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Abstract

The analysis of texture patterns, and texture segregation
in particular, are at the heart of perceptual organization. In
this paper we question the widely accepted view that the de-
tection (both perceptual and computational) of salient per-
ceptual singularities between perceptually coherent texture
regions is tightly dependent upon feature gradients. Specif-
ically, we study smooth orientation-defined textures (ODTs)
and show that they exhibit striking perceptual singularities
even without any outstanding gradients in their defining fea-
ture, namely orientation. We further show how these generic
singularities are not only unpredictable from the orienta-
tion gradient, but that they also defy popular segmentation
algorithms and neural models. We then examine smooth
ODTs from a (differential) geometric point of view and de-
velop a theory that fully predicts their perceptual singular-
ities from two ODT curvatures. The computational results
exhibit striking correspondence to segregation performed by
human subjects and provide a conclusive evidence for the
role of curvature in texture segregation. Extensions and im-
plications of our results are developed for various aspects of
visual processing.

1. Introduction

The ability to effortlessly segregate texture stimuli into
coherent parts has long been attributed to rapid changes (or
high contrast) in the spatial distribution of elementary visual
features - a notion that had become known in the study of
texture segregation as feature gradients [1, 32, 16, 31, 36],
and which motivated some of the most popular texture segre-
gation algorithms to-date (e.g. [25]). In this work we revisit
the role of feature gradients in the context of orientation-
define textures (ODTs) and orientation-based texture seg-
mentation (OBTS). While ODTs are frequent in natural
and artificial visual stimuli, textures are rarely characterized
solely by orientation. Nevertheless, understanding the effect
of orientation on texture segregation is essential due to its

neurophysiological basis [14], its central role in perceptual
organization [16, 17], and its close relationship to shape per-
ception [40, 41].

Just like feature gradients in general, orientation gradi-
ents were shown to play a key role in OBTS and in ex-
plaining behavioral results in human observers (e.g., [29,
30, 22]). However, much of this insight is due to the fact
that the overwhelming majority of these studies have con-
centrated on ODTs of piecewise-constant orientation, where
presumed perceptually coherent regions were defined by
constant orientation, while salient perceptual singularities1

emerged from high orientation contrasts between these re-
gions (e.g. [28, 22, 45, 21, 23]). While such exploration
is valid in a sense of employing simplified stimuli for use
in lab experiments, it is such a gross oversimplification of
general ODTs as to obscure key aspects of the visual pro-
cess itself. Interestingly enough, regardless of their forma-
tion process, ODTs in natural stimuli are seldom constant or
piecewise constant since this requires an accidental match
between the surface geometry, the texture formation pro-
cess, and the observer’s view-point. Furthermore, perspec-
tive projection dictates that even completely parallel lines in
the world are likely to give rise to a non-constant ODT in the
image. Indeed, as we discuss in this paper, the larger context
of piecewise smooth ODTs reveals entirely new aspects and
much wider scope for OBTS, both perceptually and compu-
tationally. Broader implications for perceptual organization
and other aspects of vision are discussed in Sec. 6.

2. New phenomenological motivation

One prediction from existing segmentation models is that
without significant feature gradient/contrast textures are per-
ceptually coherent (i.e., neither segregated into distinct re-
gions nor exhibit any other perceptual singularities). As
implied by perceptual studies, as well as by computational
algorithms (e.g. [25]), an ODT described by the orienta-

1We use the notion of perceptual singularities to emphasize the differ-
ence from genuine singularities in the visual signal.
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Figure 1. Perceptual singularities in piecewise constant ODTs are well pre-
dicted by orientation gradients. (a) A typical piecewise constant ODT. This
ODT, as well as most other textures illustrated in this paper, are visualized
and generated using the Line Integral Convolution (LIC) method [6]. (b)
The map of orientation gradient magnitude (depicted as intensity) corre-
sponds well to the segregation of the texture by human observers.

tion function θ(x, y) is therefore likely to exhibit percep-
tual inhomogeneities, perceptual singularities, or percep-
tual boundaries, along curves and points where |∇(θ ∗ Gσ)|
crosses some threshold, where the wrapped Gaussian Gσ is
a blurring kernel and the shift in scale space is required to al-
low a well behaved gradient everywhere. Indeed, as shown
in Fig. 1, this gradient-based approach accurately predicts
perceptual singularities for the well studied ODTs of piece-
wise constant orientation.

