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Abstract. Visual curve completion is typically handled in an axiomatic
fashion where the shape of the sought-after completed curve follows for-
mal descriptions of desired, image-based perceptual properties (e.g, min-
imum curvature, roundedness, etc...). Unfortunately, however, these de-
sired properties are still a matter of debate in the perceptual literature.
Instead of the image plane, here we study the problem in the math-
ematical space R? x S! that abstracts the cortical areas where curve
completion occurs. In this space one can apply basic principles from
which perceptual properties in the image plane are derived rather than
imposed. In particular, we show how a “least action” principle in R? x S*
entails many perceptual properties which have support in the perceptual
curve completion literature. We formalize this principle in a variational
framework for general parametric curves, we derive its differential prop-
erties, we present numerical solutions, and we show results on a variety
of images.

1 Introduction

Although the visual field is often fragmented due to occlusion, our perceptual
experience is one of whole and complete objects. This phenomenon of amodal
completion, as well as its counterpart process of modal completion (where the
object is illusory), are fundamental part of perceptual organization and visual
processing [17], and they have been studied by all of the perceptual, neuropysio-
logical, and computational vision communities. Inspired by this interdisciplinary
nature of visual completion research, in this work we present a new and rigorous
mathematical curve completion theory, which is motivated by neurophysiological
findings and at the same time uses only basic principles to provide explanations
and predictions for existing perceptual evidence.

The problem of curve completion usually assumes that the completed curve
is induced by two oriented line segments, also known as the inducers, and hence
it is typically formulated as follows:

Problem 1. Given the position and orientation of two inducers py = [xo, yo; o]
and p1 = [x1,y1;01] in the image plane, find the shape of the “correct” curve
that passes between these inducers.

While “correctness” of the completion and hence the problem as a whole are ill
defined, it is typical to aspire for completions that agree the most with percep-
tual and neurophysiological evidence, usually by the application of additional



2 Guy Ben-Yosef and Ohad Ben-Shahar

constraints. Unfortunately, however, while different constraints have been pro-
posed, they were inspired more by intuition and mathematical elegance, and less
by perceptual findings or neurophysiological principles. In the next section we
first review some of the relevant computational models, the axiomatic approach
which often motivates them, and the extent to which they agree with existing
perceptual and neurophysiological evidence.

2 Previous work

Many computational curve completion studies, including Ullman’s [22] seminal
work, employ an aziomatic perspective to the shape of the completed curve, i.e.,
they state the desired perceptual characteristics that the completed curve should
satisfy. Among the most popular axioms suggested are

— isotropy - invariance of the completed curve to rigid transformations.

— smoothness - The completed curve is analytic (or in some cases, differentiable
once).

— total minimum curvature - integral of curvature along the curve should be
as small as possible.

— extensibility - any two arbitrary tangent inducers along a completed curve C'
should generate the same shape as the shape of the portion of C' connecting
them.

— Scale invariance - the completed shape should be independent on the viewing
distance.

— Roundedness - the shape of a completed curve induced by two cocircular
inducers should be a circle.

— Total minimum change of curvature - integral of the derivative of curvature
along the curve should be as small as possible.

Evidently, some of the suggested perceptual axioms conflict each other, and
hence much debate exist in the computational literature as to which axioms are
the “right” ones, a choice which affects the entailed completion model. Among
the first suggested models, the biarc model, was proposed by Ullman [22], who
sought to satisfy the first four axioms from the list above. According to this
model, the completed curve between two inducers consists of two circular arcs,
each tangent both to an inducer and to the other arc. Since the number of such
biarc pairs is infinite, the axiom of minimal total curvature helps to narrow down
the possible completions to one unique curve.

While Ullman took the axiom of total minimum curvature in the narrow
scope of biarc curves only, the same axiom was studied in its strict sense by
Horn [9], and later Mumford [15]. The resulting class of curves, known as elastica,
minimizes the functional that expresses total curvature square [ k(s)?ds, and its
corresponding Euler-Lagrange equation leads to a differential equation that must
be solved in order to derive the elastica curve of two given inducers. An arclength
parametrization form of this equation was shown to be

0% = %sin(@ + ¢), (1)
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where @ is the tangential angle of the curve at each position [9]. To solve this
equation one needs to resolve the two parameters ¢ and ¢, and while some form
of explicit solutions have been suggested based on elliptic integrals [9] or theta
functions [15], no closed-form analytic solution is yet known.

