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Abstract

The phenomenon of visual curve completion, where the

visual system completes the missing part (e.g., due to occlu-

sion) between two contour fragments, is a major problem in

perceptual organization research. Previous computational

approaches for the shape of the completed curve typically

follow formal descriptions of desired, image-based percep-

tual properties (e.g, minimum total curvature, roundedness,

etc...). Unfortunately, however, it is difficult to determine

such desired properties psychophysically and indeed there

is no consensus in the literature for what they should be. In-

stead, in this paper we suggest to exploit the fact that curve

completion occurs in early vision in order to formalize the

problem in a space that explicitly abstracts the primary vi-

sual cortex. We first argue that a suitable abstraction is the

unit tangent bundle R
2 ×S1 and then we show that a basic

principle of “minimum energy consumption” in this space,

namely a minimum length completion, entails desired per-

ceptual properties for the completion in the image plane.

We present formal theoretical analysis and numerical solu-

tion methods, we show results on natural images and their

advantage over existing popular approaches, and we dis-

cuss how our theory explains recent findings from the per-

ceptual literature using basic principles only.

1. Introduction and Motivation

Visual completion is a fundamental task in visual sys-

tems which facilitates the perception of complete objects

from visual fragments. When the object is fragmented

due to occlusion, the completion is usually called amodal.

When the object is illusory and its completed boundary

curves are subjective (as happens in the Kanizsa trian-

gle [12]), the completion is known as modal. These two

completion phenomena have been studied extensively in

the perceptual, neuropysiological, and computational vision

communities, where one of the main questions investigated

is the shape of the completed curve. However, unlike the

former two domains, the computational pursuit for a math-

ematical description of the completed shape has been less

inspired, and indeed less consistent, with the perceptual ev-

idence. Motivated by the multidisciplinary nature of visual

completion research, in this paper we present a new and rig-

orous mathematical shape completion theory, one which is

inspired by neurophysiological and perceptual findings and

supports them from basic principles only.

Studies of curve completion usually assume that the

completed curve is induced by two oriented line segments

(hereinafter the inducers). Thus, the curve completion

problem can be formulated as follows:

Problem 1 Given the position and orientation of two in-

ducers p0 = [x0, y0; θ0] and p1 = [x1, y1; θ1] in the image

plane, find the curve that passes through the inducers and

agrees with perceptual and neurophysiological evidence.

Obviously, as phrased above, the problem is underdeter-

mined in the formal sense, and to solve it mathematically

one must derive regularization terms that formalize percep-

tual and physiological insights. While different regulariza-

tions have been proposed, they were inspired more by in-

tuition and mathematical elegance, and less by perceptual

findings or neurophysiological principles. In the rest of this

section we review some of these computational models, the

axiomatic approach which often led to them, and the degree

of their perceptual and neurophysiological validity.

1.1. Previous computational work

Among the first to model the shape of completed curves

was Ullman[21], who addressed the issue from an axiomatic

perspective via the formalization of (axiomatic) perceptual

characteristics that the completed curve should satisfy:

• isotropy - invariance to rigid transformations,

• smoothness - continuity of first derivative,

• total minimum curvature - integral of curvature along

the curve should be as small as possible, and

• extensibility - any two arbitrary inducers on a com-

pleted curve C should generate the same shape as the

shape of the portion of C connecting them.
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Ullman suggested the biarc curve as the shape that com-

plies with his four axioms. According to this model, the

completed curve between two inducers consists of two cir-

cular arcs, each osculating to a different inducer and to each

other. Since there are infinitely many pairs of such circles,

the selected pair is the one that generates the minimal total

curvature out of all the admissible pairs. However, despite

Ullman’s initial intuition, his model was shown to violate

extensibility in some cases [3].

