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Abstract Good continuation is the Gestalt observation
that parts often group in particular ways to form coherent
wholes. Perceptual integration of edges, for example, in-
volves orientation good continuation, a property which has
been exploited computationally very extensively. But more
general local-global relationships, such as for shading or
color, have been elusive. While Taylor’s Theorem suggests
certain modeling and smoothness criteria, the consideration
of level set geometry indicates a different approach. Using
such first principles we derive, for the first time, a gener-
alization of good continuation to all those visual structures
that can be abstracted as scalar functions over the image
plane. Based on second order differential constraints that re-
flect good continuation, our analysis leads to a unique class
of harmonic models and a cooperative algorithm for struc-
ture inference. Among the different applications of good
continuation, here we apply these results to the denoising of
shading and intensity distributions and demonstrate how our
approach eliminates spurious measurements while preserv-
ing both singularities and regular structure, a property that
facilitates higher level processes which depend so critically
on both of these classes of visual structures.
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1 Introduction and background

Visual perception, by either man or machine, is a process
of acquiring descriptions and information about the world
from its images. Perceptual organization (Wertheimer 1955;
Koffka 1935) facilitates this goal by providing a “descrip-
tion that decomposes the image into constituents that cap-
ture regularity or coherence [and] therefore provides de-
scriptive chunks that act as ‘semantic precursors’, in the
sense that they deserve or demand explanation” (Witkin and
Tenenbaum 1983, p. 483). Such a goal, which presupposes
only minimal a priori knowledge about the world, and em-
ploys only the most general models (Zucker et al. 1975), is
typically embodied in a variety of tasks, from texture seg-
mentation, through feature grouping, to figure-ground seg-
regation and contour completion.

Of the different perceptual organization principles (Wert-
heimer 1955), one particularly prominent is good continu-
ation. Described by Wertheimer as the “inner coherence”
by which “successive parts of a whole should follow one
another” (Wertheimer 1955, p. 83), good continuation had
become a fundamental topic of computational investigation
in a variety of ways and levels of abstraction. Notably, these
efforts focused almost exclusively on the study of curve-like
structures (e.g., Ullman 1976; Sha’ashua and Ullman 1988;
Parent and Zucker 1989; Fischler 1994; Guy and Medioni
1996; Williams and Jacobs 1997; Kimia et al. 1999; Sharon
et al. 2000; Cao 2004), perhaps because of the abundance
of curves in visual stimuli, the importance of edge detec-
tion, and the fact that Wertheimer himself demonstrated this
principle in terms of curve-like structures.

While the identification of good continuation with curves
is historical, it is clear that Wertheimer meant more when he
coined his general “Factor of Direction” (Wertheimer 1955).
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Fig. 1 The need for structure preservation in image operations for
vision. (a) A two cylinder pipe-like object and region of interest (ROI).
(b) The geometry of the shading level sets in the ROI. Note both
the singularity and the regular structure. Both play a critical role in
interpreting the shading correctly. (c) Noise (in this case—speckle)
contaminates both the intensities and their level sets. For successful
higher level visual processing, this noise must be eliminated with min-
imal qualitative change to the geometry of the shading. (d) A popular
denoising procedure applied to the noisy image distorts both the reg-

ular structure and the singularity long before the noise is eliminated.
Any subsequent shape inference procedure is therefore likely to fail
(in the sense of reporting the correct physical structure). (e–h) A sim-
ilar demonstration to a–d, this time using a natural image of bananas
contaminated with additive Gaussian noise. Although the effect is less
dramatic, it is evident that much of the geometrical structure is signif-
icantly distorted in the denoised image, putting at risk the success of
subsequent shape inference attempts

Unfortunately, this general conceptual view of good contin-
uation for arbitrary visual structures has barely penetrated
into formal and computational investigations. Our goal in
this paper is to develop such a computational generaliza-
tion for a wide class of visual features—those that can be
abstracted as scalar functions from the image plane to the
real line R (or subintervals thereof). As we argue, develop-
ing this approach requires an explicit consideration of the
geometry of the level sets of these functions.

The contribution of our paper is both theoretical and in
addressing a critical computational necessity for computer
vision. To motivate this argument, consider the image in
Fig. 1a which is easily perceived as a fixture of two intersect-
ing tubes. The intensity image has several cues that should
enable a computer vision system make the correct 3D shape
inference and part decomposition. For example, consider the
(second-order) intensity singularity of co-dimension 1 in the
marked region. Although it is not visually salient, this singu-
larity is clearly visible in the representation of the shading as
a set of iso-luminance level sets (Fig. 1b). Correspondingly,
the regular geometrical structure away from this singularity

is essential for correctly inferring the cylindrical shape of the
two parts that intersect along the singularity. Both the regu-
lar and singular structures must survive any preprocessing
before being handled by a higher level shape inference or
part decomposition computation. But if the image were con-
taminated with noise, this task would be difficult to achieve.
Fig. 1c shows the level set geometry for a noisy patch. In-
deed, trying to remove the noise might distort both the sin-
gularity and the regular structure long before the noise itself
is eliminated (Fig. 1d). If this happens, any subsequent shape
inference process is thus likely to fail.

Noise elimination, as is required in Fig. 1, is of course
nothing new to image analysis. However, typical denoising
processes care explicitly about the noise, and frequently for
the preservation of singularities, but rarely for the preser-
vation of regular structures. Although the notion of good
continuation is illusive and difficult to define, in this pa-
per we argue that a contextual computation equipped with
a formal model of good continuation can achieve all these
tasks (i.e., noise reduction, preservation of singularities, and
preservation of regular structure) simultaneously. Indeed,
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various nonlinear diffusion techniques that smooth data sets
(e.g., Alvarez and Mazorra 1994; Sochen et al. 1998; Tang
et al. 2000) relate indirectly to good continuation by their
virtue of minimizing certain variational functionals on a
geometric representation of the image embedded in some
higher dimensional space. However, these techniques typi-
cally do not account for the fact that certain transformations
should be prohibited in this space, or that its dimensions are
incommensurable (Koenderink and van Doorn 2002). More-
over, these techniques do not address good continuation ex-
plicitly or able to guarantee any kind of performance with
regard to it. A more explicit consideration of good contin-
uation of non curve-like features has been attempted within
the tensor voting framework (Guy and Medioni 1997) for
surface patches, and formal considerations based on a frame
field representation were offered by Ben-Shahar and Zucker
(2003) for locally parallel structures. We follow the latter in
using a frame field representation, but note that it, too, is in-
complete for general image features which are abstracted as
2D scalar functions. In technical terms we compensate for
this incompleteness by extending our previously suggested
helicoidal model (Ben-Shahar and Zucker 2003) to a much
more elaborate model that provides not only good continu-
ation for the level set geometry, but also for the structure of
their values on top of that. Then, we incorporate this model
in a relaxation labeling network that permits not only the or-
ganization of coherent regions, but also the preservation of
the singularities between those regions.

As a final introductory comment we note that in this pa-
per we apply our theory and computational algorithms di-
rectly to the image shading function so that the link to de-
noising can be easily demonstrated and illustrated visually.
However, we stress that this work is theoretical and general,
so our results are applicable not only to denoising, but to
all cases where good continuation is a factor in the inter-
pretation of visual signals. Among these additional appli-
cations are image restoration, segmentation, fragment and
patch grouping, visual completion, image inpainting, and
others. Similarly, our results are applicable not only to raw
image data and intensity values, but also to all cases where
a visual feature can be expressed in terms of a piecewise
smooth 2D scalar function over the image plane. Hence, by
proper representation one can also apply our results to the R,
G, and B channels of color images; to color saturation and
intensity in HSV representations; to disparity information
along epipolar lines in stereo pairs; to texture energy chan-
nels (Malik and Perona 1990); to the magnitude of optical
flow fields, and so forth.

2 The Geometry of 2D Scalar Features

Let I : R2 → R be a generic image feature defined over the
image plane. (We will frequently refer to I as the “shading”

function, although this is a choice of convenience only; it
may be one of the many image features described above.)
For now, assume I is smooth.1 Our goal is to group dif-
ferent measurements (“parts”) of I into coherent “wholes”.
Following the Gestalt principle of good continuation, two
nearby measurements should be considered part of the same
coherent unit if and only if they are in good “succession”
relative to each other (Wertheimer 1955). The question, of
course, is how to define “good succession” formally.