Since the minimum total curvature axiom compromises scale invariance, ef-
forts to unite them resulted in a scale invariant elastica model (e.g., [19]). How-
ever, since the elastica model also violates roundedness and the scale invariant
elastica model still violates extensibility, Kimia et al. [13] replaced the minimum
total curvature axiom with the minimization of total change in curvature. This
axiom immediately entails a class of curves known in the mathematical literature
as Fuler Spirals, whose properties satisfy most other axioms mentioned above,
including roundedness (but excluding total minimum curvature, of course).

A somewhat different, non axiomatic approach to curve completion was taken
by Williams and Jacobs [24] in their stochastic model, which employs assump-
tions on the generation process (in their case, a certain random walk with used-
defined parameters) rather than on the desired final shape. Indeed, although it
was not verified against perceptual findings, in their work they have argued that
the completed curve is the most likely random walk in a 3D discrete lattice of
positions and orientations.

Since most computational models employ perceptual axioms that are for-
malized rigorously and used to define the completed shape, it is important to
view these attempts in the context of recent perceptual findings from the vi-
sual psychophysics literature. Indeed, visual completion was first described and
studied by perceptual researchers (most notably Kanizsa [11]) mostly in order
to find when two different inducers are indeed grouped to induce a curve (a.k.a
the grouping problem, e.g. [12]). In recent years, however, perceptual studies
have also been focusing on measuring and characterizing the shape of visually
completed curves (the shape problem) in different experimental paradigms. For
example, the dot localization paradigm [8] is a method where observers are asked
to localize a point probe either inside or outside an amodally or modally com-
pleted boundary, and the distribution of responses is used to determine the
likely completed shape. Among the insights that emerged from this and other
approaches (e.g., by oriented probe localization [21,6]) it was concluded that
completed curves are perceived (i.e, constructed) quickly, that their shape de-
viates form constant curvature and thus defies the roundedness axiom (e.g., [8,
21]), and that the completion depends on the distance between the inducers and
thus violates scale invariance (e.g., [6]). While this paper focuses on computa-
tional aspects and keeps the full fledged perceptual validation for future work,
we do show how our new theory supports these very same perceptual findings
as a result of basic principle rather than by imposing them as axioms.

Finally, since curve completion is not only computational problem, but first
and foremost a perceptual task performed by the visual system, it is worth
reviewing basic neurophysiological aspects of the latter. The seminal work by
Hubel and Wiesel [10] on the primary visual cortex (V1) has shown that orien-
tation selective cells exist at all orientations (and at various scales) for all retinal
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positions, i.e., for each “pixel” in the visual field. This was captured by the so-
called ice cube model suggesting that V1 is continuously divided into full-range
orientation hypercolumns, each associated with a different image (or retinal) po-
sition [10]. Hence, an image contour is represented in V1 as an activation pattern
of all those cells that correspond to the oriented tangents along the curve’s ar-
clength (Fig 1A). Interestingly, the participation of early visual neurons in the
representation of curves is not limited to viewable curves only, and was shown
to extend to completed or illusory curves as well. Several studies have found
that orientation selective cells in V1 of Macaque monkeys response for illusory
contours as well (e.g., [23,7]), further supporting the conclusion that curve com-
pletion is an early visual process that takes place as low as the primary visual
cortex.

3 Curve completion in the tangent bundle T'(I) = R? x S*

The basic neurophysiological findings mentioned above suggest that we can ab-
stract orientation hypercolumn as infinitesimally thick “fibers”, and place each
of them at the position in the image plane that is associated with the hypercol-
umn. Doing so, one obtains an abstraction of V1 by the space R? x St [1], as
is illustrated in Fig. 1. This space is an instance of a fundamental construct in
modern differential geometry, the unit tangent bundle [16] associated with R?2.
A tangent bundle of a manifold S is the union of tangent spaces at all points
of S. Similarly a unit tangent bundle is the union of unit tangent spaces at all
points of S. In our case, it therefore holds [16] that

Definition 1. Let I = R? the image plane. T(I) 2 R2xS! is the (unit) tangent
bundle of I.