After Ullman, many subsequent computational ap-

proaches to curve completion have usually followed the

same basic axiomatic approach, but possibly with different

set of axioms or by putting certain axioms in a more general

scope. Chief of all, perhaps, is the axiom of total minimum

curvature, which Ullman took in the narrow scope of biarc

curves while Horn [10], and later Mumford [16], extended

to general regular curves via the model of elastica – the

family of curves that minimize total curvature
∫

k(s)2ds. (1)

The Euler-Lagrange equation applied to this functional 1

leads to a differential equation that must be solved in order

to solve for the elastica curve given the inducers. One form

of this equation in arclength parametrization is

θ̇2 = A sin θ + B cos θ, (2)

where θ is the tangential angle of the curve at each posi-

tion [10]. While this equation requires the determination

of two parameters, the most explicit solutions suggested

are based on elliptic integrals [10] or theta functions [16].

Unfortunately, no closed-form analytic solution has been

found.

Taking the total curvature axiom to its fullest scope

comes with a price as it is known that elastica violates

scale invariance – another axiom that was suggested later

(e.g., [23, 18, 14], inspired by Knuth [15]) to argue that the

completed shape should be independent on the viewing dis-

tance. To make minimum total curvature and scale invari-

ance coexist, a form of a scale invariant elastica was sug-

gested [23, 18], which minimizes the functional L
∫ L

0
k2ds,

where L is the length of the curve.

Looking for a completion model that captures the nature

of “the most pleasing” curve, Kimia et al. [14] proposed the

minimization of an energy functional that penalizes change

in curvature, rather than curvature proper, i.e.,

∫
(

dk

ds

)2

ds → min (3)

subject to the boundary conditions [x0, y0; θ0] and

[x1, y1; θ1]. This model immediately entails a linear ex-

pression for the curvature as a function of the arclength, a

class of curves known in the mathematical literature as Eu-

ler Spirals. The Euler spiral model was proved to satisfy

all the axioms mentioned above and another popular axiom,

the axiom of roundedness (again inspired by Knuth [15]),

states that the shape of a completed curve induced by two

cocircular inducers should be a circle. Unfortunately, the

scale-invariance and the roundedness axioms were refuted

psychophysically in recent perceptual literature, as we will

discuss momentarily.

Finally, it should be mentioned that a somewhat differ-

ent, non axiomatic approach was taken by Williams and

Jacobs [26] in their stochastic model to curve completion,

which employs assumptions on the generation process (in

their case, a certain random walk with used-defined param-

eters) rather than on the desired shape. Although our theory

differs from their in both the assumptions and implications,

we do share the same philosophy that shape constraints can

be inferred from more basic principles. Indeed, although it

was not verified against perceptual findings, in their work

they showed that the stochastic completion field model im-

plies that the most likely completion minimizes certain en-

ergy that combines both length and total curvature.

1.2. Relevant perceptual insights

Modern interest in visual completion was triggered pri-

marily by the striking demonstrations of modal completion

made by Kanizsa [12]. Besides attempting to model the

shape of the completed curve (a.k.a the shape problem), per-

ceptual researchers were also interested when two different

inducers are indeed grouped to induce a curve (a problem

often referred to as the grouping problem). One popular

theory addressing the grouping problem is the relatability

theory [13], which suggests that two inducers are part of the

same contour if their linear extensions intersect in an acute

exterior angle. This condition was later shown to parallel

the existence of a smooth curve with no inflection points

connecting the two inducers [20].

Perceptual studies of the shape problem have been focus-

ing on measuring and characterizing the visually completed

curve in different experimental paradigms. For example,

the dot localization paradigm [9] is a method where ob-

servers are asked to localize a point probe either inside or

outside an amodally or modally completed boundary, and

the distribution of responses is used to determine the likely

completed shape. Among the insights that emerged from

this and other approaches (e.g., by oriented probe localiza-

tion [19, 5]) it was concluded that completed curves are

perceived (i.e, constructed) quickly, that their shape devi-

ates form constant curvature and thus defies the rounded-

ness axiom (e.g., [9, 19]), and that the completion depends

on the distance between the inducers and thus violates scale

invariance (e.g., [4, 7]).

