)+(s2 + c2−1)2 dx (9)

We stress that the flow coherence constraint is a key component of the minimization problem
since it ensures that variables s and c are true over-representation of orientation.

Changing the representation delivers one more desired benefit since now the interpolation
between different levels of the multi-grid pyramid need not act on neighboring scalars of
different sign, hence avoiding the destructive phenomenon observed in Sec. 4. Combining
it all, we propose to to consider an energy minimization problem that expresses Eq. 6 in the
polar coordinate system:

argmin
θ ,m,r

E(θ ,m,r) = argmin
θ ,m,r

∫
Ω

E f lowp +β (Ere f +α2 Esmoothr )+Ecoherencer dx
s.t. r(x) = (0,0,−1) ∀x ∈ ∂r .

(10)

Finally, to increase the numerical stability of the proposed method, we suggest to avoid
dealing with unbounded magnitude when estimating the surface. We rephrase the problem
via the (always well-defined) inverse flow magnitude η = 1/m. In regions with extremely
small magnitude (less then 0.1 pixel) there is only little hope to estimate the flow accurately
Moreover, the flow does not carry enough information for the reconstruction task. Therefore,
one can set η in these regions to zero and relay on the surface smoothness regularization that
provides some compensation when recovering the surface. In practice, it is simple to make
this adjustment since the flow and the surface are optimized separately. The flow estimation
iteration remains as before but the reflection vector field estimation iteration (with a fixed
flow) would now based on the following reformulation of Ere f

Ere f = ψ((ra
x c+ ra

y s−ω3ηrb +ω2ηrc)2)

+ψ((rb
x c+ rb

y s+ω3ηra−ω1ηrc)2)+ψ((rc
xc+ rc

ys−ω2ηra +ω1ηrb)2) .
(11)

Ground truth Sanity check I. II. Polar based

f x
f y

Figure 2: Sanity check I. Estimation of surface derivatives (with parabolic lines) assuming
the flow is known. The average error is less than 0.1. Sanity check II. Different initial guess
results in different reconstructed surface. Compare to a surface from Sanity I multiplication
by 2, the average error is less than 0.1. Polar based algorithm. Estimation of the surface
derivatives using the suggested polar based algorithm. The input is only 2 images and known
rotation axis. The average error is less than 0.3. See also Fig. 4.
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6 Experiments

With the final one-shot algorithm formulated, we validated it using real and synthetic image
sequences from the only ground truth database available [3]. In all experiments we assume
that the rotation axis is known and the initial guess for the surface was a sphere. We compare
the estimated flows to the known ground truth and the result obtained from a state-of-the-art
optical flow algorithm [20]. Considering the unique properties of a specular flow, we adopted
the error criteria based on the (Average) Orientation Error and the (Average) Magnitude
Error [3] (AOE and OME). To our best knowledge, no other algorithm exists to date that
is able to recover a general specular surface from image sequences under the constraints of
the environment being unknown and no initial conditions are provided. Hence, shape results
were compared with the known ground truth data only.

To begin, a sanity check was performed by recovering the surface while the specular
flow given (Fig. 2-I) and recovering the flow while the surface is given. In both cases the
results are quite accurate, even in the presence of parabolic lines and singularities. We do
note that the recovered surface does depart from the ground truth in certain regions where
the information available from the two frames is poor; close to the surface’s boundaries or
where the observed motion is very small. Expectedly, surface regularization provides some
compensation in these latter regions (e.g., see marked region in Fig. 3).
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Sun et al. [20] Error
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Figure 3: Reconstruction of a real object. The proposed algorithm estimates the specular
flow 20% better than a state-of-the-art optical flow algorithm ([20]) and simultaneously re-
covers the surface quite accurately. See Fig. 1 for the reconstructed surface compared to the
ground truth surface. The white box stands for regions where the orientation estimated with
errors, the flow’s magnitude is small and yet, the surface is estimated correctly due to the
surface smoothness regularization.
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To experience the effect of the surface initial guess, Fig. 2 also repeats the same test
with different initial guesses (i.e., the radius of the sphere) and indeed obtained different
reconstructed surfaces. Considering the ambiguity nature of the task, this should not come as
a surprise. It is straightforward to see from the generative SFSF equation [2] that the specular
flow u induced from a specular surface (x,y,k f (x,y)) under rotation axis ω = (0,0,1), is
invariant to k, where k be a positive constant. Indeed, both the first and second recovered
surface derivatives have equal accuracy (below 0.1) compared to two difference surfaces
where k = 1 in the first surface and k = 2 in the second one.