Recall our observation that an image contour is represented in V1 as an
activation pattern of all those cells that correspond to the oriented tangents
along the curve’s arclength. Given the R? x S! abstraction, and remembering
that the tangent orientation of a regular curve is a continuous function, we
immediately observe that the representation of a regular image curve «(t) is a
regular curve 3(t) in T'(I) (Fig. 1B).

The last observation leads us to our main idea: If curve completion (like
many other visual processes) is an early visual process in V1, and if V1 can be
abstracted as the space T'(I), then perhaps this completion process should be
investigated in this space, rather than in the image plane I itself. In this paper
we offer such a mathematical investigation whereby curve completion is carried
out in T'(I), followed by projection to I. Part of the our motivation for this
idea is that unlike the debatable perceptual axioms in the image plane, perhaps
the T'(I) space, as an abstraction of the cortical machinery, offers more basic
(and not necessarily perceptual) completion principles, from which perceptual
properties emerge as a consequence.

It should be mentioned that in addition to Williams and Jacobs [24] men-
tioned above, the space of positions and orientations in vision was already used
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Fig. 1. The unit tangent bundle as an abstraction for the organization and mechanisms
of the primary visual cortex. (A). The primary visual cortex is organized in orientation
hypercolumns [10], which implies that every retinal position is covered by neurons of
all orientations. Thus, for each ”pixel” p in the visual field we can think of a vertical
array of orientation-selective cells extending over p and responding selectively (shown
in red) according to the stimulus that falls on that “pixel”. (B). The organization of
V1 implies it can be abstracted as the unit tangent bundle R? x S!, where vertical
fibers are orientation hypercolumns, and the activation patterns to image curve a (in
blue) becomes “lifted” curve f (in red), such that a(t) and [(t) are linked by the
admissibility constraint in Eq. 2. (C). Not every curve in R? x S! is admissible, and in
particular, linear curves (e.g., in red) are usually inadmissible since they imply a linear
progression of the orientation, which contradicts the “straightness” of the projected
curve in the image plane (in blue).

in several cases for tasks such as curve integration, texture processing, and curve
completion (e.g.,[2, 18,4, 3]). As will be discussed later, our contribution is quite
different than the previous attempts to address curve completion in the roto-
translational or the unit tangent bundle spaces - it is a variational approach
rather than one based on diffusion [4], it is much simpler and facilitates the
analysis of perceptual properties (unlike in [18,4]), and it is unique in incorpo-
rating a relative scaling between the spatial and angular dimensions, a critical
act for making these dimensions commensurable (unlike in [18,4, 3]).

3.1 Admissibility in T'(I)

At first sight, curve completion in 7'(I) may not be that different than curve com-
pletion in the image plane I, except, possibly, for the higher dimension involved.
This intuition, unfortunately, is incorrect.

We first observe that when switching to T'(I), the curve completion problem
(see Sec. 1) becomes a problem of curve construction between boundary points
(e.g., the most-left and the most-right red points in Fig. 1B), rather than between
oriented inducers. More importantly, as we now discuss, the completed curves
in T(I) cannot be arbitrary. In fact, the class of curves that we can consider is
quite constrained.

Let a(t) = [z(t), y(t)] be a regular curve in I. Its associated curve in T'(I) is
created by "lifting” o to R? x 8!, yielding a curve 8(t) = [z(t), y(t),0(t)], which
satisfies (using Newton’s notation for differentiation)

y(t) dz dy

tan 6(t) = P z(t)=—, yt)= —. (2)
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We emphasize that «(t) and B(t) are intimately linked by Eq. 2, and that « is
the projection of 5 back to I. Example of such corresponding curves is shown in
Fig. 1B.

One can immediately notice that while every image curve can be lifted to
T(I), not all curves in T(I) are a lifted version of some image curve [3]. We
therefore define

Definition 2. A curve 5(t) = [x(t),y(t),0(t)] € T(I) is called admissible if and
only if Ja(t) = [x(t), y(t)] such that Eq. 2 is satisfied.