1.3. Relevant neurophysiological insights

The famous investigations made by Hubel and

Wiesel [11] into the primary visual cortex (V1) have



shown that orientation selective cells exist at complete

range of orientations (and at various scales) for all retinal

positions, i.e., for each “pixel” in the visual field (Fig 1A).

This was captured by the so-called ice cube model sug-

gesting that V1 is continuously divided into full-range

orientation hypercolumns, each associated with a different

image (or retinal) position [11]. Hence, an image contour is

represented in V1 as an activation pattern of all those cells

that correspond to the oriented tangents along the curve’s

arclength (Fig 1B).

The participation of early visual neurons in the repre-

sentation of curves is not limited to viewable curves only,

and was shown to extend to completed or illusory curves

as well. For example, von der Heydt et al. [22] have ex-

amined the activity of cells in the visual cortex of Macaque

monkeys during presentation of modally completed shapes.

They have found that about third of the orientation selec-

tive cells in V2 (which are similar in structure to those in

V1) fire when presented with such stimuli, and that many

of these cells responded nearly the same to real and sub-

jective contours. Grosof et al. [8] found cell responses for

illusory contours in about half the neurons studied in V1 of

Macaque monkeys, further supporting the conclusion that

curve completion is an early visual process that takes place

as low as the primary visual cortex.

2. Curve completion in the unit tangent bundle

The basic neurophysiological findings mentioned above

suggest that we can abstract orientation hypercolumn as in-

finitesimally thick “fibers”, and place each of them at the

position in the image plane that is associated with the hy-

percolumn. Doing so, one obtains an abstraction of V1 by

the space R
2 × S1 [2], as is illustrated in Fig. 1C. This

space is an instance of a fundamental construct in modern

differential geometry, the unit tangent bundle [17] associ-

ated with R
2. A tangent bundle of a manifold S is the union

of tangent spaces at all points of S. Similarly a unit tangent

bundle is the union of unit tangent spaces at all points of S.

In our case, it therefore holds [17] that

Definition 1 Let I = R
2 the image plane. T (I)

△
= R

2×S1

is the (unit) tangent bundle of I .

Recall the aforementioned observation that an image

contour is represented in V1 as an activation pattern of all

those cells that correspond to the oriented tangents along

the curve’s arclength. Given the R
2 × S1 abstraction, and

remembering that the tangent orientation of a regular curve

is a continuous function, we immediately observe that the

representation of a regular image curve α(t) is a curve β(t)
in T (I) (Fig. 1C,D).

We now come to our main idea. If curve completion (like

many other visual processes) is an early visual process as

early as V1 (cf. Sec. 1.3), and if V1 can be abstracted as the

space T (I), then perhaps this completion process should be

examined and investigated in this space, rather than in the

image plane I . In this paper we offer such a mathemati-

cal investigation whereby curve completion is carried out in

T (I), followed by projection to I . Part of the our motivation

for this idea is that unlike the debatable perceptual axioms

in the image plane, perhaps the T (I) space, as an abstrac-

tion of the cortical machinery, offers more basic completion

principles, from which perceptual properties emerge as a

consequence.

2.1. Admissibility in T (I)

The first question that comes to mind given the above

proposal is how curve completion in T (I) would be any dif-

ferent from curve completion in I , namely the image plane.

The answer, in fact, is fundamental to our research.

We first observe that when we switch to T (I), Prob-

lem 1 turns to deal with the construction of a curve between

boundary points (e.g., the green points in Fig. 2), rather than

between oriented inducers. More importantly, as we now

discuss, the completed curves in T (I) are not arbitrary and

class of curves that we can consider in the first place is quite

constrained.