Unfortunately, however, the predictions of this approach
become utterly wrong in the general case of ODTs with
(piecewise-) smoothly varying orientation. Such smoothly
varying ODTs almost always exhibit striking perceptual sin-
gularities – curve-like structures that are significantly more
salient than any other region of the ODT. These singularities
are always tangent to the ODT (i.e., they coincide with cer-
tain streamlines, or segments thereof) and they are respon-
sible for the segregation of the ODT into perceptually dis-
tinct regions. Importantly, this segregation, and these per-
ceptual singularities, have no apparent relationship to the
orientation gradient of the ODT. For example, the pattern
in Fig. 2a has constant orientation gradient across the en-
tire image (Fig. 2b). In other words, nowhere in this pattern
the orientation changes more rapidly or differently from any
other part. Still, virtually all observers segregate this pattern
into diagonal bands separated by perceptually salient bor-
der lines. Evidently, something in the spatial relationship
between the orientation textons [16], and not merely their
local contrast, determines the saliency of different regions
and the segregation of the pattern2. Similarly, the ODT in
Fig. 2c exhibits a salient double spiral structure that has no
apparent relationship to the orientation gradient of this pat-
tern (shown in Fig. 2d). It is therefore clear that in order to
model these saliency differences and segregation correctly,
something beyond orientation gradients (or feature gradients

2Note also that the perceived perceptual singularities have nothing to do
the the wrapping around of the orientation itself since they are invariant to
Euclidean transformations of the image.

in general) must be considered.
That salient perceptual singularities in smooth ODTs are

independent on orientation gradients is easily demonstrated
by creating different ODTs with identical orientation gra-
dient map and comparing the perceptual outcome. In par-
ticular, if θ0(x, y) is the orientation function of a given
ODT, it is guaranteed that its orientation gradient is iden-
tical to that of the ODT defined by the orientation function
θ1(x, y) = ∆θ + θ0(x, y), where ∆θ is an arbitrary phase
shift. One such a pair is demonstrated in Fig. 2e,f to show
how drastically different the structure of perceptual singu-
larities in textures of identical feature gradient can be.

The perceptual singularities exemplified in Fig. 2 are ex-
tremely consistent across observers3. They are also very
robust and insensitive to the specific visualization method
of the ODT, and they persist even in sparse representations
(Fig. 3). It may be surprising, then, that these singulari-
ties, and the resultant segregations, are poorly predicted by
most, if not all, segmentation algorithms available to-date.
We have thoroughly tested a variety of algorithms on im-
ages of smooth ODTs and show selected results in Fig. 4.
Clearly, none of these algorithms is able to replicate human
perception in these cases. In part, however, this result was
expected. The notion of feature gradient, and quite often
that of orientation gradient, are grounded in many segmen-
tation methods, either explicitly, via a gradient-like measure,
or implicitly, via a pixel or region similarity factor. Since, as
we have shown, orientation gradients are not a reliable de-
terminant for perceptual singularities in ODTs, it is unlikely
that segmentation methods that rely on these gradients could
provide the correct segmentation results.

Given all these observations and the introduction of the

3In an extensive behavioral study we have examined a variety of psy-
chophysical aspects of the perception of singularities in smooth ODTS. The
results are omitted from this paper but reported elsewhere [2].

Figure 3. Perceptual singularities in piecewise constant ODTs are robust
to the specific visualization method. here we show the same ODT depicted
as a LIC dense texture [6] and as a sparse array of jittered oriented seg-
ments (texels). The same global structure mediated by the perceptual sin-
gularities is equally salient in both. The sparse, texel-based representation
is particularly intriguing in this sense since its salient structures are nei-
ther better aligned nor less curving than certain non salient configurations
(e.g., between the black dots). Evidently, saliency is not determined by
element to element matching based on orientation difference or good con-
tinuation [10]. But if not, then how?