There are more inadmissible curves in 7'(]) than admissible ones and examples
are shown in Fig. 1 for both admissible (in panel B) and inadmissible (in panel C)
curves. Therefore, any completion mechanism in T'(I) is restricted to admissible
curves only, and we shall refer to Eq. 2 accordingly as the admissibility constraint.

3.2 “Least action” completion in T'(I)

Since curve completion in T'(I) is still the problem of connecting boundary data
in some vector space, any principle that one could use in [ is a candidate princi-
ple for completion in T'(I) also, subject to the admissibility constraint. However,
when we recall that T'(I) is an abstraction of V1, first completion principle can-
didate should perhaps attempt to capture likely behavior of neuron populations
rather than perceptual criteria (such as the axioms discussed above). Perhaps
the simplest of such principles is a ‘minimum energy consumption” or “minimum
action” principles, according to which the cortical tissue would attempt to link
two boundary points (i.e., active cells) with the minimum number of additional
active cells that give rise to the completed curve. In the abstract this becomes the
case of the shortest admissible path in T(I) connecting two endpoints (2o, yo, 0o)
and (x1,y1,61). Note that while such a curve in I is necessarily a straight line,
most linear curves in T'(I) are “inadmissible” in the sense of Definition 2 (See
Fig. 1C). Since the shortest admissible curve in T'(I) has a non trivial projection
in the image plane, we hypothesize that the “minimum action” principle in 7'(I)
corresponds to the visually completed curve, whose geometrical and perceptual
properties are induced from first principles rather than imposed as axioms.

4 Minimum length curve in the tangent bundle

Given the motivation, arguments, and insights above, we are now able to define
our curve completion problem formally. Let py and p; be two given endpoints
in T'(I) which represent two oriented inducers in the image plane I. We seek
the shortest admissible path in T'(I) between these two given endpoints, i.e., the
curve that minimizes

£:/p1\/8(t)2dt:/ Va2 + 52 + d()2ae )

P1
Po

subject to the admissibility constraint.
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A natural question that comes to mind relates to the units and relative scale
of coordinates in T'(I). Indeed, while 2 and y are measured in meters (or other
length units), 6 is measured in radians (though note that tanf = %, cos b,
and sinf are dimensionless). To balance dimensions in the arclength integral,
and to facilitate relative scale between the spatial and angular coordinates, a
proportionality constant & in units of T’Z;’;Z:fs should be incorporated in Eq. 3.
We do this in a manner reminiscent of many physical constants which were first
discovered as proportionality constants between dimensions (e.g., the reduced
Planck constant which proportioning the energy of a photon and the angular
frequency of its associated electromagnetic wave). We thus re-define the unit

arclength of a curve in 7'() and formulate our problem as follows

Problem 2. Given two endpoints pg = [z, Yo, 00] and p1 = [z1,y1,61] in T'(]),
find the curve S(t) = [x(¢),y(t), 6(¢)] that minimizes the functional

t1
E(,B):/t \/ 22 + 92 4 h202dt (4)

while satisfying the boundary conditions S(t9) = po and S(¢;) = p; and the
admissibility constraint from Eq. 2.

The rest of our paper is devoted to solving this problem formally, and to an-
alyzing the properties of the solution. Unlike the few previous attempts to ad-
dress similar problems, where the focus was on the assumption that 7 = 1 only
(e.g., [18,4,3]), here we not only address the most general problem but we also
offer a simpler and the first complete solution to the exact problem, which facili-
tates the analysis of perceptual properties and a variety of experimental results.

4.1 Theoretical analysis

In trying to solve Problem 2 we follow the general agreement in the perceptual
literature that visually completed curves can not incorporate inflection points
(e.g., [20,12]). Hence, in what follows we intentionally limit our discussion to
non-inflectional retinal/image curves. Let a(s) = [z(s),y(s)] be an image curve
in arclength parametrization, whose corresponding ’lifted’ curve in T'(I) is

Bs) = [2(s),y(s),0(s)] - (5)

Representing all admissible curves in T'(I) in this form, the functional £ from
Eq. 4 becomes

I
L) = [ Va2 + i)+ n2d(s)ds (6)
0
while the admissibility constraint (Eq. 2) turns to

cosf(s) = i(s)
sin0(s) = g(s) , (7)

and [ is the total length of a(s). Given these observations, the following is our
main theoretical result in this paper
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Theorem 1. Of all admissible curves in T(I), those that minimize the func-
tional in Eq. 6 belong to a two parameter (¢, ) family defined by the following

differential equation
2 2
(v%) =5 1 (®)
ds sin®(6 + ¢)