Let α(t) = [x(t), y(t)] be a regular curve in I . Its asso-

ciated curve in T (I) is created by ”lifting” α to R
2 × S1,

yielding a curve β(t) = [x(t), y(t), θ(t)], which satisfies

tan θ(t) =
ẏ(t)

ẋ(t)
ẋ(t) ≡ dx

dt
, ẏ(t) ≡ dy

dt
. (4)

We emphasize that α(t) and β(t) are intimately linked by

Eq. 4, and that α is the projection of β back to I . Examples

of such corresponding curves are shown in Fig. 1D.

One can immediately notice that while every image

curve can be lifted to T (I), not all curves in T (I) are a

lifted version of some image curve. We therefore define

Definition 2 A curve β(t) = [x(t), y(t), θ(t)] ∈ T (I) is

called admissible if and only if ∃α(t) = [x(t), y(t)] such

that Eq. 4 is satisfied.

There are more inadmissible curves in T (I) than admissi-

ble ones, and examples for both curves are shown in Fig. 2.

Therefore, any completion mechanism in T (I) is restricted

to admissible curves only, and we shall refer to Eq. 4 ac-

cordingly as the admissibility constraint.

2.2. “Minimum action” completion in T (I)

What curve completion principles could we adopt in

T (I)? In general, since both are vector spaces, any prin-

ciple that one could use in I is a candidate principle for

completion in T (I) also. However, when we recall that

T (I) is an abstraction of V1, first completion principle can-

didate should perhaps attempt to capture likely behavior of

neuron populations rather than perceptual criteria (such as
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Figure 1. Organization and mechanisms in the primary visual cortex, and its abstraction in the unit tangent bundle. (A). Orientation selective cells in V1

come in different scales and orientation tuning. Their receptive fields (shown here is the even-symmetric type only, coded by intensity) often are modeled

using Gabor functions or via difference of Gaussians. (B). The primary visual cortex is organized in orientation hypercolumns [11], which implies that every

retinal position is covered by neurons of all orientations. Thus, for each ”pixel” p in the visual field we can think of a vertical vector of orientation-selective

cells extending over p and responding selectively (shown in red) according to the stimulus that falls on that “pixel”. (C). The organization of V1 implies it

can be abstracted as the unit tangent bundle R
2 × S1, where vertical fibers are orientation hypercolumns, and the activation patterns to image curves (in

blue) becomes “lifted” curves (in magenta). The only aspect of R
2 ×S1 not captured in this sketch is the periodicity of it orientation dimension. Thus, the

reader should think of the plotted space as quotient space [25] R
3/ ∼ where the equivalence structure is such that (x1, y1, z1) ∼ (x2, y2, z2) if and only

if x1 = x2, y1 = y2, and |z1 − z2| = π. (D). According to the R
2 × S1 abstraction, any regular curve α (in blue) in the image plane I is represented

by a corresponding curve β (in magenta) in R
2 × S1. β can be created by “lifting” α into T (I), such that α(t) and β(t) are linked by the admissibility

constraint in Eq. 4.

the axioms discussed above). Perhaps the simplest of such

principles is a ‘minimum energy consumption” or “mini-

mum action” principles, according to which the cortical tis-

sue would attempt to link two boundary points (i.e., active

cells) with the minimum number of additional active cells

that give rise to the completed curve. In the abstract this be-

comes the case of the shortest admissible path in T (I) con-

necting two endpoints (x0, y0, θ0) and (x1, y1, θ1). Note

that while such a curve in I is necessarily a straight line,

most linear curves in T (I) are “inadmissible” in the sense

of Definition 2. Since the shortest admissible curve in T (I)
has a non trivial projection in the image plane, we hypoth-

esize that the “minimum action” principle in T (I) corre-

sponds to the visually completed curve, whose geometrical

and perceptual properties are induced from first principles

rather than imposed as axioms.