Next, we validated the complete suggested algorithm assuming nothing but the rotation
axis ω . We use a real image sequence from [3]. However, since their acquisition device is
also reflected from the object (but do not move with the environment) we treated that part of
the image as outliers (marked with a black strip on the ground truth flow in Fig. 3). As can
be seen, the estimation of both the flow and the surface are quite satisfactory.

To compare these results with previous methods, we selected a state-of-the-art optical
flow algorithm [20], applied it on the image sequence and then ran the SFSF algorithm [2]
using standard MATLAB’s ODE solvers (method ode45 and ode113) and manually provided
initial shape conditions (recall that this is something our algorithm does not require). As
would be expected from past observations [3], in term of flow accuracy the Sun et al. [20]
algorithm estimates the flow 20% worse than our suggest method. Unfortunately, as can be
seen in the lower left part of Fig. 3, this poor flow estimation was far too noisy to allow any
reasonable shape reconstruction. Note the severe deviation of the estimated integral curves
(solid lines) from the desired ones (dash line with the same color).

Finally, we validate the suggested algorithm using a synthetic sequence of a specular sur-
face containing parabolic lines. As can be shown in Fig.4, the estimated flow is significantly
more accurate than the state-of-the-art. The reconstruction of the surface itself is obviously
more challenging than objects without parabolic lines and while our algorithm did manage
to reconstruct it at least qualitatively, it did so with errors 2 times more errors compared to
the object in Fig. 2. This is, however, qualitatively better the alternative (using [20], or for
this matter, any optical flow algorithm followed by the SFSF approach [2]), which was not
able to reconstruct any shape, despite provided initial conditions.

7 Conclusions

We propose a new approach that can estimate specular flow and recover the specular shape
(with or without parabolic lines) that gave rise to it all in one shot. Given how all previous
shape-from-specular-flow approaches require an estimation of specular flow, which present
optical flow algorithm fail to reasonably prove, our suggested approach is the first one to
facilitate specular shape reconstruction from real image sequences. Furthermore, contrary to
all previous approaches, initial shape conditions are not needed.

Despite the above, the accuracy of the proposed approach should be improved. Natural
extensions should consider better and more elaborate regularizations that address the struc-
ture of parabolic singularities more explicitly. Furthermore, it is also a practical challenge
to consider the estimation of the rotation axis as part of the optimization process, perhaps at
the price of increased ambiguity; the understanding of the latter should be extended beyond
specific cases [2] and examples to describe the equivalence class of all surfaces and rotation
axes that give rise to the same specular flow.
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Sun et al. [20] Error Suggested Error Recovered
Fl

ow
O

ri

G
T

su
rf

ac
e

AOE = 0.15, 0.45 AOE = 0.11, 0.15

Fl
ow

M
ag

E
st

.s
ur

fa
ce

AME = 0.76, 7.59 AME = 0.36, 4.00
Figure 4: Reconstruction of an object with parabolic lines. AOE and AME are detailed
for the entire image and for the (challenging) parabolic singularity regions. The proposed
algorithm estimates the specular flow 60% better than a state-of-the-art optical flow algo-
rithm ([20]) and simultaneously recovers the surface. See Fig. 2 for the estimated surface
derivatives compared to the ground truth.
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