a c e

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
4.5

5

5.5

6

6.5

7

Orientation gradient norm

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30

Orientation gradient norm

b d f

Figure 2. perceptual singularities in smoothly varying ODTs are poorly predicted by orientation gradients. (a) A smoothly varying ODT defined by the
function θ(x, y) = c · x + c · y. Virtually all observers report segregation of this pattern into multiple diagonal bands separated by salient border lines. (b)
The graph of the orientation gradient magnitude of the pattern in a. Clearly, there is fundamental gap between the (inhomogeneous) perceptual outcome and
the prediction based on the (constant) orientation gradient. (c) This smooth ODT exhibits salient double spiral structure that is easily segregated by human
observers. (d) The graph of the orientation gradient magnitude of the pattern in c. Again, the perceptual outcome clearly is dissociated from the feature
gradient. (e+f) This pair of smooth ODTs are different only by a constant phase shift: θe(x, y) = π/8 + sin(5x + 2y) where θf (x, y) = θe(x, y) + π/2.
Despite having an identical feature (i.e., orientation) gradient across the pattern, the perceptual outcome is drastically different. In fact, virtually all observers
report no segregation for θe while θf is consistently segregated into diagonal bands along salient straight perceptual singularities. (Note: to avoid aliasing
and other artifacts, please print the ODT images on a high resolution color printer or use the electronic version to view on a monitor after extending each to
decent size).

hitherto overlooked singularities in smoothly changing tex-
tures, we next examine the (geometrical) nature of smooth
ODTs, we explore possible factors that effect their local
saliency perceptual singularities, and we devise a compu-
tational method that accurately predicts and detects them.
The contribution of this paper is therefore twofold, both for
better understanding perceptual organization at the percep-
tual level, and for improving performance of computational
methods to handle a novel aspect of segmentation and group-
ing.

3. Geometrical foundations

Consider an ODT in the image plane. An abstract repre-
sentation for this ODT would make explicit the orientation
at each point, hence an ODT can be described as an orien-

tation function θ(x, y) in the image plane or as a unit length
vector field ~ET (x, y) tangent to the ODT at each point. In
this sense an ODT is an oriented pattern [19], an oriented
texture field [35], or a texture flow [4]. Here we follow the
theoretical foundations developed in the latter to derive a
computational measure that makes accurate predictions of
the perceptual outcomes.

An extension of the vector field representation ~ET (x, y)
that makes tools from differential geometry readily available
is the frame field representation [33]. More specifically, by
attaching a second unit vector ~EN(x, y) to each point (x, y)

such that ~ET · ~EN = 0 one obtains a frame at each point
on the ODT, and therefore a frame field {~ET , ~EN} in the
image domain. This frame field is not simply a redundant
representation; it also provides a local coordinate system in
which all other vectors can be represented in a natural, object
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Figure 4. Perceptual singularities in smoothly varying ODTs are poorly detected by existing segmentation algorithms. This table illustrates selected seg-
mentation results compared to manual segregations by human observers. In all cases, the algorithmic results bear no resemblance to the perceptual one.
(a) Original image (b) Typical manual segregation by a human observer. In these behavioral studies (see [2] for details) stimuli were presented with fad-
ing margins to minimize potential boundary effects. User segmentations therefore correspond to the viewable regions only. (c) Segmentation result using
normalized cuts [39]. (d) Segmentation result using mean shift segmentation [7] with parameters tuned to handle best the texture regions of our ODTs
(hs = 8, hr = 6.5,M = 100). (e) Boundary probability by multi cue segmentation due to [26]. All segmentations were produced from publicly available
code released by the authors of the different methods. All shown images were scaled down significantly for space reasons. To appreciate these results it is
recommended to zoom in on each image using the electronic version of the paper.

centered view (Fig. 5). Perhaps the most important vectors
(other than the frame vectors themselves) that asks for such
an object centered representation are the covariant deriva-
tives of ~ET and ~EN . These covariant derivatives represent
the initial rate of change of the frame in any given direction
~V, a quantity which in the {~ET , ~EN} coordinates is cap-
tured by Cartan’s connection equation [33]:
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(1)

The coefficient w12(V ) is a function of the tangent vector
V , which reflects the fact that the local behavior of the flow
depends on the direction along which it is measured. Fortu-
nately, w12(V ) is a 1-form [33] and thus linear. This allows
us to fully represent it with two scalars at each point since

w12(V ) = w12(a ~E1 + b ~E2) = a w12(~E1) + b w12(~E2).

The freedom in selecting a basis {~E1, ~E2} for the repre-
sentation of the tangent vectors V is naturally resolved by
making, once again, the choice of ~E1 = ~ET and ~E2 = ~EN .
This yields the following two scalars:

κT
4

= w12(~ET )

κN
4

= w12(~EN )
. (2)

These two scalars, defined at each point of the ODT, are
called its tangential curvature (κT ) and normal curvature
(κN ), respectively [4], and they represent the initial rate of
change of the ODT orientation in its tangential and normal

directions, respectively. Practically, these two curvatures can
be evaluated at each point as the coefficients of the orthog-
onal expansion [33] of the orientation gradient of the ODT
(relative to a fixed coordinate system) based on the frame
itself

κT = ∇θ · (cos θ, sin θ)
κN = ∇θ · (− sin θ, cos θ).