3. Minimum length curve completion in T (I)

Given the motivation, arguments, and insights above, we

are now able to define our curve completion problem for-

mally. Let p0 and p1 be two given endpoints in T (I) which

represent two oriented inducers in the image plane I . The

shortest admissible path in T (I) between these two given

endpoints is,

ℓ =
∫ t1

t0

√

β̇(t)2dt .

For mathematical convenience, however, here we pursue a

simplified version of this functional, expressed in the fol-

lowing problem formulation:

R x S
2 1

Y

X

θ

p0 = [x0, y0, θ0]

p1 = [x1, y1, θ1]

Figure 2. Curve completion and admissible curves in T (I). The com-

pletion of two inducers in I is a curve connecting two endpoints in T (I).

(Both the inducers and endpoints shown here in green). However, regular

curves are structures that continue in the direction of their tangent, hence

only curves that satisfy the admissibility constraint in Eq. 4 are candidates

for completion in T (I) (e.g., the magenta curve and its projected retinal

tangents). Unavoidably, inadmissible curves in T (I) represent inconsis-

tent pairing of position and tangent orientation in I , and hence cannot rep-

resent image curves of any kind (as demonstrated by the “completions” in

dark red).

Problem 2 Given the two endpoints p0 = [x0, y0, θ0]
and p1 = [x1, y1, θ1] in T (I), Find the curve β(t) =
[x(t), y(t), θ(t)] that minimizes the functional

ℓ =

∫ t1

t0

β̇(t)2dt =

∫ t1

t0

[ẋ(t)2 + ẏ(t)2 + θ̇(t)2]dt (5)

while satisfying the boundary conditions β(t0) = p0 and

β(t1) = p1, and the admissibility constraint from Eq. 4.

Before we solve the constrained variational problem of

Problem 2, an important observation can be made already



from its definition. Writing down explicitly our problem as

in Eq. 5 reveals an important property of considering curve

completion in the unit tangent bundle — it offers a natural

and unified substrate for exploring combinations of proper-

ties of image/retinal curves. Indeed, the sought-after curve

in T (I) comprises an approximation of a parameter-free

combination of two visual properties in the projected image

plane – minimum total curvature (
∫

θ̇(t)2dt) and minimum

length (
∫

[ẋ(t)2 + ẏ(t)2]dt). As we discuss in Sec. 4 and

the summary, this formal, though elegant and unified way of

considering multiple perceptual properties carries over to all

types of completion principles that one might care to apply

in T (I) – a direct consequence of the explicit representation

of both position and orientation at each point in this space.

In addition to being directly motivated by the biological vi-

sual machinery, this approach becomes particularly appeal-

ing in the light of recent findings and conjectures already

reported in the perceptual literature, as we shall see below.

3.1. Variational analysis

We now turn to obtain the curves of shortest admis-

sible path between two endpoints in T (I), as defined in

Problem 2. At this point we limit the discussion to reti-

nal curves α(·) which are functions over some coordinate

system in the image plane, i.e., α(x) = [x, y(x)], as as-

sumed in many previous studies of the curve completion

(e.g.,[10, 18]). Consequently, all admissible curves in T (I)
are ’lifted’ functions of the form

β(x) = [x, y(x), θ(x)] ,

where x becomes the curve parameter (as demonstrated in

Figs. 1 and 2). With this description, the functional ℓ from

Eq. 5 becomes

ℓ =

∫ x1

x0

[1 + ẏ(x)2 + θ̇(x)2]dx, (6)

and its admissibility constraint (Eq. 4) turns to

tan θ(x) = ẏ(x) (7)

Given these observations, the following is our main theoret-

ical result in this paper

Theorem 1 Admissible curves in T(I) that minimize func-

tional 6 belong to a two parameter family which is defined

by the following differential equation

(

dθ

dx

)2

= tan2 θ + A · tan θ + B . (8)