One possibility is to approximate the “good” behavior of
the function I : R2 → R around a point q = (a, b) based
on the coefficients of its Taylor expansion. Depending on
the order of approximation, this results in one (I (q)), three
(I (q) and the gradient ∇I (q)), six (I (q), ∇I (q), and the
Hessian H(q)), or even higher number of parameters, plus
the two parameters that describe the position. For example,
a 2nd order approximation would be

I (x, y) ≈ I (q) + (x − a)Ix(q) + (y − b)Iy(q)

+ 1

2!
[
(x − a)2Ixx(q) + 2(x − a)(y − b)Ixy(q)

+ (y − b)2Iyy(q)
]
. (1)

Another view—closer in spirit to good continuation—is
that such approximations should be based on the level set
geometry of these functions (Breton et al. 1992; Šára 1995;
Koenderink and van Doorn 2002; Caselles et al. 2002). Be-
cause the level set geometry of smooth regions is generically
locally parallel (a fact that follows from the classical exis-
tence theorem for ordinary differential equations), we can
consider it to be a visual flow (Ben-Shahar 2003) and apply
the construction from Ben-Shahar and Zucker (2003) devel-
oped in the context of texture. By that work, approximately
locally parallel structures in the image plane can be char-
acterized at point q by a triple {θ(q), κT (q), κN(q)}. If we
denote by ÊT (x, y) the unit length vector field tangent to
I ’s level sets (see Fig. 2), then θ(x, y) is ÊT ’s orientation
relative to a global coordinate frame

ÊT = (cos θ, sin θ),

and κT (x, y) and κN(x, y) are the tangential and normal cur-
vatures of this vector field, i.e., they are the initial rate of
change of orientation in the tangential direction ÊT and the
normal direction ÊN = (− sin θ, cos θ), respectively (Ben-
Shahar and Zucker 2003). These two curvatures are derived
from the covariant derivative of the field ÊT and they are

1Assuming that I is smooth seems to undermine one of our goals—that
of preserving its singularities. However, at this point, and up to Sect. 5,
we care to study the “good” parts of such function, not its singularities.
The preservation of singularities will be handled later by the operation
of the contextual computation in the relaxation labeling network.
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Fig. 2 Although any general 2D scalar function over the image plane
can be viewed as a set of values over a global coordinate frame (left),
we will stress the importance of its level set geometry (right) by mak-
ing this aspect explicit in the representation that we use. Without loss
of generality, and for convenience reasons only, this and the rest of
the illustrations therein use a shading function as an instance of the
abstraction

related to the gradient of the orientation function ∇θ via or-
thogonal expansion (O’Neill 1966), i.e.,

κT = ∇θ · (cos θ, sin θ)

κN = ∇θ · (− sin θ, cos θ)

}
⇔

{
θx = κT cos θ − κN sin θ

θy = κT sin θ + κN cos θ.

(2)

But {θ(q), κT (q), κN(q)} are only three parameters, capa-
ble of approximating the local level set geometry but not
all of I (x, y) in the neighborhood of q . To achieve that
goal we must expand the {θ(q), κT (q), κN(q)} descriptor
and add parameters that map values on top of the geometry.
We therefore return to the Taylor descriptor, focus on 2nd
order approximations (this is the lowest order that captures
variations in the level set geometry), and seek an extension
of the {θ(q), κT (q), κN(q)} descriptor that maps one-to-one
with the set {I (q), Ix(q), Iy(q), Ixx(q), Ixy(q), Iyy(q)}. In
other words, we need to expand the set {θ(q), κT (q), κN(q)}
with other measurements at q such that all of the Taylor co-
efficients can be computed directly from the new set.

Obviously, I (q) must be included explicitly in our ex-
panded set. Since by definition ÊT is tangent to I ’s level
sets, ∇I is parallel to ÊN and we arbitrarily select ÊN to
point away from ∇I (Fig. 2), i.e.,

ÊT = (Iy ,−Ix)

‖∇I‖ ,

ÊN = (−Ix ,−Iy)

‖∇I‖

}

⇔
{

Ix = ‖∇I‖ sin θ,

Iy = −‖∇I‖ cos θ,
(3)

which implies that ‖∇I‖(q) should be incorporated into our
descriptor as well. To account for the second derivatives
Ixx, Ixy, Iyy in the Taylor descriptor, we first differentiate
Ix and Iy from (3)

Ixx = ‖∇I‖θx cos θ + sin θ ∂
∂x

‖∇I‖,
Ixy = ‖∇I‖θy cos θ + sin θ ∂

∂y
‖∇I‖,

Iyx = ‖∇I‖θx sin θ − cos θ ∂
∂x

‖∇I‖,
Iyy = ‖∇I‖θy sin θ − cos θ ∂

∂y
‖∇I‖.

(4)

At first glance, since both ∂
∂x

‖∇I‖ and ∂
∂y

‖∇I‖ participate
in the description of I ’s second derivatives, (4) suggests

Fig. 3 A geometrical depiction of the parameters underlying the local
description of a smooth 2D scalar function up to second order around
a point of interest q . Each such point belongs to a certain level set (in
blue) whose tangent at q defines the local frame {ÊT , ÊN } (in red).
The orientation gradient ∇θ at q defines the direction and rate of the
maximum change of level set orientation around q , and its projections
on the frame {ÊT , ÊN } defines the tangential and normal curvatures
at q

that we need to add both of them as free parameters to our
levelsets-centered descriptor, which will result in a total of
seven parameters, one more than Taylor’s. However, apply-
ing the integrability constraint Ixy = Iyx to (4) translates to

∇I · ∇θ = −ÊT · ∇‖∇I‖
and removes one degree of freedom: either the direction of
∇‖∇I‖ or its magnitude, but not both, should be used. In-
deed, if γ is the angle between ∇I and ∇θ , and β is the
angle between ÊT and ∇‖∇I‖, then the cosine rule dictates
that once we set the magnitude of ∇‖∇I‖ the angle must
satisfy

cosβ = ‖∇I‖ · ‖∇θ‖ · cosγ

‖(∇‖∇I‖)‖ .

In conclusion, from this analysis we have:

Proposition 1 With notation as above, the set {I,‖∇I‖, θ ,
κT , κN , ‖(∇‖∇I‖)‖}, evaluated (or measured) at point q ,
is a 2nd-order levelset-centered descriptor for I (x, y) in the
neighborhood of q .

These parameters are illustrated in Fig. 3. We now use
this descriptor to design a local model for I (x, y) in the
neighborhood of q such that good continuation of both level
sets and values hold simultaneously. Moreover, by employ-
ing the specific criteria for “goodness” as discussed in the
following sections, we are able to show that the higher order
parameter of the intensity structure (i.e., ‖(∇‖∇I‖)‖) is not
needed, and hence to end up with a local descriptor that has
only five parameters: {I,‖∇I‖, θ, κT , κN }.
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3 Level Sets Good Continuation Model

A primary goal of this work is to develop a model Î (x, y)

of good continuation based on the descriptor derived above.
More specifically, we seek a family of functions
Î{I,‖∇I‖,θ,κT ,κN }(x, y), parametrized by the different mea-
surements at point q , which reflects “good continuation”
in the neighborhood of q , both for its level set geometry
and for the distribution of its values. Assuming that our
model is constructed around an arbitrary point q = (x0, y0)

where the level sets are oriented with orientation θ(q) = θ0,
a model that reflects good continuation for the locally
parallel structure of the level sets has already been pro-
posed in the literature (see Ben-Shahar and Zucker 2003;
Ben-Shahar 2003). According to this model, the local ori-
entation of the level sets at any point (x, y) in the neighbor-
hood of q takes the following general explicit form:

θx0,y0,θ0,KT ,KN
(x, y) = θ0

+ tan−1
(

(KT (�x)+KN(�y)) cos θ0+(−KN(�x)+KT (�y)) sin θ0
1+(KN (�x)−KT (�y)) cos θ0+(KT (�x)+KN(�y)) sin θ0

)

(5)

where �x = x − x0, �y = y − y0 and KT and KN are the
level set curvatures measured at q , i.e., KT = κT (q) and
KN = κN(q). For simplicity, if we assume (without loss of
generality) that the model is constructed around the origin
q = (0,0) with the coordinate system aligned with the tan-
gent of the level set at that point, i.e., with ÊT (q) = (1,0) or
θ(q) = 0, then the general model in (5) reduces to

θ(x, y) = tan−1
(

KT x + KNy

1 + KNx − KT y

)
. (6)

When viewed as a surface in the space XYθ
�= R2 × S 1 (or,

R3 whose Z axis represents orientation), this function (ei-
ther the restricted or the general form) is known as a right

helicoid (Ben-Shahar and Zucker 2003; Ben-Shahar 2003).
Several instances of this model, depicted as texture patterns
stripped of any value structure, are shown in Fig. 4.