(3)

We note that although Eq. 3 provides signed curvatures, as
indeed is possible in the plane (e.g. [8, p. 21]), in the fol-
lowing we will be interested in their absolute values (i.e.,
in |κT | and |κN |) since the orientation of the ODT is deter-
mined only up to π and since the sign of curvature appears
to play no role in the segregation process.
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Figure 5. The intrinsic local geometry of smooth ODTs is best captured by
its representation as a differentiable frame field which is everywhere tangent
and normal to the direction of the flow (see pairs of red vectors). An in-
finitesimal translation of the frame in a direction V rotates it by some angle
determined by the connection form of the frame field. Since the connection
form is a linear operator, it is fully characterized by two numbers obtained
by orthogonal expansion. The natural expansion based on the frame itself
yields the two curvatures κT and κN .



4. A theory of saliency in ODTs

One interesting property of ODT curvatures is that unlike
orientation gradients, or their components, in general these
curvatures cannot be simultaneously constant in a neighbor-
hood of the ODT, however small. This constraint is a con-
sequence of a more general differential constraint expressed
as follows [4]:

∇κT · ~EN −∇κN · ~ET = κ
2
T + κ

2
N . (4)

Eq. 3 further suggests that even if the orientation gradient
∇θ remains constant, the two ODT curvatures will change
in a periodic manner. This formal observation becomes par-
ticularly significant once Fig. 2a is scrutinized. In this figure
∇θ is constant across the entire pattern but perceptually this
ODT exhibits periodic singularities. Is this link accidental
or does it indicate a deeper relationship between abstract ge-
ometry, and in particular curvatures, and perceptual organi-
zation in the human visual system?

Further insight into this possibility is revealed by exam-
ining the actual behavior of the two curvatures (in absolute
value) of this ODT, as shown in Fig. 6a-c. Evidently, in this
case, the straight line-like perceptual singularities are paral-
lel to the levelsets of the two curvatures. Strikingly, aligning
the texture pattern with the two curvature maps shows that its
perceptual singularities in fact coincide with |κT (x, y)|’s ze-
ros on one hand, and with |κN (x, y)|’s maxima on the other.
Does this relationship represent a universal computational
rule for detecting perceptual singularities in smooth ODTs?

Unfortunately, |κT (x, y)|’s zeros cannot serve as such a
universal measure. Although this criterion is appealing be-
cause of its explicit link to much research into the role of
collinearity in perceptual organization and biological vision
(e.g. [11, 18, 37]), there are at least two reasons that ren-
ders it less useful than expected. First, κT (x, y) may vanish
along a perceptual singularity only if the latter is straight (as
in Fig. 6a). In general, however, since perceptual singulari-
ties in smooth ODTs bend and curve (as in Figs. 2c and 3),
the tangential curvature along them will not vanish. Second,
streamlines of zero tangential curvature often are the least
salient structure in ODTs, as is demonstrated in Fig. 6d.
Blindly detecting structures of zero tangential curvature is
therefore prone to provide false positives in these cases.

Unfortunately still, using |κN (x, y)|’s maxima to detect
perceptual singularities also presents some difficulties. First,
these maxima come at different values that vary both within
and between ODTs. Detection via global thresholding is
therefore prone to fail. More critical is that |κN (x, y)|’s
maxima actually fail to localize correctly certain salient sin-
gularities. Both phenomena are exemplified in Fig. 6e-h us-
ing the ODT defined by

θ(x, y) =
π

4
+

 

a +
b

1 + e
c−(x−y)

d

!

(x − y)

where a, b, c, d are constants. The magnitude of orientation gra-
dient of this ODT has a sharp sigmoid-like profile in the direction
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Figure 6. Preliminary observations about the relationship between ODT
curvatures and perceptual singularities. (a) ODT of constant orientation
gradient (same as Fig. 2a). (b) |κT (x, y)| of the ODT from panel a, de-
picted as intensity. Note how the perceptual singularities coincide with
|κT (x, y)|’s zeros. (c) |κN (x, y)| of the same ODT. Note the correspon-
dence of the singularities coincide with |κN (x, y)|’s maxima. Compare
to manual segregation in Fig. 4. (d) |κT (x, y)|’s zeros cannot serve as
a universal saliency measure. In general, singularities will emerge along
curving lines (black solid curve) while curves of zero curvatures often will
not be salient at all (streamline between two white dots). (e) ODT whose
orientation gradient has a sigmoid-like profile parallel to the main diago-
nal (top left to bottom right). Note the singularity that stretches corner to
corner (marked with arrows) between regions in which additional singular-
ities occur in different frequencies. (f) |κN (x, y)| of the ODT in panel e.
Note the different maxima values. (g) |κN (x, y)| plotted as intensity. (h)
|κN (x, y)| thresholded just below the maximum value of the central sin-
gularity. Note how this maximum curve (solid line in the inset) is offset
relative to the perceptual singularity (dashed line in the inset).