Proof Eq. 7 suggests that functional 6 can be written as a

function of θ and its derivative only

ℓ =

∫ x1

x0

[1 + tan2 θ + θ̇2]dx (9)

with the boundary condition becoming θ(x0) = θ0 and

θ(x1) = θ1. However, by eliminating y(x) from the func-

tional we are at risk of ignoring the boundary conditions for

y0 and y1, that must be introduced back into the problem

by other means. This can be done by adding a constraint

on the admissible function θ(x), so that the induced curve

is forced to pass through [x0, y0] and [x1, y1]. Expressed in

terms of θ(x) this constraint becomes:

y1 − y0 =
∫ x1

x0

ẏdx =
∫ x1

x0

[tan θ]dx ,

or

∫ x1

x0

[tan θ − y1−y0

x1−x0

]dx = 0 .

This additional constraint can now be incorporated to our

functional 6 using some arbitrary Lagrange multiplier λ [1],

which results in the following new form for our minimiza-

tion problem:

∫ x1

x0

[1 + tan2 θ + θ̇2 + λ(tan θ − y1 − y0

x1 − x0
)]dx. (10)

While we omit the technical details of the derivation, the

resulting Euler-Lagrange equation of functional 10 is

−2θ̈ +
∂(tan2 θ + λ tan θ)

∂θ
= 0 .

Multiplying the above equation by θ̇ and applying the chain

rule1 we get

− d
dx

(θ̇2 − tan2 θ − λ tan θ) = 0.

Finally by integrating,

θ̇2 − tan2 θ − λ tan θ = µ (11)

where µ is an arbitrary constant.

An alternative proof inspired by an approach employed by

Horn [10] is presented in the supplemental material.

3.2. Numerical solution and Experimental results

Equation 8 could be solved immediately had we known

how to treat the integral

x = ±
∫

dθ√
tan2 θ+A tan θ+B

.

Although one may suspect this to take the structure of an

elliptic integral, the substitution ξ = tan θ, leads to an inte-

gral of the form

x = ±
∫

dξ√
P6(ξ)

1The only case where multiplication by θ̇ should be avoided occurs

when θ̇ ≡ 0. We note that this case corresponds to the trivial solution of

a straight line for two colinear inducers, a situation that can be detected by

other simple means and solved directly.



where P6(ξ) is a six-order polynomial. It is known that

integrals of this form can be expressed as elliptic integrals

when the polynomial in the square root is of order three or

four ([1], pp.354-359). Unfortunately, this is not the case

here and an analytic closed form solution for this integral,

if exists, remains an open question for future research.

Since no analytical solution is currently known, we de-

vised a numerical solution, based on nonlinear optimiza-

tion that seeks the true values of the parameters A and B
when two boundary points p0 = (x0, y0, θ0) and p1 =
(x1, y1, θ1) are given. This optimization is based on the ob-

servation that one could select parameter values A and B,

construct a curve starting from p0 in a way that obeys the

differential Eq. 8, and then evaluate the correctness of the

parameters by assessing the error at x1. The error E(A,B)
between the desired and obtained endpoints at x1 is then

used to update the parameters for the next iteration.

More specifically, for each iteration i with a given start-

ing point p0 and parameter values A and B, we first solve

the differential Eq. 8 via Euler’s method

xn+1
.
= xn + h

θn+1
.
= θ(xn+1) = θ(xn + h) ≈ θ(xn) + h · θ̇(xn)

= θn + h ·
√

tan2 θn + A · tan θn + B
yn+1

.
= y(xn+1) = y(xn + h) ≈ y(xn) + h · ẏ(xn)
= yn + h · tan θn

where h is a preselected step size and the error is of order

O(h2). Note that in order to follow the perceptual literature

and the general agreement that visually completed curves

cannot incorporate inflection points [13, 20, 10, 18], we in-

tentionally prevented θ̇ from changing sign by considering

only the positive (or negative) root of Eq. 8 in the imple-

mentation of the aforementioned iteration for θn+1.