The right helicoidal model possesses several geometrical
properties that associate it with good continuation. For ex-
ample, this model uniquely induces an identical covariation
of the two curvature functions κT and κN and guarantees
that their ratio remains invariant in a neighborhood N(q)

of q

κT (x, y)

κN(x, y)
= const = KT

KN

∀(x, y) ∈ N(q). (7)

Therefore, unlike common ways to achieve “good behav-
ior” of 2D (or higher dimensional) structures, typically via
anisotropic diffusion and deformable models (e.g., Tang et
al. 2000; Sochen et al. 1998), the helicoidal model emerges
from explicit considerations of the behavior of curvatures in
the image plane and thus it is closer in spirit to the method-
ology that was employed in the study of good continua-
tion of curves (e.g., Ullman 1976; Parent and Zucker 1989;
Mumford 1994; Kimia et al. 1999). As a consequence,
this model guarantees that streamlines of the model’s flow
structure will have neither curvature extrema nor inflec-
tion points, both of which are considered significant geo-
metrical events for segmentation and part decomposition
(e.g., Richards et al. 1987; Hoffman 1998) and therefore
are clearly undesired when perceptual coherence is needed.
More importantly, the right helicoidal model is unique in
guaranteeing a neighborhood behavior that is devoid of per-
ceptual singularities (Ben-Shahar 2006) and non-smooth
percepts that can trigger segregation in completely smooth
visual signals (Fig. 5). Obviously, no good continuation
model can afford to include such visual events in its pre-

Fig. 4 Stripped of its value (say, shading) structure, underlying the
model for good continuation Î (x, y) is the geometry of its level sets,
which, as we argue, should have good continuation qualities of its
own. For this purpose we utilize an already proposed model for the
good continuation of locally parallel structures—a right helicoid in

XYθ (Ben-Shahar and Zucker 2003; Ben-Shahar 2003). Shown here
are just several examples of helicoidal level set structures around a
central point q having θ(q) = 0 and different curvature values κT (q)

and κN(q) as indicated. Geometry patterns were generated using the
line integral convolution method (Carbal and Leedom 1993)
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Fig. 5 Smoothness of a visual signal is by no means a sufficient con-
dition for perceptual coherence. Here, for example, perceptual sin-
gularities (and therefore the emergence of global structure) occur
in orientation defined textures whose dominant orientation function
changes smoothly and slowly. (a) In this texture, the orientation func-
tion changes smoothly with constant orientation gradient and yet most

observers report of salient diagonal perceptual singularities that give
rise to the segregation of the pattern to diagonal bands, (b) Although
this texture is completely smooth in terms of its orientation function,
the emergence of certain perceptual singularities gives rise to a global
structure of a double spiral. Obviously, such perceptual structure and
singularities are undesired in a model that reflects good continuation

diction, and the right helicoid is unique2 in possessing this
property.

Finally, although it emerges from explicit good contin-
uation considerations in the image plane, the helicoidal
model does enjoy properties that link it to scale space.
In particular, this model (as an orientation function) was
proved to be both p-harmonic for all values of p and a
minimal surface in XYθ , thus exhibiting both properties
that have been used extensively in the anisotropic diffu-
sion literature for signal reconstruction that preserves dis-
continuities (e.g., Caselles et al. 1997b; Tang et al. 2000;
Kimmel et al. 2000). For all these reasons we use this object
as a starting point for the more general model that we seek
for the good continuation of general 2D scalar functions over
the image plane.

4 Extended Good Continuation Model for General 2D
Functions

The helicoidal model defines only the level set structure
of our sought-after model Î{I,‖∇I‖,θ,κT ,κN }(x, y). One way

2Perceptual singularities in oriented patterns are modeled by the ridges

of the scalar ratio PSM = κ2
N

κ2
T +κ2

N

(see Ben-Shahar 2006). Since this

ratio varies smoothly in the bounded domain [0,1], the way to prevent
it from having ridges is to keep it constant. However, doing so imme-
diately entails the condition in (7), which is characteristic and unique
to the helicoid. We do note that this is correct in the strict theoreti-
cal meaning, though not always in the practical perceptual sense. In
particular, due to the finite sensitivity of the human visual system, it is
possible to infinitesimally deform the right helicoidal model to a differ-
ent model without any perceptual effect but with PSM-predictable per-
ceptual singularities. This finite sensitivity is modelled in Ben-Shahar
(2006) by a perceptual thresholding stage, which in practical terms per-
mits some freedom in the selected model.

to proceed toward this general model is to develop a gen-
eral function I (x, y) whose level set orientation θ(x, y)

obeys the helicoidal orientation function and then explore
the constraints that this derivation entails. In principle, such
an analysis is straight forward. Indeed, from the identity
θ = tan−1 −Ix

Iy
we can derive ∇θ in terms of I ’s deriva-

tives

θx = IxIxy − IyIxx

I 2
x + I 2

y

θy = IxIyy − IyIxy

I 2
x + I 2

y

(8)

and using (2) and (3) we can therefore express the two cur-
vature functions in terms of I ’s derivatives

κT = I 2
x Iyy − 2IxIyIxy + I 2

y Ixx

(I 2
x + I 2

y )3/2
,

κN = Ixy(I
2
x + I 2

y ) + IxIy(Ixx − Iyy)

(I 2
x + I 2

y )3/2
.

(9)

Then, by applying the constraint in (7) we can therefore
obtain a constraint that forces I to have helicoidal level
sets

0 = Ixx(KNI 2
y − KT IxIy) + Ixy(KT (I 2

x − I 2
y ) − 2IxIy)

+ Iyy(KNI 2
x + KT IxIy). (10)

While this second order PDE defines a necessary condition
which our sought-after model Î must satisfy, its nonlinear
nature suggests that a closed form solution may be difficult
(or impossible) to obtain. A more productive way to gen-
eralize the level sets’ helicoidal model to a general model
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Î{I,‖∇I‖,θ,κT ,κN }(x, y) is to integrate the former (which is al-
ready parametrized by θ , KT , and KN ) into a closed form
which is parametrized by the newly introduced parame-
ters I and ‖∇I‖. Doing so requires several steps. First we
seek a closed form expression for Î ’s level sets by solv-
ing for the characteristics of a 1st order differential equa-
tion derived from the helicoidal model. Second, we derive a
non-characteristic Cauchy curve (John 1982) which is used
to parametrize the entire solution as a dense collection of
level sets. This parametrization is finally used to impose
additional good continuation constraints for the derivation
of the final desired model. All these steps are discussed
next.

4.1 Level Sets Closed Form

Let I (x, y) an arbitrary smooth scalar function over the im-
age plane. The orientation of I ’s level sets satisfies

θ = tan−1
(−Ix

Iy

)
(11)

and therefore, for I ’s level sets to have a certain given ori-
entation function θ(x, y), it must satisfy the PDE

Ix + Iy tan θ(x, y) = 0. (12)

Now, since θ(x, y) will be based on the helicoidal model
for good continuation of locally parallel structure (Ben-
Shahar and Zucker 2003), by plugging (6) into (12) we ob-
tain the following PDE that our model should satisfy

(1 + KNx − KT y)Ix + (KT x + KNy)Iy = 0. (13)

The characteristic curves (John 1982) of this PDE must sat-
isfy

dx

dt
= 1 + KNx − KT y,

dy

dt
= KT x + KNy,

dI

dt
= 0,

a system whose solution α(t) = (x(t), y(t), I (t)) can be
written in closed form as

x(t) = etKN (c1 cos(tKT ) − c2 sin(tKT )) − KN

ξ2

y(t) = etKN (c1 sin(tKT ) + c2 cos(tKT )) + KT

ξ2

I (t) = c3,

(14)

where

ξ2 = K2
T + K2

N (15)

and the coefficients c1, c2, and c3, are determined from the
initial data

x(t = 0) = x0,

y(t = 0) = y0,

I (t = 0) = I0

⎫
⎬

⎭
⇒

⎧
⎪⎨

⎪⎩

c1 = x0 + KN

ξ2 ,

c2 = y0 − KT

ξ2 ,

c3 = I0.

(16)

Given any point in the image plane, we are now able
to trace its level sets via (14) and (16). The fact that these
level sets could be described in closed form should not be
taken for granted. In fact, many level set orientation func-
tions θ(x, y), including functions much simpler than the he-
licoidal one used here, would give rise to nonlinear charac-
teristic PDEs with no closed form solution. The fact that we
are able to do so with a function that was shown to have good
continuation qualities is a property that will prove most valu-
able in the derivation of a closed form expression for Î (x, y)

as a whole.

4.2 Solution Parametrization via Level Sets

Since (14) and (16) transform point initial data to a curve,
they will turn initial data along a curve into a surface patch
in R3. Let Γ (s) = (x0(s), y0(s), I0(s)) be such an initial
Cauchy data parametrized by s and note that Γ (s) can be
interpreted as a parametrized family of initial data points,
each having the form shown in the left part of (16). As long
as Γ is not a characteristic curve of (14), the substitution of
Γ into (14) and (16) yields the following solution surface
which is parametrized by s and t :

x(s, t)

= −KN+etKN [(x0(s)ξ
2+KN) cos(tKT )+(KT −y0(s)ξ

2) sin(tKT )]
ξ2 ,

y(s, t)

= KT +etKN [(x0(s)ξ
2+KN) sin(tKT )+(y0(s)ξ

2−KT ) cos(tKT )]
ξ2 ,

I (s, t) = I0(s).