Proof. We begin with a slight change in the representation of Eq. 6 in order to
facilitate the application of calculus of variation to our problem (note that [ is
unknown and can not be served as initial condition). Let k(s) = 6(s) be the
curvature of a and let R(s) = (s) be its corresponding radius of curvature. We
observe that since no inflection points are allowed, # is a monotonic function
of s, and hence it can be served as a parameter of the curve. Without the loss
of generality we n;ay assume that R(s) > 0 and hence 6(s) is monotonically
d

increasing. Since 9 = R, it follows that ds = Rdf, which allows us to rephrase

the admissibility constraint in Eq. 7 as:

dx = cos(f)ds = Rcos(0)do )
dy = sin(f)ds = Rsin(6)do .

Substituting Eq. 9 into Eq. 6 we get

/\/ dy) + h? d9> ds
ds ds

B / R2 cos2( )d6? N R2sin?(0)d6? do?
0

+h2— ds,

ds? ds? ds?
from which we immediately obtain the following new form for our minimization
problem, this time in terms of 6 (the tangent orientation of the curve)

" JROETIE b (10)

By using this form to describe the curve, we are at the risk of ignoring the
boundary conditions zg,z1 and yo,y;1, that must be introduced back into the
problem?. This can be done by adding constraints on R(f) so that the projection
of the induced curve is forced to pass through [xg,yo] and [x1,y1]. Expressed in
terms of R and 6 these constraints become:

wy— 2= [yi = [," Reosfdo
Y1 — Yo = féy = f;ol Rsin 6do
or

6
! Az
60—
/0 [R cos Ae]d@ 0

0

01 A
/90 [Rsinf — A—Z]dQ =0

! Note that the initial conditions on the inducers’ orientation become very explicit in
this form.
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where Ax = x1—xg, Ay = y1—yo, and Af = 6, —0y. These additional constraints
can now be incorporated to our new functional in Eq. 10 using two arbitrary
Lagrange multipliers A, and A,, which results in the following complete form for
our minimization problem in terms of 6:

01
L(B) = /00 [VR?+ 1?4 \;(Rcosf — %) + Ay(Rsinf — %)]d@ . (11)

With this, the corresponding Euler-Lagrange equation becomes rather simple:
£+ (\/R2 +h2 4+ A (Rcosf — %) + Ay (Rsing — %)) =0

thus
R

VRZ+ 2
1

Renaming A\, = -sing , Ay = % cos ¢, and remembering that R = 1/9, we apply

C

the square function over both sides of Eq. 12 to finally obtain Eq. 8. ad

+ Azcosf+ Ay sinf =0 . (12)

4.2 Numerical solution

The similarity of Eq. 8 to the Elastica Eq. 1 (and also to the Elastica-Pendulum
equation [14]) suggests that a closed form analytic solution in unlikely. Instead,
we turn to formulate a numerical solution of a first order ordinary differen-
tial equation (ODE) with Dirichlet boundary conditions. A standard numeri-
cal technique for such ODE is based on nonlinear optimization that seeks the
true values of the equation parameters for given boundary points, in our case
po = (%o, Y0, 00) and p1 = (21, y1,61).

A first step towards the formulation of such an optimization process for
Eq. 8 is to examine the curve’s degrees of freedom vs. the problem’s constraints.
Eq. 8 represents a family of planar curves in Whewell form (i.e., an equation
that relates the tangential angle of the curve with its arclength), in which their
Cartesian coordinates are computed as

z(s) = o + [ cos0(3)d3 (13)
y(s) =yo + [, sinf(5)ds .