The curve βi(x) = (x, yi(x), θi(x)) computed by this

step is then evaluated at x = x1 and the error E(A,B) asso-

ciated with the current value of the parameters is computed

by

E(A,B) = ‖(x1, y1, θ1) − (xend, yend, θend)‖.
The new values for A and B are then computed by a gradi-

ent ascent on E(A,B). We do note that in our implemen-

tation the initial guess for A and B was taken via a quick

and coarse brute force sampling of the search domain for

minimum.

4. Visual properties

We now turn to examine the properties of our curve com-

pletion theory in the context of existing perceptual findings

and the geometrical axioms reviewed earlier.

Indeed, several properties of our model can be pointed

out regarding the six axioms of curve completion mentioned

in Sec 1. First, since our solution is not linked to any spe-

cific frame, it is trivially isotropic. Second, since it mini-

mizes total arclength in T (I), it must be extensible in that

space and hence in the image plane also. Third, since the

completed curves can be described by differential Eq. 8,

they possess smoothness.

The first axiom where our model departs from prior so-

lutions is the axiom of roundedness since it is easy to con-

firm that in general the case of constant curvature (κ =
θ̇/
√

1 + tan2 θ = const) does not satisfy Eq. 8 (apart from

a unique case where A = 0 and B = 1, which corresponds

to two cocircular inducers on the unit circle). However,

given the refutation of roundedness at the perceptual and

psychophysical level (as discussed in Sec. 1), we consider

this property an advantage rather than a limitation of our

model.

One particularly interesting question is how our pro-

posed model behaves with change of scale. Suppose, with-

out loss of generality, that the two inducers are set L units

apart on the x axis, i.e., p0 = [0, 0, θ0] to p1 = [L, 0, θ1].
As we have discussed, since the completed shape based

on functional 6 should minimize the arclength in the tan-

gent bundle (subject to the admissibility constraint), it takes

into account both the spatial arclength and the accumulated

change of the tangent orientation in the image plane. Hence,

we expect that as L increases, and the spatial arclength

becomes the dominant component, its minimization would

drive the shape closer to a straight line. On the other hand,

when L decreases, we expect the relative contribution of θ̇
to the total cost to increase, which would drive the shape

away from “straightness”. Put differently, we expect our

completion model to be scale variant, as recent perceptual

and psychophysical studies advocate (see Sec. 1.2).

To show this more formally, we observe that any (i.e.,

not necessarily minimal) image curve αL(x) traveling from

p0 = [0, 0, θ0] to p1 = [L, 0, θ1] can be written as a scaled

version of some other curve α1(x) traveling from [0, 0, θ0]
to [1, 0, θ1]:

αL(x) = L · α1(x) = [L · x,L · y(x)] , x ∈ [0, 1]

where

α1(x) = [x, y(x)] , x ∈ [0, 1] .

Hence, the corresponding curve of αL(x) in T (I) is

βL(x) = [L · x,L · y(x), tan−1(Lẏ
Lẋ

)]
= [L · x,L · y(x), tan−1(ẏ)]
= [L · x,L · y(x), θ(x))] , x ∈ [0, 1]

where [x, y(x), θ(x)] is the corresponding tangent bundle

curve of α1(x). Note now that the value of our functional

applied to βL is

ℓ(βL) =
∫ 1

0
[L2 + L2ẏ2 + θ̇2]dx

= L2
∫ 1

0
[1 + ẏ2]dx +

∫ 1

0
[θ̇2]dx.

(12)

The completed curve between the inducers as predicted

by our theory should have the shortest admissible path in
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Figure 3. Dependency of the shortest admissible path in T (I) on

scale. (A). In this example the two inducers are set to [0, 0, 45◦]
and [0, L,−45◦] where L = 0.125, 0.25, 0.5, 1, 2, 3, 4, 5. The

blue curves are circular completions, which also agree with com-

pletions obtained with the Euler spiral model [14]. Shortest admis-

sible paths in T (I) are shown in magenta. Note the “flattening”

with increasing scale and “roundedness” with decreasing scale.