(17)

Given the closed form of the solution surface in (17), it
is left to find a “legal” (i.e., non characteristic) initial curve
Γ (s). To separate the “spatial” component (x0(s), y0(s)) of
Γ from its “value” (e.g., shading) dimension I0(s), we first
consider the projection of Γ (s) on the image plane, i.e., the
curve Γxy(s) = (x0(s), y0(s)). One safe course of action is
to select a Γxy(s) that is everywhere orthogonal to the char-
acteristic curves of (14). If these latter characteristics are
computed by tracing the direction tangential to the level sets,
i.e., the direction of ÊT , constructing a curve that is every-
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where orthogonal will be based on integration along ÊN . By
repeating the process from Sect. 4.1 for the system

dx

ds
= −KT x − KNy,

dy

ds
= 1 + KNx − KT y

and the initial data x0 = 0 and y0 = 0, we yield the following
solution for Γxy(s)

x0(s) = −KN + e−sKT (KN cos(sKN) + KT sin(sKN))

ξ2
,

y0(s) = KT + e−sKT (−KT cos(sKN) + KN sin(sKN))

ξ2
.

(18)

Hence, substituting (18) into (17) results with the following
expression for our sought-after model

x(s, t) = −KN+e(tKN −sKT )[KN cos K̃(s,t)+KT sin K̃(s,t)]
ξ2 ,

y(s, t) = KT +e(tKN −sKT )[KN sin K̃(s,t)−KT cos K̃(s,t)]
ξ2 ,

I (s, t) = I0(s)

(19)

where K̃(s, t) = sKN + tKT .

4.3 Cartesian Re-parametrization

Equation (19) is a key result of special importance to
this paper. It provides an explicit parametrization of the
desired good continuation model based on its desired
level set structure (i.e., the helicoidal good continuation
model). It therefore parametrizes the sought-after model
Î{I,‖∇I‖,θ,κT ,κN }(x, y) around the point q (which, without
loss of generality, can be considered to be the origin) as a
collection of integral curves that emerge from the generator
curve Γxy(s) (see Fig. 6). What is left to consider is the dis-
tribution of values I0(s) along Γxy(s) from which we can
complete the definition of Γ (s) and the solution surface as
a whole. Since nothing in the level set geometry can con-
strain this distribution of values, we will need to incorporate
additional good continuation constraints, as discussed be-
low. However, before doing so, one needs to realize that the
parametrization provided by (19) is not Cartesian. This is a
major limitation because eventually the good continuation
model should be used with images provided in Cartesian
coordinates. In this section we ask if this parametrization
gap can be bridged. In particular, we ask if it is possible
to re-parametrize (19) based on Cartesian coordinates, and
whether or not that can be done in closed form. As we show
next, all these questions can be answered in the affirmative
despite the non nontrivial form of (19).

Formally, we seek a reparametrization s = s̃(x, y) and
t = t̃ (x, y) such that, when applied to s and t in (19) makes

Fig. 6 Equation (19) parametrizes the plane as a collection of curves,
each of which is a projection of a level set curve on the image plane.
Shown here is the generator curve Γxy(s) and several of the generated
level set curves, superimposed on a helicoidal pattern of KT = 0.1 and
KN = 0.1

both x(s̃(x, y), t̃(x, y)) and y(s̃(x, y), t̃(x, y)) the identity
transformation

s = s̃(x, y),

t = t̃ (x, y)

}
⇒

{
x(s̃(x, y), t̃(x, y)) = x,

y(s̃(x, y), t̃(x, y)) = y.
(20)

While here we skip most of the tedious algebraic manipula-
tions, it can be verified that the transformation from (s, t) to
(x, y) defined by (19) is reversible and that every coordinate
(x, y) can be traced back to the pair (s, t) with the following
transformation

s̃(x, y) = sign(KT x+KNy)KN cos−1 ω(x,y)−KT logμ(x,y)

ξ2

t̃ (x, y) = sign(KT x+KNy)KT cos−1 ω(x,y)+KN logμ(x,y)

ξ2 ,
(21)

where

μ(x, y) = √
1 + 2KNx − 2KT y + ξ2(x2 + y2)

ω(x, y) = 1 + KNx − KT y

μ(x, y)
.

(22)

It can be shown that the expression under the square root
is never negative, and therefore that μ(x, y) is always real
valued and that the logarithm in (21) is always well defined.
μ(x, y) vanishes at a single point (

−KN

ξ2 , KT

ξ2 ) which is the
same singular point of the helicoidal model as a whole.

Having (21), and an explicit way to switch back and
forth between the levelset-centered and the Cartesian para-
metrization, we are now able to plug s̃(x, y) to the I (s, t)

component of (19) to obtain an explicit description of our
desired model in terms of Cartesian coordinates

I (x, y) = I0
( sign(KT x+KNy)KN cos−1 ω(x,y)−KT logμ(x,y)

ξ2

)
.

(23)

Equation (23) is one step short of a desired final model
since it still includes the unspecified function I0(·) to be
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evaluated at the result of s̃(x, y) for each coordinate (x, y).
What is left to do is to devise the function I0(s) in a way
that makes the value structure of the resultant I (x, y) sat-
isfy certain good continuation properties (i.e., in additional
to the already guaranteed good continuation of its level
sets).

4.4 Constraints Toward a Final Model

Equation (23), and the function I0(s) that defines it, rep-
resent the backbone on which any scalar function with heli-
coidal level sets can be constructed in Cartesian coordinates.
But of all these functions, which one would best suit good
continuation?

While this question was never addressed explicitly from
a perceptual organization point of view, the notion of “nice”
functions is of course ubiquitous in image analysis, espe-
cially for denoising and scale space analysis. Typically, the
desired behavior in this context is achieved by low pass
filtering (Jain 1989) or by minimization of some variation
measure through anisotropic diffusion (Sochen et al. 1998;
Tang et al. 2000). In this sense, the helicoidal model for the
level sets already achieves that goal for the geometry un-
derlying I (x, y), as it was shown both to have a vanish-
ing p-Laplacian (a measure used e.g., in Tang et al. 2000)
for all values of p, and to be a minimal surface (used e.g.,
in Caselles et al. 1997a) in XYθ (Ben-Shahar and Zucker
2003). It is therefore natural to examine these measures also
for the value structure of our sought-after model and at-
tempt to derive a model Î (x, y) that has the same good con-
tinuation properties for both its value and level set struc-
tures.

Fortunately, (23) allows to formally explore the last pro-
posal in a straight forward way. Generally speaking, we seek
to translate a desired differential constraint F on I (x, y) to
a differential constraint G on I0,

F (I, Ix, Iy, Ixx, Ixy, Iyy;x, y) = 0

⇒ G
(

I0,
∂I0

∂s
,
∂2I0

∂s2
; s

)
= 0, (24)

then solve G for I0(s) (if solvable) and plug back into (23)
to obtain the final explicit solution.

Equation (23) can be differentiated for an arbitrary dif-
ferentiable I0(s) using the chain rule

Ix = ∂I0

∂s̃

∂s̃

∂x
,

Iy = ∂I0

∂s̃

∂s̃

∂y
,

Ixx = ∂2I0

∂s̃2

(
∂s̃

∂x

)2

+ ∂I0

∂s̃

∂2s̃

∂x2
,

Ixy = ∂2I0

∂s̃2

∂s̃

∂x

∂s̃

∂y
+ ∂I0

∂s̃

∂2s̃

∂x∂y
,

Iyy = ∂2I0

∂s̃2

(
∂s̃

∂y

)2

+ ∂I0

∂s̃

∂2s̃

∂y2

(25)

and the derivatives of s̃(x, y) are readily computed from (21)
(with some special care involving the sign function):

∂s̃

∂x
= −KT x + KNy

μ2(x, y)
,

∂s̃

∂y
= 1 + KNx − KT y

μ2(x, y)
,

∂2s̃

∂x2
= μ2(x, y)KT − 2(ξ2x + KN)(KT x + KNy)

−μ4(x, y)
, (26)

∂2s̃

∂x∂y
= μ2(x, y)KN − 2(ξ2y − KT )(KT x + KNy)

−μ4(x, y)
,

∂2s̃

∂y2
= −μ2(x, y)KT − 2(ξ2y − KT )(1 + KNx − KT y)

−μ4(x, y)
.

Having these last two sets of equations we are able to impose
any desired (second order) differential constraint F and ex-
amine the transformation to G .