Thus, a single and unique curve from our family of solutions is determined by 6
degrees of freedom: 6, ¢, and ¢ are needed to set a single and unique 6(s) function
via Eq. 8, and =z, yp and ! are needed to determine the curve’s coordinate
functions z(s) and y(s) from the first to the second inducer via Eq. 13. At the
same time, the curve completion problem provides six constraints expressed by
the two given inducers:
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The matched number of degrees of freedom and constraints implies that the
optimization process is solvable by a unique solution. It also suggests that the
optimization can be framed as an iterative search process that involves three
steps: (1) a selection of values for the parameters ¢, ¢, and [, (2) the construction
a curve starting from py = [x0, Yo, o] in a way that obeys the ODE in Eq. 8, and
(3) the evaluation of the correctness of the parameters by assessing the error
when s reaches the arclength [. The error E(c,¢,l) between the desired and
obtained endpoints at s = [ is then used to update the parameters for the next
iteration.

More specifically, for each iteration i with a given starting point py and
parameter values ¢ and ¢ we first solve the differential equation 8 via Euler’s
method

Sn41 = Sn + h
Ont+1 = 0(snt1) = 0(sn + h) = 0(sn) + h - K(sn)
Ynt1 =Y(sn +h) R y(sn) +h-y(sn)
= Yn + h - sin on
Tnt1 = x(sn + h) = x(sn) + h - 2(sn)
=x, +h-cosl,

where h is a preselected step size and the error is of order O(h?). The curve
Bi(x) = (x(s),y(s:),0(s;)) computed by this step is then evaluated at s, = I
(i.e, at step n = [/h) to obtain the point (Zend, Yend; fend) and the error E(c, ¢, 1)
associated with the current value of the parameters is computed by

E(Cv ¢a l) = || (mla Y1, 91) - (xendz Yend, eend) ||

The new values for ¢, ¢ and [ are then computed by a gradient descent on

E(c, ,1).

5 Dependency on scale and other visual properties

Our discussion so far illustrates how the problem of curve completion can be
formulated and solved in the space that abstracts the early visual cortical regions
where this perceptual process is likely to occur. Since the theory and the principle
of “minimum action” that guides this solution are essentially “non perceptual”,
it is important what perceptual properties they entail, and how these predictions
correspond to existing perceptual findings and the geometrical axioms reviewed
earlier.

As suggested in Sec. 4, the value of the i constant could have a significant
influence over the shape of curves of minimum-length in the tangent bundle, as
it controls the relative contribution of length and curvature in the minimization
process, or put differently, the relative scale ratio (i.e, the proportion between
units of measurement) of arclength and curvature. In this context, the behavior
at the limits provide qualitative insights. On one hand, if i is very small, the
minimization process becomes similar to minimization of length in I (subject to
boundary conditions) and we therefore expect the resultant curve to straightened
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(or “flatten”). On the other hand, when 7 is very large, the minimization process
is dominated by the minimization of orientation derivative (again, subject to
boundary conditions), a condition which resembles (qualitatively) the classical
elastica and converges to a particular shape. To show these properties formally,
we rewrite Eq. 8 as

a9\* c? 1 é 1
| T 2 T w2 72 (14)
ds h2sin*(0 4+ ¢) 2 sin®(0 + ¢)  h?

where ¢ = ¢/h is a renaming of the constant that fits the boundary conditions.
Using this representation we observe that when h — oo, Eq. 14 converges to

(%2 B snz(eﬂz,) - (15)

(Note that in such case ¢ can also be very large and thus balance 7 in ¢ = ¢/h.)
The shape of the curve described by this expression can be shown experimentally
to be rather rounded although it does not describe a circular arc (see Fig. 2 for
particular initial conditions). To examine the curve behavior when i — 0, we
return to Eq. 8 which now becomes
2
0= sin2€0+¢) -1,

or

sin(0+¢) = c. (16)

Hence, since in the limit sin(6(s) + ¢) must be constant for all s, 6(s) becomes
constant also, which implies a linear curve. A demonstration of several curves for
the same inducer pair but different values of &, are shown in Fig. 2 and Fig. 3.
Changing h amounts to changing the viewing scale of a particular completion
task, i.e., applying a global scale transform on the initial conditions. Hence, one
could expect that the effect on the resultant minimum length curve would be
similar. To show this formally, we observe that any (i.e., not necessarily minimal)
image curve oy (f) traveling from py = [0,0, 6] to py = [L,0,6;] can be written
as a scaled version of some other curve a1 (t) traveling from [0, 0, 6y] to [1,0, 6;]:

ar(t)=L-ay(t) =[L-x(t), L-y(t)] ,t € [to, t1]

where
aq(t) = [x(t),y(t)] t € [to,t1] and z(tg) =0, z(t1) = 1.