(B). The same shortest admissible curves in T (I) (again shown

in magenta) are now compared to the (black) elastica curves [10]

for inducers at distances L ∈ {2, 3, 5}.

T (I) from p0 to p1, and therefore it should minimize func-

tional 12. It is immediately observed that when L → ∞,

the curve βL which minimizes functional 12 approaches

the curve that minimizes
∫ 1

0
[(1 + ẏ2)]dx, and thus should

be similar to a straight line. On the other hand, when

L → 0, the first component of Eq. 12 vanishes, and the

resulting minimal curve would minimize
∫ 1

0
[θ̇2]dx, subject

to the boundary conditions. This entails a curve with ap-

proximately linearly changing θ(x), i.e., a circle-like curve.

Fig. 3 demonstrates these two phenomena. and compares

the result of our tangent bundle model to both the Euler spi-

ral and the elastica models.

5. Experimental results

In addition to exploring the visual properties as above,

we applied our completion model on both synthetic and

natural images that incorporate modal and amodal comple-

tion. Some results are shown in Fig. 4 and Fig. 5. The

natural examples were selected randomly from large data

set of natural scenes , and an artificial occluder was added

on arbitrarily chosen perceptual contour. Inducers’ orienta-

tion was measured manually. A canonical scale was used

in all images such that distance between adjacent pixels

was set to 10−2. Positions and orientations of the two in-

ducers were fed to the numerical algorithm from Sec.3.2

and the parameters A and B were optimized up to an error

E(A,B) ≤ 10−10. The resultant curves of minimum ar-

clength in T (I) were then projected to the image plane I
and plotted on the missing parts of the image.

6. Summary and future work

This paper proposes a new theory of curve completion in

the unit tangent bundle, the latter being the space which ab-

Figure 4. Experimental results for the modal completion. Please zoom in

to inspect details.

stracts the early areas in the visual cortex, where curve com-

pletion presumably occurs. Employing a universal principle

of “minimum action”, which strives to minimize neural en-

ergy consumption, we have shown that curve completion

amount to finding the shortest admissible path in R
2 × S1.

We have proved differential properties of this path, showed

how it can be found numerically, and derived its perceptual

properties.

As we have shown, an implication of the basic “neu-

ral energy consumption” constraint suggests parametric-

free completions that are determined by minimization of

both total curvature and total length in the image plane (see

Sec. 3). In this sense our model naturally expresses two ba-

sic Gestalt principles [24]. The first, the principle of good

continuation, is often formalized as minimization of curva-

ture [21]. The second, the principle of proximity, is nat-

urally formulated as minimization of total length. While

such combinations have been explored in both the percep-

tual literature (e.g., [4]) and the computational community

(e.g., [23, 18, 26]), our theory does so as a result of mini-

mizing a basic (and non visual) principle, from which per-

ceptual insights are derived rather than imposed.

Since, as we also discussed in Sec. 3, the tangent bundle

is a substrate for examining combinations of image plane

properties, it is natural to test additional completion princi-

ples in T (I) and explore their implications. For example,

one could attempt to study curve of minimum total curva-

ture (i.e., elastica) in T (I), which would amount to explor-

ing the combination of both total curvature and total change

of curvature in the image plane. Interestingly enough, this

combination requires boundary conditions about inducer

curvatures (on top of position and orientation), a type of

condition that has been speculated also in the perceptual lit-

erature [20, 19].

As illustrated in Fig. 5, the completions our model pro-

duces match the desired perceptual outcome and the behav-

ior of natural contours in virtually all cases. Obviously, it

is unlikely that all curves in natural images belong to this

family of curves. Our result do suggest, however, that an

examination of natural contour statistics in the context of

contour completion models is an important topic (e.g., [6]),

which is another goal of our short term research.



Figure 5. Experimental results of curve completion via shortest admissible curves in T (I) followed by projection to the image plane.
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