4.5 Derivation of a “Dual Harmonic” Model

One sought-after property in the context of “good” or de-
sired behavior of functions is the harmonic map constraint,
a property which in its most basic form is related to heat dif-
fusion and scale space analysis, and to applications ranging
from denoising, through segmentation, to image inpainting
and curve completion (to name but a few). Imposing the har-
monic constraint on an image I (x, y) means asking I (x, y)

to have a vanishing Laplacian, or requiring I (x, y) to be a
critical point of the harmonic energy E = ∫∫ ‖∇I‖2dxdy

(which provides an intuitive appeal for its “goodness”). Re-
markably, doing so in the context of (24) results in the fol-
lowing transformation

F = ∇ · ∇I = Ixx + Iyy = 0 ⇒ G = I ′′
0 (s)

μ2
= 0

and since μ never vanishes in the helicoidal domain of def-
inition, it is safe to determine that under the harmonic con-
straint I0(s) must have a vanishing second derivative and
therefore it must take the form

I0(s) = I ′
0(0)s + I0(0).

Combining this form with (23) gives rise to the following
result:

Proposition 2 (Dual harmonic good continuation model)
A general scalar good continuation model that is harmonic
in both its value and level sets structures takes the form



Int J Comput Vis (2010) 86: 48–71 57

Î (x, y) = I0(0) + I ′
0(0)

ξ2

[
sign(KT x + KNy)KN cos−1 ω(x, y) − KT logμ(x, y)

]
(27)

where μ(x, y), ω(x, y), and ξ2 are all as defined in previous
sections.

It should be noted that although (27) appears ill-defined
for ξ2 = 0 (i.e., for KT = KN = 0), the limit actually con-
verges to the following simple function

lim
KT →0
KN →0

Î (x, y) = I0(0) + I ′
0(0)y.

The non-trivial expression in (27) represents a most
unique object. It is a scalar function whose level set geome-
try (i.e., level set orientation function) and its value structure
are both harmonic functions at the same time in their re-
spective domains of definition! This “dual harmonic” model
therefore complies both with the helicoidal good contin-
uation model and the criterion commonly used to denote
“good” scalar functions. Since I0(0) = I (0,0), and I ′

0(0) =
‖∇I‖(0,0), this model is based on those levelset-centered
local features which we discussed in Sect. 2, namely on
the set {I,‖∇I‖, θ, κT , κN } as measured at the origin (or
more generally, at a general point q). Note that this result
also indicates that the higher order intensity parameter from

our full 2nd-order, levelset-centered descriptor (i.e., the pa-
rameter ‖(∇‖∇I‖)‖ from Proposition 1) is not needed for
our good continuation model, hence reducing the descrip-
tor’s “complexity” to 5 parameters only. Figure 7 shows sev-
eral instances of this model, for different values of curvature
pairs, depicted as intensity patches with and without its level
sets emphasized.

4.6 Derivation of a “Dual p-Harmonic” Model

Interestingly enough, the surprising result from Proposi-
tion 2 can be generalized even further. Indeed, consider the
more general requirement which constrains I (x, y) to have
a vanishing p-Laplacian for some arbitrary value of p. This
constraint (for values of p other than 2) has been used in
the literature to obtain anisotropic diffusion processes with
edge preserving behavior (e.g., Tang et al. 2000) by making
I (x, y) a critical point of the p-harmonic energy functional
Ep = ∫∫ ‖∇I‖pdxdy. In our case, representing this con-
straint in terms of (24) via the definition of the p-Laplacian
(or the Euler-Lagrange equation of Ep) yields

F = �pI = ∇ · (‖∇I‖p−2 ∇I ) = 0, (28)

Fig. 7 Several instances of the dual harmonic good continuation
model of (27), both as a shading patch and as a set of level sets
(coarsely quantized for clarity of display). These instances correspond

to the descriptor set defined by I (0,0) = 0.5, ‖∇I‖(0,0) = 0.25,
θ(0,0) = 0, and the curvature pairs specified over the patches. (The
origin q = (0,0) is at the center of the plots)
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or more explicitly,

F = ‖∇I‖p−4[(p − 2)(I 2
x Ixx + 2IxIy + I 2

y Iyy)

+ (I 2
x + I 2

y )(Ixx + Iyy)
] = 0. (29)

With the transformation from F = 0 in (29) to G = 0 as
described in (24)–(26), we obtain

G = I ′
0(s)

p−2 (p − 2)KT I ′
0(s) + (p − 1)I ′′

0 (s)

μp(x, y)
= 0. (30)

Since μ is always positive in the helicoidal domain of defini-
tion (Sect. 4.3), and since the singular condition of I ′

0(s) = 0
implies an accidental case of constant intensity structure
(where no level set geometry exist in the first place), (30)
is satisfied only when

(p − 2)KT I ′
0(s) + (p − 1)I ′′

0 (s) = 0. (31)

It is easy to see that when p = 2 this constraint reduces
back to I ′′

0 (s) = 0 and therefore to the solution obtained in
the previous section. When p = 1 we again obtain the sin-
gular case of a vanishing I ′

0(s) and constant I0(s). In all

other cases, however, i.e., when p �= 2 and p �= 1, (31) is
a second order linear ODE whose solution can be expressed
in the following closed analytical form

I0(s) = I0(0) + I ′
0(0)

ηp

[
1 − e−ηps

]
, (32)

where ηp is a constant that depends on p and defined as
follows

ηp
�= KT · p − 2

p − 1
,

and I0(0) and I ′
0(0) are the integration constants which rep-

resent the initial conditions at the origin.
Combining the solution in (32) with the form of the final

model in (23), and remembering that the level set geometry
of our model is already p-harmonic for any value of p (a
property of the helicoidal model, Ben-Shahar and Zucker
2003), we get the following result:

Proposition 3 (Dual p-harmonic good continuation model)
A general scalar good continuation model that is p-harmo-
nic in both its value and level sets structures takes the form

Îp(x, y) = I0(0) + I ′
0(0)

ηp

[
1 − e

− ηp

2ξ2 (2·sign(KT x+KNy)KN cos−1 ω(x,y)+KT logμ(x,y))
]

(33)

where μ(x, y), ω(x, y), ξ2, and ηp are all as defined previ-
ously, and p /∈ {1,2}.

Again, it can be shown that although (33) appears ill-
defined for ξ2 = 0 (i.e., for KT = KN = 0), the limit con-
verges again to the same function derived in the harmonic
case, i.e.,

lim
KT →0
KN →0

Îp(x, y) = I0(0) + I ′
0(0)y.

Not unlike the expression in Proposition 2, (33) repre-
sents an object of remarkable property—it is a scalar func-
tion whose level set geometry (i.e., level set orientation func-
tion) and its value structure are simultaneous p-harmonic
functions in their respective domains of definition! Since
I0(0) = I (0,0), and I ′

0(0) = ‖∇I‖(0,0), this model, by
construction, is based on those levelset-centered local fea-
tures which we discussed in Sect. 2, namely on the descrip-
tor set {I,‖∇I‖, θ, κT , κN } as measured at the origin (or
more generally, at a point of interest q). Figure 8 shows one
instance of this model for the same descriptor set and several
selected values of p.

4.7 Can a “Dual-Minimal” Model Exist?

In addition to being p-harmonic, another property that has
been used frequently in the literature in the context of
“good” or “desired” behavior is minimality of the surface
representation of the features of interest (e.g., Caselles et al.
1997b; Kimmel et al. 2000; Ben-Shahar and Zucker 2003;
Savadjiev et al. 2007). Indeed, minimal surfaces, the mathe-
matical objects which minimize area (or tension) under cer-
tain boundary conditions, have numerous geometrical prop-
erties (Dierkes et al. 1992) that motivated their use as a
model for many physical phenomena. Unique among the
minimal surfaces is the helicoid, which is the only non-
planar minimal surface that is also harmonic at the same
time (Hamel 1923; Graustein 1940; Nitsche 1989). Since we
already use the helicoid as a good continuation model for
the geometry of the level sets (after Ben-Shahar and Zucker
2003), it is tempting to consider the possibility of a general
model which is “dual minimal”, i.e., a model which is a heli-
coid (and hence a minimal surface) in its level set geometry
and at the same time is also a minimal surface in its value
structure. Unfortunately, the answer with regard to the exis-
tence of such an object is negative:
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Fig. 8 One example of the dual p-harmonic good continuation model
of Proposition 3, for several different values of p but the same de-
scriptor set {I,‖∇I‖, θ, κT , κN } at q = (0,0). In particular, these in-
stances correspond to I (0,0) = 0.5, ‖∇I‖(0,0) = 0.25, θ(0,0) = 0,
KT = 0.075, and KN = 0.100. Several level sets are quantized and
emphasized for clarity and to demonstrate how changing p affects the

intensity structure only rather than the underlying level set geometry.
Compare to the qualitative changes obtained by changing the curva-
tures (e.g., in Fig. 8). The bottom graphs show in black the inten-
sity profile I0(s) as a function of arc length along the generator curve
Γxy(s) (see Fig. 6), compared to the intensity profile in the harmonic
case (p = 2, shown in red)

Proposition 4 No general good continuation model exists
such that its level set geometry is helicoidal (and therefore a
minimal surface in XYθ ) while its value structure is also a
minimal surface in its respective domain.