of the main diagonal, and constant zero profile in the direction of
the other diagonal. Hence, this smooth ODT provides an oppor-
tunity to examine perceptual singularities that separate regions of
significantly different orientation gradients, as is the case with the
central singularity in this figure. Indeed, one side effect of this
configuration is the false localization of this central singularity by
|κN (x, y)|’s maxima.

If either κT or κN accurately predicted the salient regions and
perceptual singularities in ODTs, it would be a strong indication
that the other curvature is less important for perceptual organiza-
tion in both man and machine. In this sense, one perhaps could ex-
pect that the normal curvature κN would prove insignificant, since
despite its theoretical justification [4], no psychophysical or physi-
ological evidence currently supports its involvement in early vision.
It is therefore a striking result that a computational measure (hence-
forth called the Perceptual Singularity Measure, or PSM) that accu-
rately pinpoints perceptual singularities and salient curves in ODTs
involves both curvatures:

Proposition 1 The locus of perceptual singularities in smoothly
varying ODTs of orientation function θ(x, y) is defined by the
ridges of the local differential measure

PSM(x, y) =
Y

κ2
T

+κ2
N

>τ

»

κN (x, y)2

κT (x, y)2 + κN (x, y)2

–

(5)

where κT (x, y) and κN (x, y) are defined by Eq.2 and the opera-
tor Π rectifies its argument by the condition specified.

It is important to realize that the point-wise normalization by
the total variation κ2

T + κ2
N not only re-localizes detected singu-

larities and pinpoints them to the perceptual outcome (see Fig. 7
and results below), but it also provides a normalized measure that
is restricted to the interval [0, 1] and therefore easier to use. The
rectifier is requires in order to avoid detection of spurious singular-
ities in regions where the ODT changes too slowly to trigger any
segregation. The threshold for this operation is determined psy-
chophysically [2]. It should be noted that the normalization also
suggests that an equivalent way to perceptually organize ODTs is
to extract the valleys of the coupled measure

PSM(x, y) =
Y

κ2
T

+κ2
N

>τ

»

κT (x, y)2

κT (x, y)2 + κN (x, y)2

–

(6)

thereby placing both curvatures on completely equal footing in
terms of their contribution to the perceptual organization process.

5. Experimental results

We have exhaustively tested the proposed computational mea-
sure for saliency and perceptual singularities in smooth ODTs on
a variety of ODT patterns. Textures were generated from ran-
domly selected quadratic orientation functions for which curva-
tures, PSM(x, y), and other differential properties, were com-
puted numerically using Matlab. The results on a variety of other
types of ODTs are omitted for space considerations. Despite
much debate in the literature on the proper way to compute ridges
(e.g., [12, 43, 27, 20, 9], here we use a local method by López
et al. [24] that provides excellent numerical stability.
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Figure 7. Our Perceptual Singularity Measure applied on the asymmetric
ODT from Fig. 6e. (a) PSM(x, y)i. Compare to Fig. 6f. (b) PSM(x, y)
depicted as intensity. Compare to Fig. 6g. (c) PSM(x, y) ridges. Note
how this time the central singularity (marked with arrows) is localized accu-
rately. Ridges in this case are particularly easy to detect since they coincide
with the points where PSM(x, y) = 1.

Results of our theory on selected ODTs are demonstrated in
Fig. 8 (also in Fig. 7) and illustrate the outstanding match between
perception and the proposed computational theory. Performance
of our saliency measure was compared to manual segregations by
performed human observers who viewed LIC visualizations [6] of
the same ODTs. While our psychophysical work examine multi-
ple aspects of segmentation without feature contrast, and incorpo-
rate numerous experiments using several experimental paradigms,
in the current computational paper we only bring samples of man-
ually drawn segregations for comparison with the computational
method. Readers interested in the behavioral aspects of this work
are kindly referred to [2].