Hence, the lifted T(I) curve S (t) that corresponds to ay,(t) becomes
1 (L-yg
ﬂL(t) = [L'CI?,L'y,tCLTL ! (Tayj)] = [Lx(t)7Ly(t)70(t)} le [to,tl}

where [z(t),y(t),0(¢t)] is the tangent bundle curve that corresponds to «;(t).
Note now that the total arclength of gy, is

t1 - t1 A 2'
L(Br) = / \/Lz(a'c2 + 9?) + k202 dt = L~/ @2 + 92 + <L> 02 dt . (17)
to to
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Fig. 2. Minimum length tangent bundle curves at different scales (or “viewing dis-
tances”) and different & values. Here shown are two cocircular inducers ([0, 0,45°] and
[0,8,—45°]) and completion results for different values of h. The corresponding elas-
tica (red) and circular curves (green) are shown for comparison. Identical result (up to
scale) would be obtained for fixed & = 1 and varying inducer distances of {0.5, 1,2, 4, 8}
units. Note the ”flattening” of the completed curve with increased scale or decreased .

Clearly, a minimization of this functional (that was obtained by scaling up the
input) is identical to optimizing the original input while scaling down % by L and
hence we conclude that changing the global scale has an effect inverse to changing
h. We therefore expect the case of L — 0 to reflect the case of i — oo, and vice
versa. Fig. 2 demonstrates the scale dependency using symmetric inducers as
initial conditions.

In addition to scaling issues, several properties of our model can be pointed
out regarding the six axioms of curve completion mentioned in Sec 1. First, since
our solution is not linked to any specific frame, it is trivially isotropic. Note that
since the rotated minimum length curve § = 6 + p also satisfies Eq. 8 (for the
same constant ¢ and ¢ = ¢+p), the solution is invariant under rotations. Second,
since the solution minimizes total arclength in T'(I), it must be extensible in that
space and hence in the image plane also. Third, since the completed curves can
be described by differential Eq. 8, they clearly satisfy the axiom of smoothness.

Obviously, the analysis of scale that was discussed above indicates that our
theory generates scale variant solutions, or put differently, it does not satisfy the
axiom of scale invariance. Another axiom where our model departs from prior
solutions is the axiom of roundedness, since it is easy to confirm that the case of
constant curvature (Z—g = const) does not satisfy Eq. 8. At first sight these two
properties could undermine the utility of our model, but given the refutation of
both scale invariance and roundedness at the perceptual and psychophysical level
(as discussed in Sec. 1), we consider these properties an important advantage
of our theory rather than a limitation of our model. That these properties were
derived as emergent properties rather than imposed axioms is yet another benefit
of our approach as a whole.

6 Experimental results

While this paper is primarily theoretical, and while the full utility of our pro-
posed new theory requires psychophysical verification (which is part of our short
term future research), here we have also experimented with our results by apply-
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ing them to selected instances of curve completion problems. Some results are
shown in Fig. 3 and demonstrate that the completed curves correspond well our
perception. Clearly, the determination of the “correct” h is a matter of percep-
tual calibration, which is outside the scope of this computational paper. For the
demonstrated examples we have calibrated i manually after setting the scale
(i.e., pixel size in length units) arbitrarily (see different settings on the swan
demo of Fig. 3). Inducers’ orientation was measured manually and all initial
data were fed to the numerical algorithm from Sec. 4.2. In all results the param-
eters ¢, and [ were optimized up to an error E(c, ¢,1) < 107°. The resultant
curves of minimum arclength in T'() were then projected to the image plane I
and plotted on the missing parts. In several cases we also show comparison to
other common models, such as the biarc and the elastica models. However, we
do note that until curve completion is investigated in a comprehensive fashion
against the statistics of natural image contours (e.g., in the spirit of [5]), such
comparisons do not necessarily indicate that a certain model is better than oth-
ers. Studying these links is a primary goal of our short term future research.

Acknowledgement. This work was funded in part by the Israel Science Foun-
dation (ISF) grant No. 1245/08. We also thank the generous support of the

e

2 C
\ 4
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size of 0.01.
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