To prove this proposition, one needs to consider the min-
imal surface constraint (i.e., a vanishing Mean curvature H )
and apply to I (x, y) as a constraint F = 0 (cf., (24), i.e.,

F = H = Ixx(I
2
y + 1) − 2IxIyIxy + Iyy(I

2
x + 1) = 0.

In order to rephrase this constraint as G = 0 as described
in (24), one can first use (25) and (26) to obtain

G = μ2(x, y)I ′′
0 (s) − KT I ′

0(s)
3 = 0. (34)

Since the function μ(x, y) itself can be re-parametrized in
terms of the level set parameters s and t

μ2(x, y) = e2KNt−2KT s.

Equation (34) can be reduced to the following constraint on
I0(s) and its derivatives

I ′′
0 (s) · e2KN t = I ′

0(s)
3 · KT · e2KT s. (35)

Equation (35) is bad news since it depends on the level set
parameter t (the one that changes along level sets) which
does not constitute a parameter of I0(s). In other words, in

order for the mean curvature constraint to hold, the solution
must change along level sets, which is a contradiction to the
very definition of the level set notion.

It should be emphasized that Proposition 4 must be con-
sidered with care. In particular, it should not be understood
as if no “dual minimal” model can exist at all. The nega-
tive result in this proposition it true only when the minimal
model used for the level set geometry is a right helicoid in
XYθ . However, it may be possible that a “dual-minimal”
model does exist for level set geometry that defines a dif-
ferent minimal surface in XYθ . While this open theoretical
question may be interesting in other contexts, it is outside
the scope of this paper because no other minimal surface
satisfies the main good continuation constraints that are so
needed in our case.

5 Contextual Inference of Coherent Structure

Having a model for the local behavior of “good” scalar fea-
tures provides the ability to assess the degree to which a
particular measurement at one point is compatible, or con-
sistent, with the context in which it is embedded. This, in
turn, can be used to remove spurious measurements and re-
place them with consistent ones such that local ambiguity
is reduced and global structures become coherent. There are
several different frameworks in which one can pursue this
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task while maximizing some measure of global coherency
over a domain of interest, including, for example, relaxation
labeling (Hummel and Zucker 1983; Pelillo 1997), recurrent
neural networks (Hopfield and Tank 1985), and belief prop-
agation networks (Pearl 1988). While the particular choice
is independent from our main theoretical contribution, here
we choose to use relaxation labeling while noting that other
approaches could be used in a similar fashion. Relaxation
labeling also offers an intrinsic ability to preserve singu-
larities and boundaries in the signal (see Ben-Shahar and
Zucker 2003), hence to facilitate the two goals discussed in
the Introduction (i.e., preservation of both regular and sin-
gular structure).

5.1 Essential Elements of Relaxation Labeling

Following early studies on the interpretation of line draw-
ings (Waltz 1975), it has become widely accepted that in-
terpretation of sensory data is highly unreliable unless it in-
volves contextual constraints. Relaxation labeling (Hummel
and Zucker 1983; Kittler and Illingworh 1985; Pelillo 1997)
is a formal approach for providing a contextual computa-
tional framework by representing the interpretation problem
as the assignment of labels to nodes in a graph (a.k.a. net-
work) whose edges represent the contextual structure.

Let I = {i | i = 1, . . . , n} be a set of nodes, each of which
may take any label λ from the set Λ. Let pi(λ) denote the
probability, or confidence, in the assignment of label λ to
node i. In general, pi(λ) must sum to 1 at each node, i.e.,∑

λ∈Λ pi(λ) = 1 ∀i. and the space of all these assignments
is denoted K . The role of relaxation labeling is to start from
a given (typically inconsistent) label assignments, and to
employ contextual constraints in order to obtain optimally
consistent one. The fundamental mechanism by which this
is done in the relaxation labeling network is a compatibility
function rij (λ,λ′) which quantifies the contextual informa-
tion conveyed by label λ′ at node j about label λ at node i.
Having such a compatibility, one can defined the contextual
support that label λ at node i receives from its neighborhood

si(λ) =
n∑

j=1

m∑

λ′=1

rij (λ,λ′)pj (λ
′), (36)

which can be viewed as a sum of all neighborhood confi-
dences weighted by the compatibilities. Using this machin-
ery, relaxation labeling maps initial inconsistent labeling to
consistent ones via an iterative process. Although different
iterations have been proposed in the literature, here we fol-
low the one by Hummel and Zucker (1983):

pt+1
i (λ) ← ΠK

[
pt

i (λ) + δst
i (λ)

]
, (37)

where ΠK is an operator that projects its argument onto K,
and δ is a constant step size. A fundamental result from the

theory of relaxation labeling states that this algorithm con-
verges to a consistent labeling (Hummel and Zucker 1983)
related to the Nash equilibria of the polymatrix game (Miller
and Zucker 1999). Please refer to the aforementioned refer-
ences for additional information.

5.2 A Relaxation Network for the Inference of Coherent
2D Scalar General Features

A direct abstraction of the relaxation process for the infer-
ence of coherent 2D image structure involves a 2D image-
based network of nodes i = (x, y) (i.e., pixels) whose labels
are drawn from the set

Λ = {
(I,‖∇I‖, θ,KT ,KN) | I ∈ [0,1],

‖∇I‖ ∈ [0,∇max], θ ∈ [−π,π),

κT , κN ∈ [−Kmax,Kmax]
}
. (38)

Ultimately, the desired relaxation labeling network would
explore this entire continuous-labeling space. Although an
ad hoc approach for continuous-labeling relaxation labeling
has been proposed in Duncan and Birkholzer (1992), in this
paper we follow the traditional discrete-labeling scheme for
its rigorous theoretical background and convergence results
(e.g., Hummel and Zucker 1983; Pelillo 1997; Torsello and
Pelillo 2000). Hence, for the rest of this section we assume
that each of the label coordinates in Λ has been quantized
appropriately at the desired resolution.

As required by the relaxation process, a preliminary mea-
surement procedure assigns an initial confidence value, or
probability p0

i (λ), to each possible label such that at each
node

∑
λ∈Λ p0

i (λ) = 1. The relaxation process itself drives
this initial confidence distribution p0

i (λ) to a final (more
consistent but possibly ambiguous) distribution p∞

i (λ), as
discussed in Sect. 5.1. What governs the dynamics of this
process, and ultimately its convergence state, is the com-
patibility relationships rij (λ,λ′) between different labels at
different nodes. In our case, these compatibilities represent
the degree to which two nearby pixels have consistent labels
from the set defined in (38). Following the bulk of this pa-
per, we derive these compatibilities based on the model for
consistency developed above, and in particular, for the rest
of paper we will focus on the dual-harmonic model from
Proposition 2.

Measurement quantization dictates that every possible
node i represents an equivalence class Ci of measurements,
each of which induces a dual-harmonic field of compatible
labels in the neighborhood of i. In the continuum, the union
of all these dual-harmonic fields that correspond to points
in Ci forms a consistent seven dimensional hypersurface, or
“7D volume” Vi . It is important to mention that since each
node i corresponds to a different set of position, value, gradi-
ent magnitude, orientation, and curvatures, the shape of the
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Fig. 9 A visualization of the 7D consistency volume correspond-
ing to two particular values of the descriptor {I,‖∇I‖, θ , κT , κN }
at the origin. Here we show this volume via its projections on the

3D subspaces XYI , XY‖∇I‖, XYθ , XYκT , and XYκN . Top: (I ,
‖∇I‖, θ , κT , κN ) = (0.5,2.4,0◦,0.1,−0.1). Bottom: (I , ‖∇I‖, θ , κT ,
κN) = (0.5,3.6,45◦,0.0,0.1)

Fig. 10 A sample of 9 × 9 circular compatibility fields for x, y ∈
[−4.5,4.5], I = 0.5, two different combinations of ‖∇I‖ and θ , and
various combinations of the curvatures κT and κN . Each plot uses in-
tensity to code the compatible values in the neighborhood of the central
pixel. (Please use the electronic version of the paper if intensity varia-
tions are not reproduced well in print.) Due to quantization, especially
that of curvatures, a given label at the center may be compatible with

more than one label at a same nearby location in its neighborhood,
an outcome that gives rise to the volume in Fig. 9. Since this multi-
plicity of compatible values cannot be depicted when coded with gray
levels, the fields plotted here show only the most compatible value at
each neighborhood position. Note how higher curvature values intro-
duce more variations into the fields. (a) I = 0.5, ‖∇I‖ = 1, and θ = 0◦.
(b) I = 0.5, ‖∇I‖ = 3, and θ = 45◦

7D consistency volume Vi around i will vary with i (Fig. 9).
After quantization, this volume results in a set of consistent
labels at nodes in the neighborhood of i. A sample of com-
patibility fields for two combinations of ‖∇I‖ and θ and a
variety of curvature pairs are illustrated in Fig. 10 using the
most compatible value in the neighborhood of a given node.
Note the influence of the different parameters on the pattern
of compatible values.