Strikingly, the same saliency measure works also for piecewise
constant textures (after infinitesimal shift in scale space) and there-
fore fully generalizes existing theories based on feature gradients.
Although a theoretical account on this generalization is part of
our forthcoming work, here we briefly illustrate it (Fig. 9) for one
piecewise constant texture and one ODTs that combines both types
of singularities (with and without feature gradient)

6. Summary, implications, and future work

In this paper we seek to make several contributions to computa-
tional perceptual organization based on a novel examination of tex-
ture segregation by the human visual system. First and foremost,
we argue that perceptual organization and the detection of percep-
tual singularities in textures cannot be determined reliably by fea-
ture gradients. Although high feature gradients often do signal per-
ceptual singularities, the lack of the former does not imply percep-
tual coherence, as is vividly demonstrated by the hitherto neglected
smooth ODTs presented here. Second, we have shown that the ac-
curate detection of perceptual singularities in ODTs, both with and
without feature gradients, emerges directly and solely from their
intrinsic geometry and curvature properties. This not only provides
better computational results than existing segmentation methods,
but it also provides (1) a strong evidence for the advantage of a the-
oretical framework suggested recently in the literature [4] and (2)
novel insights for better understanding of segregation processes in
the human visual system.

While this paper focuses on ODTs and OBTS, we believe that
its implications are much broader in scope. Orientation is explicit
not only in ODTs but also in motion and optic flows and there-
fore the results developed in this paper are directly applicable to
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Figure 8. Experimental results of our saliency measure and detection of perceptual singularities in smooth ODTs. (a) ODT. (b) Manual segregation by human
observer (stimuli were presented with fading margins to minimize potential boundary effects. User segregations therefore correspond to the viewable regions
only). (c) Magnitude of the orientation gradient of the pattern. Note the lack of correspondence with the perceptual outcome and manual segregations. (d)
PSM of the pattern (without rectification). (f) PSM ridges (with rectification). Compare to manual segregations in column b.

motion-based segmentation. Orientation is also implicit in other
visual cues that take part in the segmentation process, in particu-
lar shading [5] and color [3]. The results presented in this paper
therefore imply that the role of these other cues in early vision and
segmentation should be revisited. Our forthcoming work concen-
trates on handling these visual cues based on the insights discussed
in this paper and combining them all into a novel approach to the
segmentation of general textures and natural images.

The results presented in this paper also carry implications for
another central issue of perceptual organization, namely that of
contour integration. Indeed, grouping edge elements into salient
curve structures has been motivated by Gestalt principles like prox-
imity and good continuation, both in behavioral studies (e.g. [10,
42]) and computational ones (e.g. [38, 34, 23]). But just like the
study of texture segregation has been dominated by piecewise con-
stant feature distributions, curve integration has mostly gained in-
sights from curve-like structures embedded in noisy and cluttered
background (e.g. [38, 13, 44]). Once the noisy background is re-
placed with a structured one, classical saliency results become in-
valid and 1D good continuation fails to explain or replicate cor-
rectly perceptual grouping [10, pp. 191-192]. One such example
was illustrated in the texel array in Fig. 3 for which existing curve
integration theories would falsely prioritize the diagonal collinear
configuration between the black dots in the bottom left quadrant.

The solution to this difficulty lies in the theory presented in our
current work, which both solves an open question from the percep-
tion literature ([10, pp. 191-192]) and suggests ways to handle it
computationally.

Interestingly enough, the results presented in this paper are also
linked to aspects of vision not traditionally related to perceptual
organization, for example to the perception of 3D shape. Often,
when viewed from a slanted view point or when forced to make a
shape interpretation, observers of smooth ODTs of the kind shown
here report the perception of 3D terrains with narrow ridges and
valleys4 that correspond to the salient perceptual singularities sig-
naled by our computational measure. Why this is the case may cor-
respond to how shape is perceived from surface contours [40, 41],
or due to generic edge-flow configurations that define occluding
contours [15]. Closer examination of these links are part of our
future work.
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4Try viewing the ODT in Fig. 2c after slanting the page.



Figure 9. Segregation results on piecewise continuous textures based on
our proposed saliency measure. (a) Piecewise constant texture of the sort
presented in Fig. 1. (b) Piecewise smooth ODT that combines both types
of singularities (with and without feature gradient). In both cases detected
perceptual singularities are marked as white curves.
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