While the consistency volume Vi determines which of the
nodes are compatible with a given node i, it does not deter-
mine the values of rij which represent the likelihood that
node j shares the same local (dual-harmonic) model with
node i. Thus, we set rij to be the probability that Cj in-
tersects the dual-harmonic function of a randomly selected
point in Ci . In other words, if Pi is a random variable uni-
formly distributed in Ci , and Î (Pi) is the dual-harmonic
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function associated with it, we set

rij = Prob
[
Î (Pi) ∩ Cj �= ∅

]
.

In practice, we estimate these values using Monte Carlo
sampling.

With the network structure, labels, and compatibilities all
designed, one can compute the support si(λ) that label λ at
node i gathers from its neighborhood based on (36). The
support is then used to relax the label assignments based
on the update rule (see (37)). The relaxation labeling the-
ory (Hummel and Zucker 1983; Pelillo 1997) ensures that
this relaxation process will converge to a consistent labeling
while extremizing the average local consistency over the en-
tire image. Recent studies also show that this process is sta-
ble at signal boundaries and singularities (Ben-Shahar and
Zucker 2003), a capacity that facilitates the required preser-
vation of singular structure.

Finally, it should be noted that the convergence state of
the relaxation process may result in an unambiguous label-
ing assignment. However, such a labeling assignment can
be naturally disambiguated at each node through a maxi-
mum confidence selection (i.e., a winner-takes-it-all prin-
ciple, where only the label with maximum confidence at
each node survives), a straight forward and parameter-free
process that provides the final computational result.

6 Experimental Results

Among the different applications of good continuation in
perceptual organization, we have examined our general the-

ory in the context of image denoising and restoration. To-
ward that end we have tested the proposed dual-harmonic
model and the performance of the described contextual in-
ference computation on a variety of input images, both syn-
thetic and natural. In all cases, we have examined the per-
formance on clean versions of the input image, as well as
on noisy versions. For our experiments we used two noise
models—additive Gaussian noise and the non-additive Salt
and Pepper noise. Part of our goal in using both noise mod-
els was to demonstrate how the good continuation approach
can handle both equally well, something that to our best
knowledge no denoising approach is able to achieve. Since,
as we argue from the start, both values and level set geom-
etry are critical aspects of the visual signal, we show both
channels separately in all our result figures. For comparison,
all our results are plotted against those obtained from popu-
lar anisotropic diffusion approaches for structure-preserving
denoising—the Perona and Malik (1990) method and the
Beltrami flow approach (Sochen et al. 1998). As we show,
not only that our approach competes well against these
methods in their ball park (i.e., smoothing additive noise),
but at the same time it exhibits excellent denoising results
for non-additive noise, unlike the very same diffusion tech-
niques.

6.1 Noise-Free Synthetic Images

Our first results are demonstrated on synthetic benchmark
images, several of which are shown in Fig. 11. The use of
synthetic images is particularly revealing since they provide
both the “ground truth” which defines the ultimately desired

Fig. 11 A sample of synthetic images used for experimental evalua-
tion, each represented as an intensity image (top) and via their level
set geometry (bottom). Note that sometimes singular structure occurs
in the shading pattern, sometimes in the level set geometry, and some-
times in both. (a) A vertical step edge. (b) A vertical positive roof edge
(a.k.a. positive line). (c) A horizontal “cross”—the perceptual horizon-
tal edge is obtained by two opposing gradient profiles which intersect

at some point (hence the term “cross.” See also the 3D representation
in Fig. 12c). (d) A curved step edge. This and the following patterns
could help evaluate the response of the various methods not only to the
intensity profile across the edge, but also to the geometry of the edge
itself. (e) A curved roof edge. (f) Several patches with different level
set behavior
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performance and they allow the exploration of various vi-
sual structures which otherwise may be difficult to isolate in
natural images.

Furthermore, unlike natural images, which always are
contaminated with some noise, synthetic images can also
provide truly noise-free inputs (up to quantization) that al-
low to scrutinize the intrinsic qualitative effect that any par-
ticular method inflicts upon visual structures of interest. In-
deed, our first test examined how our approach preserves
singular and regular structure when no noise is present.
To do so, we applied both the good continuation compu-
tation and the diffusion methods the same number of iter-
ations that would typically be enough to handle noisy pat-
terns (see Sect. 6.2), but we did so on noise-free inputs.
Hence, the results of 5 iterations of the proposed good con-
tinuation approach (with step size δ = 0.25) are compared
to 200 iterations of the Perona-Malik diffusion (with step
size λ = 0.25) and to 200 iterations of the Beltrami flow
(with step size dt = 0.002). In all our experiments, inten-
sity was quantized to 32 classes, orientation to 16 classes
(in the range (−π,π]), intensity gradient to 3 classes (in
the range [0.0,6.0]), and curvatures to 3 classes each (in the
range [−0.2,0.2]). This selection reflects an empirical com-
promise between the desired highly-quantized (ideally, in
the limit, continuous) labeling space, and the computational
cost that grows rapidly (exponentially) with the quantization
rate. As we show next, our results using these ad-hoc rates
are already very good.

In order to emphasize even minute structure distortions,
which sometimes are masked by perceptual limitations, the
results of this initial test are depicted as height functions (see
Fig. 12), a visual representation that can emphasize unde-
sired effects especially around singular regions (like edges
or peaks). We observe that all the test patterns remain vir-
tually invariant to the application of the good continuation
approach (up to the intrinsic quantization to 32 intensity val-
ues), as both singular structures and the regular regions be-
tween them exhibit almost no changes after the application
of 5 relaxation iterations. The same, however, cannot be said
about the diffusion methods which clearly do introduce un-
desired structural distortions in most cases examined.

6.2 Noisy Synthetic Images

While the good continuation approach seems to do excel-
lent job in preserving noise-free structure, the motivation
for its formulation was the need to behave similarly in the
presence of noise and incoherent measurements. By design,
this should be achieved by applying the developed dual har-
monic model on the noisy signal and organizing geometri-
cally coherent structure directly from it. In such cases, noisy
measurements are iteratively replaced by more consistent
values which correspond the best with their context in term

of the defined 2D good continuation model. The relaxation
process itself then drives these changes toward global con-
sistency.

Figures 13 and 14 illustrate the results of such reconstruc-
tion of coherent structure from noisy versions of all images
from Fig. 11. Following the signal aspects that motivated
our theoretical analysis, in these and the rest of our result
figures, the computational outcomes are depicted both as a
shading structure and via the geometry of their level sets
(drawn 10 gray levels apart). As before, the good continu-
ation results are shown always after 5 relaxation iterations
while diffusion results on noise-free images are shown after
200 iterations (as in Sect. 6.1). Diffusion results on noisy im-
ages are shown after 100 iterations on images with additive
noise, and after 500 iteration on images with Salt and Pepper
noise. Step sizes in all cases are as mentioned in Sect. 6.1.

It should be noted that, as is typically the case, the pa-
rameters of different numerical approaches cannot be made
commensurate in a strict sense. However, what we set to ex-
amine in our comparison is a tradeoff between two conflict-
ing goals—noise removal and preservation of (singular and
regular) structure. Obviously, the more we diffuse (or relax),
the more noise is removed. At the same time, the more we
diffuse (or relax), the greater is the risk for structure distor-
tion (especially, for regular structure). Hence, as long as we
select the parameters of the different methods such that the
process stops before (or just when) noise is removed, we are
able to examine if and how much structure was distorted in
the process. If structure was distorted before noise was re-
moved, then clearly the two goals could not be met. Follow-
ing this reasoning (and using the step sizes as in Sect. 6.1)
100 iterations were approximately needed in both diffusion
methods to remove most or all of the additive noise, while
500 iterations were never enough to eliminate the Salt and
Pepper noise, but more than enough to incur severe struc-
tural distortions.

In general, we observe that the good continuation process
exhibits almost flawless behavior compared to these popu-
lar anisotropic diffusion schemes. These results apply not
only in terms of noise removal and preservation of singu-
larities, but also in terms of preserving and reconstructing
the regular parts of the level set geometry. In comparison,
anisotropic diffusion of the noisy images distorts these struc-
tures as, or before (and sometimes long before) noise is re-
moved, hence putting in question the utility of these methods
when used in conjunction with subsequent computer vision
processes such as shape inference (see the Introduction).

6.3 Natural Images

In addition to the synthetic images used in the previous sub-
section, we have tested our approach on a variety of nat-
ural images as shown in Fig. 15. As before, each image is
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Fig. 12 The qualitative effect of the good continuation approach on all
synthetic patterns from Fig. 11. All images are depicted as height func-
tions. Top row: The original noise-free pattern (compare to Fig. 11).
Second row: The result of 5 iterations of the good continuation ap-
proach with step size δ = 0.25 (cf. (37)). Note that these results are
virtually identical to the original pattern (up to the intrinsic quantiza-
tion), which implies the excellent preservation of structure, both singu-

lar and regular. Third row: The results of 200 iterations of the Beltrami

flow (Sochen et al. 1998) with step size dt = 0.002. Bottom row: The

results of 200 iterations of the Perona-Malik anisotropic diffusion (Per-

ona and Malik 1990) with step size λ = 0.25. Note that both methods

inflict undesired distortions in almost all cases. Compare to the good

continuation results in the second row

shown both as an intensity function and as a map of level
sets (this time drawn 20 gray levels apart to reduce clutter).
The results of applying our good continuation approach to
these images is illustrated in Figs. 16 and 17 next to the re-
sults obtained from the selected anisotropic diffusion meth-
ods. We observe that in all cases (noise-free, additive noise,
and Salt and Pepper noise), the good continuation approach
typically exhibits better performance, both in terms of noise
removal, and in particular, in terms of the preservation of
level set geometry. It is interesting to note that this happens
even when the perceptual results are comparable. Consider,
for example, the result of the Perona-Malik diffusion vs. the
good continuation result on the Lips image (second row in

Fig. 17) and focus on the upper and low lip regions. Clearly,
the result of the Perona-Malik diffusion in these regions sug-
gests a “ramp” behavior—a roughly horizontal ramp in the
upper lip and a roughly vertical ramp in the lower lip. These
structures are qualitatively different than the original ones
(from Fig. 15c) which have, in particular, local intensity
maxima (two in the upper lip and one in the lower lip). In
contrast, the result of the good continuation approach show
that these fine structures were fully preserved. Following our
motivation from the Introduction, if one were to use these
two results in a subsequent shape inference procedure, the
one based on the diffusion result would clearly fail to yield
the correct qualitative shape of the lips.
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Fig. 13 Results of applying the good continuation inference process
on the first three synthetic patterns from Fig. 11 (unless printed on a
quality printer, details in several images may be difficult to observe.
In this case, please refer to the electronic version and zoom in on in-
dividual panels). Different rows relate to performance on different in-
put images, where each input image is tested with no noise (top row
of each triple), with Gaussian additive noise (middle row, σ = 0.002,
Matlab’s implementation), and with Salt and Pepper noise (bottom row,

p = 0.1, Matlab’s implementation), respectively. Note how the good
continuation approach keeps both the shading patterns and their level
set geometry almost intact while removing the noise. In contrast, note
how both diffusion methods often induce undesired structural effects
(i.e., the elimination or creation of singular structure and the distortion
of regular structure, e.g., in the neighborhood of the cross’s center)
even before all noise is eliminated. Compare all results to the desired
shading and level set patterns in Fig. 11
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Fig. 14 Results of applying the good continuation inference process
on the last three synthetic patterns from Fig. 11. Figure organization
is as described in the caption of Fig. 13. As in the previous figure,
compare results to desired shading and level set patterns in Fig. 11.

Note, for example, how the good continuation approach recovers very
accurately the structure in the patches image while both anisotropic
diffusions introduce severe structural distortions to it
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Fig. 15 A sample of natural images used for experimental evaluation
(top). To allow clear depiction of the results, in particular those of the
level set geometry, all computations are shown for selected closeup
region of interest (middle row) which are represented both as an in-

tensity image and via their level set geometry (bottom). (a) Bananas.
(b) Fingers (from Michelangelo’s Pieta). (c) Lips (from Michelan-
gelo’s David) (d) Hood (from Michelangelo’s Pieta)

6.4 Other Domains of Application

It is important to reiterate that this paper is theoretical and
general, and that our results are relevant to various percep-
tual organization applications, visual cues, and image fea-
tures. For convenience reasons we choose to demonstrate
applicative results from the domain of image denoising and
the restoration of shading functions. However, as mentioned
in the Introduction, the same geometrical theory and com-
putational mechanisms could facilitate other applications
which use good continuation, including (but not limited
to) segmentation, grouping, visual completion, or image in-
painting. Moreover, all these applications could be applied
not only to the raw intensity function, but to any visual cue
that can be abstracted as a piecewise smooth 2D scalar func-
tion over the image plane. To provide a glimpse to these
other domains, Fig. 18 shows one example of color image
restoration based on the inference of coherent structure in
all of the R, G, and B color channels. Here, representing
the image via these channels create three feature maps, each

of which obeys the abstraction that underlies our theory.
Hence, a corrupted color image could be restored by simul-
taneous application of our contextual inference on each of
these channels, and stacking them back to a full restored
color image. While we do no claim that this is the correct
way to handle color or color images (e.g., see Ben-Shahar
and Zucker 2004), Fig. 18 suggests that even this naive ap-
proach can achieve practical results.

7 Summary

This paper presents a general theory, a formal derivation,
and a computational method for the organization of coherent
visual structures based on a rigorous extension of the princi-
ple of good continuation. First, we have shown how geomet-
rical good continuation may be applied to general functions
by considering both their level sets and the distribution of
values and have developed a unique formal model in which
both aspects are simultaneously harmonic functions. We
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Fig. 16 Results of applying the good continuation inference process
on the first two natural images from Fig. 15. Figure organization, as
well as all execution parameters, are all as described in previous result

figures. Compare all results to the desired original structures (in par-
ticular, the level set maps) from Fig. 15

have further extended this result to dual p-harmonic mod-
els to show that for any value of p there exist a unique good
continuation model which is simultaneously p-harmonic in
both its value structure and its level set geometry.

Second, we have used the dual harmonic model in a
contextual computation and demonstrated how this percep-
tual organization approach provides superior performance in
eliminating spurious measurements while preserving singu-
larities and the underlying level set geometry. Unlike exist-
ing methods for denoising visual signals, ours can handle
both additive and non-linear noise while preserving both the
singular and much of the regular structure, hence offering
much greater chance for success to computer vision algo-
rithms that follow the denoising step.

The approach developed in the present paper not only
exhibits state-of-the-art computational results but it extends

the possible contribution of perceptual organization beyond
the natural boundaries of this field. While good continua-
tion has been considered mostly in the context of curve-like
structures, here we show that it can be defined rigorously
and formally for general 2D functions as well. We assert
that this extension is significant not only from a theoretical
and computational perspectives, but also for biological and
human vision. Indeed, the analysis and algorithms discussed
here are all biologically-plausible in a sense that they fit nat-
urally to a massively distributed (i.e., brain-like) computa-
tional network in which each node is tuned to some proper-
ties of the signal and its interactions to its neighboring nodes
facilitate the inference of coherent global structure. As it has
been suggested previously for the organization of coherent
oriented structure (e.g., Ben-Shahar and Zucker 2004), here
our work suggests both new tuning properties for early vi-



Int J Comput Vis (2010) 86: 48–71 69

Fig. 17 Results of applying the good continuation inference process on the last two natural images from Fig. 15. Compare all results to the desired
original structures (in particular, the level set maps) from Fig. 15

Fig. 18 The restoration of a color image corrupted with either additive Gaussian noise (top) or Salt and Pepper noise (bottom) by the simultaneous
application of the good continuation contextual inference to the R, G, and B channels

sion receptive fields and a particular way by which neurons

in the visual cortex should interact and connect in order to

facilitate the inference of structure for which the network

is designed. Both implications constitute quantitative pre-

dictions which could (and hopefully will) inform biological

vision research to new directions.
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Interestingly enough, one of the new tuning properties
that is suggested by our analysis is sensitivity to the gradi-
ent of visual signals and cues. Such tuning properties have
been supported indirectly through the classical observation
of scale tuning and spatial frequency tuning in visual cor-
tical cells (Hubel and Wiesel 1977; De Valois et al. 1982).
Furthermore, recent new studies have employed other com-
putational reasons to argue for explicit neural representation
of gradients and their processing in the early visual system
(e.g., Keil et al. 2006). Once such tuning properties are con-
firmed experimentally, the well defined set of connections
predictable by our dual-harmonic model could also be tested
directly using available neuroanatomical and neurophysio-
logical techniques.
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